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Prefacio

"A Fisica Matemdtica € a Matemdtica praticada por fisicos que querem ser
rigorosos, ou a Fisica praticada por matemdticos que querem ser aplicados.”

— (folclore académico)

Trata-se de um texto didatico para a disciplina "Célculo 5" (ministrada pelo Departamento de
Matemaética Aplicada da UFF sob o codigo GMA00162), cujo objetivo principal é descrever a resolugao
de equagoes diferenciais parciais (EDPs) classicas da Fisica — basicamente, as equagoes do calor, da
onda e de Laplace — pelo método de separagao de varidveis. Para alcangar essa meta, é necessario munir
o aluno de outras teorias que sao de importancia geral e que, por isso, devem integrar o repertério
matematico de todo estudante de Fisica ou Engenharia, tornando-se metas adicionais tao relevantes
quanto a resolucao de EDPs que orienta este texto.

Na verdade, tais resolugoes sao iniciadas em Calculo 4, sendo restritas, porém, a solucoes represen-
tadas por séries de senos e cossenos. Em Célculo 5, a metodologia é aprofundada por meio da Teoria
de Sturm-Liouville, da qual emerge uma teoria de representacao de fungoes por séries de autofungoes
definidas em dominios finitos. Essa abordagem generaliza as séries trigonométricas ao envolver fungoes
de naturezas distintas, conhecidas como fungoes especiais, tais como os polinémios de Legendre e as
fungoes de Bessel. O estudo dessas fungdes e de suas propriedades fundamentais é essencial, pois elas
surgem de modo recorrente na modelagem de fenémenos fisicos.

Consideram-se também problemas de EDPs cuja resolugao requer o emprego de autofungoes de-
finidas em dominios infinitos, casos em que as solugoes sao representadas por integrais, em vez de
séries. Tais problemas, todavia, restringem-se, neste texto, aqueles que podem ser tratados por meio
das integrais ou transformadas de Fourier construidas com autofuncoes trigonométricas.

A organizacgao dos capitulos e segbes segue o principio de desenvolver a teoria & medida que se faga
necessaria. Nesse espirito, a Teoria de Sturm-Liouville é introduzida logo no Capitulo 2, ainda que o
Capitulo 3 (que facilmente integraria o programa de Calculo 4) néo exija esse aparato mais geral, porque
assim, ja no Capitulo 3, evidencia-se o arcabougo conceitual que fundamenta todas as representagoes
em séries de fungoes. O estudo das fungoes especiais, no Capitulo 4, antecede suas aplicagoes diretas,
desenvolvidas nos Capitulos 5 e 6, e o texto encerra-se, no Capitulo 7, com resolu¢ao de problemas
que envolvem autofungoes definidas em dominios infinitos por meio das integrais e transformadas de
Fourier. O Capitulo 1 tem carater complementar, contribuindo para a formacao matemaética do fisico
e do engenheiro, e provendo conceitos mateméticos que sao utilizados pontualmente ao longo do texto.

As principais referéncias bibliograficas sao apresentadas abaixo do titulo de cada capitulo.
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Capitulo 1

Numeros Complexos e Funcoes de
Uma Variavel Complexa

- Ref. [5], cap. 13

1.1 Numeros Complexos e as Quatro Operacgoes Elementares

Um ntimero complexo z é uma expressao da forma z = x + iy, onde x e y sdo nameros reais, e i, a
denominada unidade imaginéria, satisfaz a equacdo 3> = —1. H4 ainda a seguinte nomenclatura:

r = Rez — parte real de z

Em z + iy:
y =Imz — parte imaginéria de z

Note que Im z € R.

Naturalmente, dois niimeros complexos sao iguais se e somente se tiverem as mesmas partes real e
imaginéria. Assim, se (¢ +b) +i(a —b) = —4 + 10i, entdo a +b = —4 e a — b = 10, donde a = 3 e
b= —T1.

O ntimero complexo z = x + iy é dito
e realse y =0

e imaginario se y # 0

e imaginario purose y #0e x =0

Geometricamente, o nimero complexo z = x + iy pode ser visto como o
ponto de coordenadas cartesianas x e y ou coordenadas polares r e 6, assim se
identificando o plano zy com o chamado plano complexo. Também podemos 4 Imz
visualizar z = = + iy como o vetor desde a origem (0,0) até o ponto (x,y)

desse plano. Yl------- p2=a +iy
A coordenada polar radial r define o modulo |z| de z: |z| = |z + iy| = r !

r= /22 +y2. 0 E .
A coordenada polar 6, que é indefinida no ponto z = 0, define o chamado () T Re z

argumento de z. Num ponto z # 0, se 6 é seu argumento, entdo qualquer

angulo congruente 0+ 2kw, k € Z, também é. Denotamos o argumento de z por arg z, que, na verdade,
é uma funcdo multivalorada (multivalente, plurivoca), associando cada ponto z # 0 & infinidade de
valores 6 + 2k, sendo 6 o valor escolhido para a coordenada polar angular desse ponto.

O valor de € em cada ponto numa circunferéncia centrada na origem pode ser escolhido no intervalo
[0,27), ou [—m, ), ou qualquer outro intervalo de largura 27r. O argumento de z em cada ponto do plano
complexo (sem a origem) assim escolhido é uma fungao univalorada (univalente, univoca), chamada
de determinagao principal do argumento e denotada por Arg z.

Em resumo,

argz = Argz +2kn (k€ Z), (1.1)

onde Arg z = 6 : o valor escolhido para a coordenada polar angular em cada pondo do plano complexo,
exceto na origem.
Uma vez que x = rcosf e y = rsenf, podemos escrever

z=ux+1iy = r(cosf + isend) .



Nessa equagao, temos a representagao do niumero complexo z na forma cartesiana, envolvendo x = Re z
e y = Im 2, e na forma polar, envolvendo r = |z| e § = Argz. Quando usamos essas representacoes,
devemos ter em mente que

Dois niimeros complexos que sao iguais representam um mesmo ponto do plano complexo,
tendo, portanto, as mesmas coordenadas cartesianas e as mesmas coordenadas polares,i.e., | (1.2)
(1) as mesmas partes real e imaginaria, e (2) o mesmo modulo e argumentos congruentes.

Nessa observagédo, (1) ja foi constatado acima, e (2) também pode ser constatada analiticamente:
Se z1 = ri(cosf; +isenby) e zo = ro(cos by + isenbs), entdo

1 1

—_——N— —_——
2 2 20\ _ .2 2 2 _
ri1cosfy =rocosfy % 71 (cos™0y + sen®01) = r3 (cos“Oy +sen“fz) & 11 =12
21 = 29 < = e
risenf; = rosenfy cos By = cos s

0y =0+ 2kw (keZ
senelzsen92> & =042k (keZ),
onde, na passagem x , cada membro das duas equagoes foi elevado ao quadrado, e as equagoes resultantes
foram somadas membro a membro.

O namero = — iy é o complexo conjugado (ou conjugado complexo) de z = x + iy e é denotado por
z* (ou z):

z=x+iy = zZ'=xz-—1y.

Obviamente |z*| = |z|.

Adigao, subtragao, multiplicagao e divisdo de nimeros complexos sdo definidas como os resultados
que se obtém quando se aplicam as regras que governam os ntimeros reais acrescidas da regra i2 = —1.
Assim, se

Z1=x1+1iy1 e 2=+ 1iY2,
entao

21+ 20 =1+ 22+ (Y1 + 2)
21— 2o =a1 — T2+ (Y1 — Y2)

2122 = (@1 + Y1) (T2 + iy2) = T122 + PY1ys + i(T1y2 + T2y1)
= 2122 — Y1y2 +i(T1y2 + T2y1) -

Em particular:

(a) z=r(cosf+isend) = iz

r(—senf + i cosf)
= r[cos(0 + 7/2) +isen (0 + 7/2)],

isto é, como resultado da multiplicagao de ¢ por um nimero complexo z, obtém-se
o vetor z girado de 90° no sentido trigonométrico (v. figura a direita).

(b) 22* = (z +iy)(x —iy) = 2* + y* +i(zy — xy)
=22 +y’ =2
Usamos (b) para deduzir que

2 zitiyn sz (v iy (v — dye)

Zo  Tatiys 2275 |22|?
T2+ 1y2 | Tay1 — T1Y2 0
22 o se zo #0.
2T Y3 2T Y3

Deduzimos agora as seguintes propriedades do moédulo de z:

lz122| = [(z122 —y1y2) +i(T1y2 + 2291) | = \/(961902 —y11)* + (2192 + w2pn)
= /(2723 — Zrreamaye +yiy3) + (01y3 + Zrmymmayn + 23y7) = V(] +u) (a3 + 93)
= |zl |2 ;



10)

zil T1%2 + Y1Y2 T2y — T1Y2 | T122 + Y1Y2 ? T2Y1 — T1Y2 2
N 22142 +1 22 1 42 = 22+ 02 + 221 42
2 2T Y3 2T Y3 2T Y2 27T Y2
_ [ (@123 + 2wy + yiys) + (237 — 2Tmpaays + atys)
(23 +3)"
_ [ @i+yd) @i +s) ety Vit
(a3 +13)° RNV RN
_ lal,
22|’
" ey = ez -zl =2ll2] 12| = |2|™ .
neN —

nvezes nvezes

Podemos provar que quaisquer ntimeros complexos z1, zo € z3 satisfazem as seguintes propriedades:

21+ 29 € z122 SA0 NUMET0S COMPIEXOS « .ttt vttt ettt et et iiiee e lei de fechamento
(714 22) F 23 =21 F (22 F 23) oo oot lei associativa da adigao
21 20 D 20 T B e lei comutativa da adigao
(2122)23 = 21(2223) oo v e lei associativa da multiplicagao
N =1 V-3 I lei comutativa da multiplicacao
21022 F 23) = 2122 2128 et lei distributiva
210 =0 21 = 21 e existéncia da identidade (0) da adigéo
1l =12 = 2 existéncia da identidade (1) da multiplicagao

Para um ntmero complexo z qualquer ha um
Gnico ntimero complexo ( tal que z+ (¢ =0;
¢ é denominado inverso aditivo de z e é deno-
£ad0 POT — 2 .ttt existéncia do inverso na adigao

Para um nimero complexo z # 0 qualquer ha um
inico namero complexo ¢ tal que z( =1; ¢

é denominado inverso multiplicativo de z e é
1

denotado por z7tou l/z. oo existéncia do inverso na multiplicagao

Tais propriedades conferem a C a estrutura de um corpo (ou campo).

Entretanto, C, em contraste com R, nao é um corpo ordenével, nao havendo sentido em desigual-

dades como z; > zo. Em razao disso, estara implicito neste texto que, em qualquer desigualdade, as
variaveis ou pardmetros que figurarem nelas sdo reais. Por exemplo, se 7 > 0, 7 é um niimero real
positivo.

Teorema de pE MOIVRE

Se 2z =ri(cosfy +isend;) e zo = ra(cosby + isendy), entao

2122 = T1T2 [005(91 + 92) + i sen (91 + 92)] € ? = % [008(91 — 92) + i sen (91 - 92)] N
2 2

além disso, para um produto com n fatores (n € N*),

2120 2y =T1T2 T co8(01 + 02 + - 4 0,) +isen(fy + 02+ +0,)] |,

que, no caso de z; = z9 = -+ - = 2z, = r(cosf + isenf), fornece a féormula

2" = [r(cos 6 + isenb)] "= [cos(nf) + isen (nd)]




Eis a prova desse teorema:
2129 = r1(cos 61 + isenfy) ro(cos by + isendy)
=717y [ cos 01 cos by — senby senfy + i( sen by cos s + senbs cos 01)}

= rira[ cos(6y + 02) + isen (61 + 62) | v/

21 z125 _ ri(cosfy +isenty)rs (costy —isents)

zo 2974 |22]2

7172 [cos 01 cos O + senf; senfy + i (senb; cos by — senbs cos )]

T
= L {cos(6y — 03) +isen (6 —0)] v
]
Na literatura é comum escrever a forma polar do nimero complexo na forma

z=rcisf

‘CiSQECOSF)+isen9‘.

|cisf] = v/ cos? 0 + sen20 =1. (1.3)

Nessa notacdo, com z; = 71 cisf e z9 = 1o cisfs, o teorema de DEMOIVRE toma a forma

mediante a definicdo da fungao

Note que

212 2 = 11ra g cis(0y + 02+ o+ 0n) ] ?:%618(91—02), (27 = cis(n)]. (1.4)
2 2

Exemplifiquemos o uso da terceira formula acima calculando (1 + 7)%:
(1+14)5 = (V2cis 45°)% = (v/2)% cis(6 x 45°) = V/8¢is 270° = —8i .

Com a substituigao de z; = r1cisf; e zo = 7o cisfy nas formulas em (1.4), deduzimos respectiva-
mente as seguintes:

’ cis 0y cis Oy = cis(fy + 02)

, ‘cis 01/ cis 0 = cis(6, — 02) ‘ , ‘ (cis0)"™ = cis(nd) ‘ . (1.5)

Observe ainda que, em vista do teorema de DE MOIVRE:

i) As propriedades do médulo (deduzidas na segao 1.1) seguem prontamente:

iz
|2122| = mira = |a1ll22],  [21/z2l =7i/ra = |aal/|22] s |27 =1 = 2"
—
ii) iz = |i|cis(7w/2) |z| cis @ = |z]| cis(7/2+ ), um resultado ja obtido acima: que
iz é o vetor z girado de 90° no sentido trigonométrico (#<0 na figura a direita). g

iii) A verificagdo das seguintes formulas é deixada como exercicio:

‘arg(zlzg) = arg z1 + arg 2o ‘ , ‘ arg(z1/z2) = argz; — arg z, ‘ e ‘arg(z") =nargz+2kr (k€Z) ‘ )

Por exemplo,

z7n=—-1 = argz =7n+2kw

3

Zo=—1 = argzy = 771- + 2kom
s
2

57

arg z; + arg zo = - + 2(k1 + ko)

arg(z120) = arg(i) = = + 2k7

argumentos congruentes

arg(z1/z9) = arg(—i) = T 4 okn
. 2 argumentos congruentes
argz; — arg zo = —3 +2(k1 — ko)



Em vista da interpretagao geométrica dos nimeros complexos como vetores do plano complexo, a
definigao da adigao de ntiimeros complexos corresponde a adi¢ao de vetores do plano, valendo, pois, a
regra do paralelogramo (bem como as do tridngulo e do poligono). Abaixo sdo ilustradas a adigao e
a subtracdo de nimeros complexos. Nessas figuras, os pontos representam os ntimeros complexos, e a
extremidade de cada vetor s6 indica a posi¢do do nimero complexo se estiver partindo da origem (do
ponto z = 0); assim, o vetor z; — z5 pode estar em qualquer lugar do plano, mas a extremidade dele s6
indica o nimero complexo z; — 22 quando ele parte da origem. A notagao na figura é um tanto ambigua
(mas é a normalmente empregada): a de usar z; — 29 para denotar tanto o vetor correspondente a esse
nimero complexo quanto o ponto do plano complexo correspondente a ele.

tIm2
tImz
cemmT T / 217 %
/ )
2y 2tz
1 Z].
0 > Rez
pA
0 1 > ReZ
%1%

1.2 Propriedades da Conjugacao

(i) (s1+2)" =2 +2 V) 12" = |4

(ii) (z122)" = 2723 (vi) & ZZ =Rez

(1.6)
(ifi) (21/22)" = 21/ (vii) Z_Z =Imz
(iv) (z*)" == (viii) arg(z*) = —argz
Prova:
Sejam zy = x1 +1Yy1, 220 = X2 +iy2, 23 = T3 + iy3. Temos que:
(i) (s1E22)" =[v1 Lo +ilyr £ yo)] =21 23 —i(y1 T y2)
=1 — Zyl + (CL’Q - Zyz) = 21* :l:ZQ* v
(i) (2122)" = [(w122 — y1ye) + i(z1y2 + 22y1)] = (2122 — y1y2) — i(z1y2 +2201) | |
_ ‘ _ iguais! v/
2zt = (w1 —ay) (w2 —iy2) = (w122 — y1ye) — i(@1y2 + 291)

(ili) 2=21/20 = zze=2 =

(iv) ) ' =@—iy) =x+iy=2V

(V) 127 = |z =iyl = /a2 + (=9)" = Va2 + 2 = |2 ¥

(vi) z+z* :x—i—iy—i—(x—iy)

=zx=Rez Vv
2 2
(vii) z ;Zz _z + 1y —QZ(x — iy) y—Tmzv
(viii) A formula arg(z*) = — arg z é geometricamente 6bvia:

(220)" = 2" 20" = 21"

= 2 /m == (an/n)"V

v. figura acima. v’



1.3 Propriedades do médulo e das partes real e imaginaria

(i) |2/ >0, onde |2 =0 seesdse z=0, (ii) |22 — 21| = distancia de z; a 23,
(iii) Rez<|z|, (iv) Imz<|z|, (v) |z*]=|—-2=]7,

(vi) Re(z1 +22) =Rez; +Rezo, (vil) Im(z1+ 22) =Imz; +Im 2y,

(viii) |z122] = |z1l|z2] . (ix) [21/22] = |21]/]22] ,

(x) [z" = zl", (i) [/2] = {/]e]

onde n € N.

Algumas dessas propriedades ja foram deduzidas, e a propriedade (xi) serda provada mais adiante,
na pag. 17, equagao (1.15). Algumas nao foram deduzidas por serem simples, sendo entdo deixadas
como exercicio.

Por meio da propriedade (ii), e usando conhecidas propriedades dos lados dos triangulos, podemos
visualizar geometricamente a validade das chamadas desigualdades triangulares:

|21 + 2o <z +lz2] e Jz— 2] > ]2 = |20l | -

A primeira expressa que, num tridngulo, ne-

nhum lado tem comprimento maior do que a

soma dos comprimentos dos outros dois, e a P
segunda, que nenhum lado é menor do que a 2
diferenca nos comprimentos dos outros dois.

A figura a direita ajuda a compreender isso.

Essas desigualdades podem ser provadas 2

analiticamente. Eis a deducao da primeira:

|21 + 22| = \/(2’1 +29)(z1 + 22)" = \/(21 + 29) (21* + 22%) = Vz121" + 2222 + z122F + 21%22

= \/|2’1|2 +lz2l? + 212" + (2122%)" = Va2 + 222 + 2Re(z122%) < Vz 2+ [22]? + 2021227
= VAl + 1z +2allz] = V(al + [2))? = [z + || v

A segunda é obtida da primeira:

|21 — 22| + |22| > |21 — 22 + 22| = |z1] = |z1] = |22] < |21 — 22 N
|22 — z1] + 21| 2 |22 — 21 + 21| = [22] = [21| = |22| > |21 — 22

—|z1 —zm| <zl — 22| < |z1— 22| = |zl = |zl < ||z = 22| | v

1.4 Conjunto de pontos do plano complexo

Antes de expor esse assunto, convém observar que o lugar geométrico dos pontos do plano complexo
que satisfaz a equagéo |z| = r¢ é a circunferéncia Cy na figura abaixo, de raio r( e centro na origem.
Ja |z — 29| = 7o descreve a circunferéncia Cs, de raio ry e centro no ponto zy. Por outro lado, as
desigualdades |z| < ro e |z — 29| < rg descrevem as regidoes Dq e Do limitadas por essas circunferéncias,
D; incluindo e D5 nao incluindo os pontos das préprias circunferéncias.

Almz |z—zo| = 7, Almz |z—zy| < 1
f \
| ]
2= 1, c, 1< 7, L%

((\ .’ :




Pois bem, seguem abaixo varias defini¢bes, onde S é um conjunto de pontos qualquer de C.

a) No plano complexo, o conjunto de todos os pontos z do disco |z — zg| < 7, onde > 0 e zp é um
ponto qualquer de C, é denominado de disco aberto de raio r e centro zg, sendo denotado por d(zo;r)
ou, quando ndo é importante especificar o raio, por §(zp).

Uma vizinhanga de 2y é qualquer conjunto contendo um disco 6(zp).

b) Um ponto zy de S é denominado ponto interior desse conjunto se existir um disco d(zp) C S.
O conjunto de todos os pontos interiores de S é denominado interior de S.

¢) Um conjunto S é dito aberto se todos seus pontos forem pontos interiores.
d) Um conjunto S ¢é dito fechado se o seu complemento C — S for aberto.

e) Um ponto zg de S é dito ponto de fronteira se todo disco d(zg) contiver pelo menos um ponto
de S e pelo menos um ponto de C — S.
O conjunto de todos os pontos de fronteira de S é a chamada fronteira de S e é as vezes denotado

por 0S.

f) Um conjunto S é dito limitado se existe M > 0 tal que |z| < MVz € S. Um conjunto ilimitado
é o que nao é limitado.

g) Um conjunto S é dito conexo se dois pontos seus quaisquer podem ser conectados por uma linha
poligonal interiramentre contida nele.

h) Um conjunto D é chamado dominio se for aberto e conexo.
O conjunto D = D U JD (a unido de um dominio D com a sua fronteira dD) é chamado de
dominio fechado.

1.5 Funcoes Complexas: Conceitos Preliminares

Quando z designa qualquer nimero complexo de um conjunto A C C, chamamos z de varidvel
complexa, que toma valores em A.

Dizemos que num conjunto A de pontos do plano de z esta definida uma fungao f(z) se houver
uma lei pela qual cada ponto z de A é posto em correspondéncia com um ponto determinado ou com
um conjunto determinado de pontos do plano de w. No primeiro caso, a fun¢do w = f(z) é dita
univalorada (univalente, univoca); no segundo, multivalorada (multivalente, plurivoca). O conjunto A

é chamado de conjunto de defini¢do, ou, quando for um dominio, que é quase sempre o caso, de dominio
de definigdo. Ja o conjunto B de todos os pontos do plano de w que sdo postos em correspondéncia
com os pontos de A pela fungao é chamado de conjunto de variagao, ou, se for um dominio, de dominio
de variagao.

Se o conjunto de variagao for subconjunto de C, temos uma func¢ao complexa; se for subconjunto
de A, uma fungao real.

Sejam z e w variaveis complexas, e sejam x, y e u variaveis reais. Observe a nomenclatura:

W= f(2) e funcao complexa de uma variavel complexa
W= F(Z) fungdo complexa de uma variavel real
Y=F(2) fungao real de uma variavel complexa
Y=F(T) e funcao real de uma variavel real

U= (LyY) e funcao real de duas variaveis reais

A fungéo w = f(z), com z = x + iy, tem partes real e imaginaria v e v bem definidas e que sao
fungoes de x e y:

z=x+ 1y L) w=u-+1iv ,

onde

fatiy) =utiv = {Ref(x+iy) = u(z,y)

Im f(z +iy) = v(z,y) .
Logo, a fungdo complexa w = f(z) equivale ao par u(z,y) e v(z,y) de funcgdes reais de duas
variaveis reais. Assim, tanto f(z) quanto o par equivalente u(x,y) e v(z,y) podem ser representados



geometricamente como uma transformagao do conjunto A de pontos do plano de z no conjunto B de
pontos do plano de w.

Um ponto P(z,y) do plano de z é transformado em um ou mais pontos Py (u,v) (k=1,---,n) do
plano de w, sendo P/ chamado imagem de P pela transformacdo. Em geral, sob uma transformacéo,
um conjunto de pontos, tal qual a curva C' na figura abaixo, & esquerda, é transformado em um conjunto
correspondente de pontos, que é a imagem de C, digamos a curva I nessa figura. No caso de um fungao
f(2) multivalorada, um ponto ou uma curva do plano de z é transformado, em geral, em mais de um
ponto ou mais de uma curva do plano de w.

Para se empregarem certos termos geométricos, tais como translacao, rotacao e reflexao, é conveni-
ente, as vezes, considerar a transformagao ocorrendo num tnico plano. Como exemplo disso, na figura
abaixo, a direita, representamos a fungéo wy = f1(z) = z+2i (translagao de duas unidades para cima),
we = fa(2) = ez (veremos adiante que, por essa funcio, ha uma rotagdo do vetor z no sentido

horério de um angulo v > 0), e wg = f3(z) = —x + iy = —z* (reflexdo em relagdo ao eixo imaginario).
Ay=Imz Almz
C plano zy = w, = fi(z)=2+2i
| \phode: R
0 Roz 2
T 10t :
:I ' |
- JU=mw i) : | 2| :
plano uv = - —L \
plano de w v 0 i3 z ReZ
0 R »
K u=Rew |2\, = h(2)=e "z

1.6 Limite e Continuidade

Para uma fun¢ao f(z) = u(z,y) + iv(z,y) definida univocamente num disco aberto, exceto, possi-
velmente, no centro zg = xg + iy desse disco, dizemos que

Zli)nzlo f(z) =wup+ivy se 5%128 u(z,y) =ug e 5%%18 v(z,y) = v

Como tal definicao de limite de uma funcao complexa baseia-se na de fungoes reais, valem para
aquela as mesmas propriedades que valem para estas; em particular,

lim(f +g) =lim f +limg, lim(fg)= (limf)(limg), lim(f/g)= (limg)/(limg),

se lim f e lim g existem, e lim g # 0 na tltima propriedade acima.
A defini¢do de limite pode ainda ser dada através da nocdo de vizinhanca. Basta observar que a
notagao lim f(z) = wp [em palavras: wp é o limite de f(z) quando z tende a 2, ou f(z) tende a wy
zZ— 20

quando z tende a zg| expressa intuitivamente que pontos cada vez mais proximos de wp (no plano de
w) sdo imagens de pontos cada vez mais proximos de zg (no plano de z). Isso é o que ilustra a figura
abaixo.

Almz A Imw

.

W

» Rez » Rew

Numa linguagem um pouco mais matemética, podemos dizer que um disco d(wp, p) de raio p
arbitrariamente pequeno sempre contém a imagem de algum disco §(zp,7) sem o seu ponto central z
(essa exclusdo do centro do disco é explicada adiante). Isto é ilustrado abaixo:



Alm=z A Im w

0<]|z—z|<r 0<|f(z)—wy|<p

» Rez » Rew

Assim, a definicdo de limite que incorpora a ideia explicada acima é dada matematicamente como
segue:

Diz-se que lim f(z) = wg quando, dado p positivo e arbitrariamente pequeno, existe r > 0 tal
zZ— 20

que, se 0 < |z — 29| <7, entdo |f(z) —wo| < p .

Convém enfatizar que, de acordo com essa definigdo, a fun¢ao f(z) tende ao limite wy indepen-
dentemente da maneira como o ponto z tenda para zg. Em outras palavras, se o limite existe, entao,
quando z tende a 2y segundo uma regra qualquer (por exemplo, segundo uma sequéncia de pontos ou
uma curva), f(z) tende aquele limite wy.

O limite wg de uma fungao f(z) num ponto zo independe da de- y
finigdo do valor f(zp) nesse ponto. Por exemplo, o grafico da fungao f(z,)
f: R — R a direita ilustra este fato, no qual f(xg) # yo = IILII;O f(x). 0

Pode até acontecer que o limite num ponto exista, mas a funcdo em

tal ponto nao seja definida, como é o caso da fungao (senz)/x, inde- \i’/\o

finida em = = 0, onde seu limite é 1. Portanto, na defini¢ao do limite

wy = zli_)nzl f(2), o ponto zy deve ser excluido do disco centrado nele,
0

0
evitando-se a exigéncia da validade da desigualdade |f(z9) —wo| < p,

que s6 é satisfeita para uma classe especial de fungoes, as chamadas
"continuas no ponto zy", definidas a seguir.

Dizemos que a func¢ao f(z) é continua no ponto zy quando, neste ponto, o valor-limite é igual ao
valor de defini¢ao: ZILIBO f(z) = f(20). Logo, f(z) nao é continua no ponto zy se: (a) ZILIBO f(2) nao

existe; (b) f(z0) ndo é definido; (c¢) lim f(z) = wg e f(20) existem, mas sdo diferentes. E evidente que
Z—rZ20

a continuidade de f(z) em 2 é necessaria e suficiente para que, no ponto (g, yo), sejam continuas as
fungoes u(x,y) e v(z,y) que compdem as partes real e imaginaria dessa fungao complexa.
A fungao f(z) é dita continua num dominio se for continua em cada ponto desse dominio.

1.7 Diferenciabilidade e Analiticidade

Considere uma fungao definida num disco §(zp). Dizemos que f(z) é diferenciavel (ou derivével) no
ponto 2z se existir o seguinte limite, denotado por f(zp):

Fleo) = tim LB =G0y FGoth) = fzo)

z—r2z0 Z— 20 h—0 h ’

cujo valor denominamos derivada de f(z) em zo.

Uma fungao f(z) diferenciavel em cada ponto de um dominio D é dita analitica (ou regular) nesse
dominio; dizemos que D é um dominio de analiticidade de f(z). Uma fungao é analitica num ponto z
se este tiver uma vizinhanca em que ela é analitica. O ponto onde uma funcao deixa de ser analitica é
chamado de singularidade. Nessas defini¢oes de funcao analitica, a funcdo é presumida univalorada no
dominio D, pois as nogoes de limite e de derivada foram definidas acima apenas para fungoes univocas.
Mais tarde generalizaremos o conceito de analiticidade para englobar as fungoes multivaloradas; por
enquanto, apenas fungoes univaloradas podem ser analiticas.

As condigoes de diferenciabilidade de uma fungdo f(z) em termos das fungbes que compoem suas
parte real e imaginaria sao dadas pelo seguinte teorema:




Teorema: Considere uma fungio f(z) = u(z,y) + iv(z,y) definida numa vizinhanga de zo =
xo+1iyo e tal que u e v sejam diferencidveis no ponto (xo,yo). A validade neste ponto das equagoes
(ou condigbes) de CAUCHY-RIEMANN u, = v, € u, = —v; ¢ condigdo necessaria e suficiente para
a diferenciabilidade de f(z) em zp.

Corolario: A validade das equagoes de Cauchy-Riemann num dominio D é condigao necessaria
e suficiente para a analiticidade de f(z) em D.

Convém ressalvar que, em vez das hipoteses de u e v serem diferenciaveis em (g, o), encontra-
mos frequentemente na literatura a de que essas funcoes sejam da classe C! neste ponto. Isso nao
altera o teorema, porque a diferenciabilidade é garantida pela continuidade das suas derivadas parciais
primeiras.

Abaixo, abreviamos "condi¢oes de Cauchy-Riemann" por simplesmente "condi¢oes CR".

Vamos provar a necessidade das condigoes CR, isto &, que se f'(zp) existir entdo necessariamente
as condigoes CR sao validas. Nesse intuito, calculemos o limite que define f/(z),

lim f(z0+h) — flz0) _ lim f(@o +iyo + h) — f(xo + iyo)
h—0 h ~ h—0 h

)

nos casos particulares de h — 0 paralelamente aos eixos real (i.e., com h = ¢ € R) e imaginario (i.e.,
com h =in, n € R):

f (o +iyo + &) — f(zo +iyo) f(xo + & +iyo) — f(wo + iyo)

5 _ 1
h:lgio 13 gl—% 13
— lim u(wo + & yo) + iv(wo + & y0) — [u(wo, yo) + iv(wo, yo)]
T £50 ¢
~ lim w(zo + &, Y0) — u(zo, yo) n Z.U(CCO +&,y0) — v(z0, Yo)
€50 & &
= Ug (w0, Y0) + vz (70, Yo) (1]
T f(zo +iyo +in) — f(wo + iyo) ~ fim flzo+i(n+yo)] — flzo +iyo)
h=1in—0 n n—0 mn
— lim u(zo,Yo +n) + iv(xo, yo + 1) — [U(zo,yo) + iv(xo,yo)]
n—0 Z"I]
— lim u(‘TanO + 7)) B U(Io, yO) + Z-U(Imyo + 77) B U(zo,yo)
n—0 in m

= —zuy (xo, yo) + Uy (5607 yO) [II]

Se a derivada f’(zp) existir, entdo o limite que a define deve existir independentemente do modo
como h — 0, ou seja, os dois resultados [I] e [II] acima devem ser iguais, o que acarreta nas condigoes
CR no ponto zy:

. . um(m(hy()) = Uy(xo,yo)
uz (0, Yo) + 1z(xo, Yo) = —iuy(xo, yo) + vy(o,y0) =
vw(an ZUO) = _uy(x07y0)

Para referéncia futura, destaquemos as duas expressoes de f'(zp) deduzidas acima, mas com z em
vez de zg:

’f’(z) = Uy t+iv, = uy—iuy‘. (1.7)

Nao provaremos a suficiéncia das condigoes CR, isto é, que se as condigoes CR forem validas entao
a existéncia de f’(zg) esta garantida.
Visto que as propriedades ordinarias das operagoes algébricas e de limite sao conservadas na pas-
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sagem para as fungdes complexas, as regras de diferenciacao usuais também sao; portanto,

o [f(2) +9(2)) = f'(2) + ' ()

o [f(2)g9(x)] = f'(2) 9(2) + f(2) g'(2)

o [f(2)/9(2)] = [f'(2) 9(2) = f(2) g (2)]/9°(2)
o {flg()}Y = f"l9(2)]g' (=)

o f'(2)=1/(f7")(w), onde w=f()

Considere, por exemplo, a funcio f(z) = 22 — y? + i(2xy), caso em que u(z,y) = x> — 3> e
v(z,y) = 2zy. Como em todo o plano complexo temos que u, = vy, = 2T e uy = —v,; = —2y, isto
é, as equagoes de Cauchy-Riemann sdo satisfeitas, e também que u e v sdo da classe C! (e portanto
diferenciaveis), podemos concluir que f(z) é analitica em todo o plano complexo.

A seguir, cada funcao elementar de uma variavel real é estendida de modo a ser definida para uma
variavel complexa Tal extensao, as vezes, enriquece a fun¢ao com novas propriedades. Por exemplo, a
funcdo exponencial de uma variavel complexa e? torna-se periodica, as funcoes senz e cos z deixam de
ser limitadas, o logaritmo de ntumeros negativos (em verdade, de qualquer ntimero complexo ndo nulo)
ganha sentido, etc.

1.8 A Fungao Poténcia w = 2* (k inteiro)

Por definigao,
=zz sen=1,23---.
—
n vezes
As formulas z™z" = 2mFn 2™ /2| = 2" e 2™/2"|
m>n m<n
nao nulos) seguem diretamente da definicdo acima. As duas tltimas podem ser unificadas na forma

= 1/2""™ (m e n naturais

2™ /2™ = z™~™ para quaisquer valores naturais de m e n mediante as defini¢oes

0 — —n‘ — n
z = e z 7121_1/z .

Por exemplo, se desejamos que 1/22 = 23/2° seja 2375 2-2 — ;0 ¢

=z 2equel = 22/22 seja 2 z", é
necessario definir 1/22 = 272 e 1 = 2Y. As definigdes acima também justificam a notagio z~! do
inverso multiplicativo 1/z de z (v. a propriedade 10 do corpo dos complexos na pag. 3): 1/z =
20/21 = 2071 =71

Estdo assim definidas as poténcias inteiras z*, k € Z. Tais poténcias apresentam as seguintes
propriedades para quaisquer inteiros k e [, cuja verificacdo deixamos como exercicio:

kol _ _k+l kol k=l kE_ _k_k E_ ki k N
Z2=2, =T (an) =g, (afn) =a/n, (7)) =2
O calculo de 2™, com n natural, é mais facil com z expresso na forma polar por causa do teorema
de DE MOIVRE:
n o . n __ .mn. .
z |n€N = (rcis0)" =r"cisnf ,
formula que também vale para expoente k inteiro:

Zk|keZ = (rcisf)® = rFcisk .

A validade dessa formula para k = —n (n =1,2,3,---) é provada como segue (onde z = rcis0):

_ —n

z = — = =
k=-n 2"  (rcisf)”

k‘ 1 1 1 . 1 cosnf — isennf
rhcisnd cosnb + isennf cosnf — isennf
cos(—nb) +isen(—nf)  _ cis(—nb)

=r " - =r =rPciskl v
| cosnf + isennd|? 1

Observe que a fungdo f(z) = z™ é analitica em todo o plano complexo, visto que, para todo z
complexo, existe o limite que fornece a derivada dessa funcao, obtida usando o binémio de NEWTON:

o (R =2t B O h + OF 2" 2R+ O 3RS e A 2R
(z") =lim ———— = lim
z—0 h z—0 h
= lii% (nz""' 4+ CP2"Ph 4+ Cf 2" PR 4+ M) = 2" (neN),

formula também valida para expoente k inteiro:
(ZF)Y =k (kez).
11



De fato, se k = —n (n=1,2,3,---), entdo

Zn7172n — 7712777'71 — kzk71 v

(")

= —"N

. ( 1 >/ 00— (") —nzn?
k=—n - n - (zn)Q - Z2n

1.9 A Funcao Exponencial

Para todo z = z + iy complexo, a func@o exponencial e® pode ser assim definida:

= " = ¢"(cosy +iseny)

e®*#[cos(Imz) +isen(Imz)] = e"°“cis(Imz) . (1.8)

e

Nota: O aluno que achar a definicdo acima muito formal pode adotar, por analogia com a fungdo expo-
nencial de variavel real, a que é dada pela férmula

e Enhﬁmoo(l—i-z/n) .

O resultado dessa definigdo ¢ o mesmo em (1.8):

z — 7; no_ ; : — : : : — oT
e* = nlgl;o 14 z/n) nll)moo |zn| cis(arg zn) [nh_r};o |zn| ] [Cls(nll)moo argzn) | = e®cisy .
Zn

Para demonstrar isso, é necessario provar esse resultado do limite da sequéncia de ntmeros complexos
zn = (14 2z/n)™ para todo z € C. Nesse sentido, provamos abaixo os limites lim |zp| =¢e% e lim argz, =
n—o0 n—o0

y+ 2kr (k € Z), onde x + iy = z.

Temos que

lznl = 1+ 2/ +iy/nl" = [(1+2/n)? +y2/n2]™? = [1+ 22/ + (@2 +y?)/n2]"/?
donde
: _ 242y ,217/2 _ nj2 NE=n/2 . N _ =
nh%moO |zn| = nlew [1+2z/n+ (z* +y%)/n?] = nhﬁmoo(lJer/n) ]\}51100(1+I/N) =e" V.

Também temos que

y/n

() 1
arg zn, = narg(l4+z/n+iy/n) = n(2jn+dp+arctanry,) = 2k7r+n<5n+rn—f 4. ) , com T, = ———
3 14+z/n

)

onde j € Z, k = nj, 6, é igual a 0 se 1 + z/n + iy/n for do 12 ou 4° quadrante e é igual a 7 se for do 22
ou 32 quadrante, e, na passagem (1), usamos a expansao de Taylor do arco tangente. Temos entao que

1 .

lim arg(zn) = 2km 4+ lim n(r, — =73 +---) = 2kx + lim nrp, = 2kr + lim - y+2km v
n— oo n— oo 3 n— oo n—oo 1 er/n

onde, para efetuar esse limite, notamos que existe um natural @ tal que, para n > 7, 1 + x/n > 0, ou seja,

1+ x/n+ iy/n é um ponto do 12 ou 4° quadrante e, portanto, §, = 0; além disso, podemos desprezar

termos menores do que os da ordem de 1/n.

E facil mostrar que a funcao exponencial assim definida tem as seguintes propriedades:

1] A fungdo exponencial complexa e* coincide com a fungéo exponencial real e” se z = 2 € R.

Na verdade, todas as funcoes elementares reais sao estendidas ao dominio complexo de
modo que essa propriedade de coincidéncia seja vdlida (como hd de ser) e que elas sejam
analiticas.

2] Se z = x + iy, entdo inferimos diretamente da definigdo de e* as relagoes
=e = e e arge® = Imz+2kn = y+ 2knw.

3] Continuam validas para a exponencial complexa e* (z € C) as conhecidas férmulas para a exponen-
cial real e* (x € R):

Z1

el =et2 | TP . —_ —efimR () =ef* | "0 Vz (pois [e*| = €® > 0) .
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4] (e*)" = ez e* T2 = e2e2™ = % cis 27 = e (i.e., * & periddica, sendo o periodo igual a 27i) .
) N , ) )
1

5] A funcdo e* é analitica em todo o plano complexo, valendo a conhecida formula (e*) = e*.

6] Em particular, fazendo x = 0 e y = 0 na defini¢do de e* acima, obtemos a famosa férmula de EULER:

e = cosf+isen = cisf| . (1.9)

Em virtude dessa féormula, todo ntimero complexo z pode ser representado na chamada forma
exponencial, dada abaixo logo apés as outras duas representagoes ja vistas, a cartesiana e a polar:

0

z=x + iy =r(cosf +isend) =re’  onde r=|z] e § =Argz

A seguir deduzimos as propriedades acima que ainda nao se encontram verificadas:
e As propriedades em [3] sdo assim deduzidas:

e*1e® = " (cosy; +isenyp) e?(cosys + isenys)

= P17z { COS Y1 COS Yo — Y1 Senys + ¢ (seny1 COS Yo + seniys cos yl)}

e fos(n + )+ isentun + 1)

— eRe(Zl*Z?){cos [Im(z1 + 22)] +isen[Im(z; + 22)] } =t

e™% = e~V = ¢=[cos(—y) + isen(—y)] = e %[cosy — iseny]

__cosy —iseny cosytiseny 1 1
B e cosy+iseny cosy+iseny 2
. =efteT2 =2
e*2
Paran=1,2,3---, temos que
Sek=mn: (5= ()" =¢" e =T T% =¢n? = k=
——
n vezes
Sek=—n: ()= (") = = = = o = (= VheD v
: (ez)n enz
Sek=0: ()= (") =1=¢% =¢eF*

e A primeira propriedade em [4]:
(e%)* = (e*FW)* = (e*[cos y+iseny])* = e®[cosy—iseny] = e”[cos(—y)—isen (—y)] = e* T (V) = 2"
e Em [5], a analiticidade de e* decorre do fato de que, em qualquer ponto do plano complexo,

as derivadas parciais das partes real, e” cosy, e imaginaria, e* seny, tém derivadas parciais primeiras
continuas e satisfazem as equagoes de Cauchy-Riemann:

Uy = %(em COSY) = Vy = —
Calculamos a derivada de e* usando a formula f'(z) = u, + fv, em (1.7):
zZ\/ N a x N a x x - X z
(e*) = uy +ivy, = ——(e” cosy) —l—za—(e seny) = e” cosy +ie” seny = € v
x

ox
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Uma vez que as propriedades em [3] sdo as mesmas costumeiras das exponenciais reais, a multi-
plicagao, a divisao e a potenciagao de nimeros complexos escritos na forma exponencial tornam-se
operagoes familiares. Observe isso no calculo daquelas operagoes em (1.4):

2129 2n = r1eiree® et = pipg e, ettt
i0

A meTt T ie-6)

29 roeifz 9 ’

- (7" ezQ)n — rne(inQ) )

Esses resultados tomam a mesma forma daqueles em (1.4) se a equacdo (1.9) for usada para substituir
cada exponencial e*® por cis ¢.

1.10 A Funcao Logaritmica

A fungao logaritmica complexa f(z) = logz = w é definida como a fungao inversa da fungao
exponencial complexa, sendo o valor w de log z, portanto, tal que f~!(w) = e = 2. Essa defini¢io é
sucitamente expressa pela seguinte proposigao:

logz=w <& z=¢€". (1.10)

Vamos calcular log z = u + iv em fungdo de z = |z|e'?, sendo § uma determinacio qualquer, mas
fixa, de z:

|zl =e* = wu=Inlg|

logz=u+iv = 2= = |z]e? =¢e%’ =
& * 2l v=0+4 2kt =argz,

Logo,

‘logz:ln|z\+iargz‘, (1.11)

onde "In" denota a funcdo logaritmica ordinaria, de variavel real™), e arg z é a funcdo multivalorada
formada por todas as determinagoes do argumento de z, dada por (1.1).

Vejamos algumas propriedades dos logaritmos.

Com f(z) =logz e f~1(z) = e*, arelagdo de composicio f~1of(z) = 2 continua vélida:

fﬁlof(z) _ elogz _ eln|z|+i(Argz+2kﬂ') _ eln|z| eiArgz ei2k7r _ ‘Z| 6iArgz =2
N~~~ S~~~
|| 1
Ja fof~!(z) nem sempre é z, porque a fungao multivalorada f(z) = logz ¢ computada por tltimo
nessa composicao:

fof l(z) = loge* =Inle?*| +iarge* = IneR®? +i[Imz + 2kn] (k € Z)

= Rez+ilmz+2kmi = z+ 2kmi (= z apenas quando k = 0) .

Em resumo,
elosz — 4 e loge* = z+2kmi (k€Z). (1.12)

Vejamos agora mais as seguintes propriedades, deduzidas usando-se (1.12) bem como as proprieda-
des da funcao exponencial:

log(lez) _ log(elog21elog22) — log(elogz1+logz2) — log 21 + log 29 + 2kmi .

10g(2’1/2’2) _ log(elogzl /elogzz) — log(elogz1—logz2) — log z1 — log 29 + 2kmi .

log n e _ log(elogz)n _ log(enlogz)
+

=nlogz + 2kmi .

(N6} emprego de simbolos distintos para a fungdo logaritmica de varidvel complexa e a de variavel real evita absur-
dos. De fato, na equagao (1.11), se designassemos com o mesmo simbolo In essas duas fungdes, e substituissemos, por
exemplo, z = 2 = 2c¢is 27 (estamos considerando o argumento 27 do namero real e complexo 2), aquela equacdo seria
inadequadamente expressa por In2 = In2 + 274, em vez da notacao adotada e mais consistente Log2 = In2 + 2mi.
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A equagdo (1.11) mostra que log z é uma fun¢do multivalorada, com uma infinidade de determina-
¢oes, advindas da infinidade de determinagoes do argumento de z. A figura abaixo mostra que todas
as determinagoes de um certo complexo z estao sobre uma reta vertical.

Ay=Imz Av=Imw

O+6mf-=------- -
w=log z |
/\ 0+47( _________ .?
. L R -
s .

0 J >

Y > 0 "Inr u=Rew
x=Rez 0—97hk - oo +

Em analogia com as notagoes Arg z e arg z, pelo simbolo Log z designaremos uma das determinacoes
de log z, e, caso seja necessario, indicaremos a determinacao Logz escolhida. Como a determinacao do
argumento de z fixa uma determinagao do logaritmo de z, temos que

Logz=Inz+iArgz.

Em todo dominio D que nao contenha nenhuma curva fechada cercando a origem, podemos es-
colher um conjunto infinito de ramos continuos e univocos da fungdo multivalorada w = log z, cujas
determinagoes em cada ponto fixo diferem de multiplos de 2mi. Cada ramo w = Logz realiza uma
transformagao biunivoca dos pontos do dominio D e, portanto, de acordo com o teorema da derivada
da funcao inversa, ele possui a derivada

(Logz)' = =—==.

Assim, todos os ramos de log z sdo fungoes analiticas.

1.11 A Fungao Raiz Enésima w = /z (n=2,3,4, )

A funcao raiz enésima {/z é definida como a inversa da fun¢ao poténcia z". Partindo dessa defini¢ao,
vejamos como calcular w = ¥z (n=2,3,---).

Por definicao, se w = /z, entao w" = z, equagdo que, com as substituigdes w = |w|e
z = |z| "8 fornece

iargw e

w" = “w|eiargw]” _ |w|n [eiargw]” — |w‘neinargw _ |Z|eiargz ,

donde, de acordo com (1.2), concluimos que |w|™ = |z| e nargw = argz , e, portanto, que

|lwl= ¥|z| e argw= ae =z
n

w= Yz = |wle'™Y = /| eithe | (1.13)

Se Arg z = 6 é a determinagao escolhida (a principal) para o argumento de z, entdo todas as suas
determinagoes, de acordo com (1.1) sdo dadas por

Assim, temos que

argz =0+ 2jm (j €N),

donde
argz_@:l:2j7r_9:tj
n n  n_ n

2T

Acima, a divisdo de naturais j/n é igual a algum natural m mais a fragdo k/n, onde k é o resto da
divisdo, igual a 0, 1, 2, - -+ ou n—1. Assim, substituindo j/n = m + k/n na equacao anterior, obtemos

%zgi(erﬁ)zw:gizmwizik,
n n n n n
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donde
it :ei(%iymri%’rk) :ei(%izﬁwk) _

A substitui¢ao desse resultado na equagao (1.13) fornece
(0 42
w= /|z| el<ﬁi%k) .

Assim concluimos que a fungao w = /2 é multivalorada, associando cada z a n raizes enésimas
dadas por

(Argz | 2m
Vz=wp = V7| eZ( o+ 5) (k=0,1,2,--- ,n—1)], (1.14)

onde preferimos usar, em vez de 6, a notagao Arg z (a determinagao escolhida para o argumento de z).
Note que descartamos o sinal "—" em "+": ap6s interpretarmos o resultado acima, ficara claro que o
sinal negativo leva as mesmas raizes enésimas que o sinal positivo, bastando entao adotar um deles.

Como estao dispostas no plano complexo as n raizes enésimas de z = r cis  dadas por (1.14)7 Para
responder, observemos, primeiramente, que todas elas tém o mesmo modulo |wg| = W . Isso significa
que elas estao sobre a circunferéncia de raio p = "\/m . Elas s6 diferem no argumento ¢, = % + %’Tkz
Note, entretanto, que o angulo entre os vetores associados a duas raizes consecutivas wy = pe“‘”" e
Wiy1 = pePr+l ¢ constante, dado por i1 — @ = 27/n. Ora, estando uniformemente distribuidas
sobre a citada circunferéncia, concluimos que essas raizes sao os vértices de um poligono regular de n
lados inscrito nessa circunferéncia. A figura abaixo ilustra isso com n = 3.

» Almz
zZ=re
< N i
R r ‘—\ w, = pe %0
’ - \
’ - N
’ Jd--- ! \
’ - N \
. ’ _-NC i \
w, =pef) __---" P l/ \
\
1 \\\ p 0 0 II ‘l
! v
AN Y03/ \
: \\ 0 I' : > Rez
\ N 1 I
\ ] 1
\ S 1200 / !
\ Y 1 1
\ \\ 1 1
1 /
\\ \\ p 1 /
\ A ] /7
\ R N ’
\\ N 1 /I
N A ! ’
detalhes N 9 K L’
N
da figura s S\ .’
g ‘\\ N\ -7
e |2k iy
w, = pe
z =rcisf

p=r
&(wo,wl) = A(wl,'LUQ) = A('w2,w3) = 27T/3 = 1200

o =10/3
o1 =0 +21/3
2 =1 +27/3

wi = ¢z =pcispg (k=0,1,2)

16



Exemplo — as raizes ctbicas de z = 8i :

= /8 ei(m/242km) — /g il % +&E) _ — ¥R £i(30°+120°k)

2e80° =92(/3/24i/2) = V3+i =wyp
=wy, = 215" =2(—/3/24i/2) = —V3+i =w,
2e270° = 2(—i) = —2i = wy

Essas trés raizes cubicas de 8 sao mostradas a direita. Elas
podem ser comprovadas mostrando-se que (—2i)3 = (/3 +1i)% =

(—V3+14)3 = 8i.

O exemplo acima serve para explicar duas maneiras simplificadas, frequentemente possiveis, de se
calcularem as raizes: a) Basta calcular wy e entdo girar essa raiz duas vezes de 120°, obtendo-se assim
as outras duas, w; e wa, cujos valores sao facilmente obtidos por simetria. b) Mais simples ainda: nao
se calcula wg, mais infere-se a raiz 6bvia —2i¢, da qual, por dois giros de 120°, obtém-se as outras duas.
Para n # 3, gira-se wg ou a raiz 6bvia n—1 vezes de 360°/3.

Notas:

1) De (1.14), deduzimos que

cis (Argz + fk:)

(Argz n —k)‘ e (1.15)

V1l V1l

Essa ¢é a propriedade (xi) listada na segao 1.3.

2) No calculo de raizes quadradas de ntumeros complexos cujos argumentos ndo sdo angulos notaveis
(0°, 30°, 45°, 60° - - - ), o seguinte método é mais conveniente:

V3+di=a+iy = 3+4i=(x+19)? =2 —y*+2yi

{ixy__y‘l_:; 9_2/x> = 2-(2/2)*=3 = 2*—322-4=0

—1 (ndo serve, pois x € R)

= =42 = y=2/(£2)==+1
V3+di==4(2+i) m
Comprova(;ao: [+(2+i))?=4+4i—1=3+4i.
3) A resolucao da equagdo do 2° grau pela classica formula quadratica,

—b A
a?+bz4+c=0 = z:%F, com A=0b*—4ac,

continua valida com coeficientes a, b e ¢ complexos, pois todas as operagoes realizadas em sua dedugao
continuam véalidas no dominio complexo. Em particular, note que v A possui dois valores.
Por exemplo, vamos fatorar P(z) = (1 +1i)2% + (1 — 3i)z — 6 + 8i em mondmios:

—(1-3i)+vA
Pz)=0 = z2=——"""—"—.
) 2(1+1)
Calculemos as duas raizes quadradas de A:

A= /(1 -30)2—4(1+14)(—6+ 8i) = V48 — 141 = = + iy

2?2 —y? =48
49 2? = —1 (ndo serve, pois = € R)
2 _ 2 4 _ 2 _ 40 — » P
vops8 s v oAt o49=0 = {x2:49 = 1=47 = y=—T/(x7) =£(-1)

CVA=4T+ (<1)i=+(7T—1i).
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Portanto, as raizes sao

6+2  3+i
L (=80 & (7T—4) 2(14+4) 1+
- 2(1 + 1) )] 8+4i 4426

- = —1+3i.
20 +4i)  1+i o

Finalmente, podemos fatorar o polinémio dado:

Pz)=(1+i)(z—2+i)(z+1—-3i) m

Vimos acima que a fungao raiz enésima nao é univalorada, apresentando n determinagoes se z # 0:
os n valores de {/z. Também vimos que certa determinagiao de {/z decorre da determinagao escolhida
para o argumento de z, e isto se deve ao termo (arg z)/n em (1.13). Pois bem, resumindo este assunto
um tanto complicado, podemos afirmar que, em qualquer dominio D do plano complexo que nao
contenha alguma curva fechada cercando a origem, podemos definir n fun¢ées continuas e univaloradas,
cada uma coincidindo com uma determinagao de {/z. Tais n fungdes sao chamadas de ramos da fungao
multivalorada {/z, por meio das quais, a cada ponto fixo z, associam-se as n determinagoes da raiz.
[No caso da inversa da funcao real de varidvel real y = 2?2, visualizamos os dois ramos x = VY e
r=—/y (y>0) como os dois ramos da parabola que compdem seus gréficos.]

Cada um desses n ramos, evidentemente, realiza uma transformacao biunivoca dos pontos de D, e,
por esta razao, em cada ponto desse dominio, o teorema da derivada da fungao inversa é valido, pelo
qual a derivada

1 1 w 1 1

(V) = oy = it = s = T =

(w™) nw"l pwr nwtl o n(Yz)rl

é bem definida. Por conseguinte, um ramo qualquer assim construido é uma funcao analitica no
dominio D. Se escrevermos /z = 21/ a equacdo acima toma a forma mais mnemoénica da derivada

de poténcias:
(4) ==t
zn | = —zn .
n

1.12 As Funcoes Trigonométricas

As funcgoes trigonométricas no dominio complexo sao expressas simplesmente por meio da funcao
exponencial complexa. Para a variavel real x, a formula de Euler, equagao (1.9), fornece

e =cosx +isenw e e " =cosx —isenzw ,
donde _ ) ) ,
eZZ) _"_ 67l$ el(lj _ e*l[I/’
cosx = ———— e seny = —— . (1.16)
2 2

Em vista disso, para qualquer z complexo, toma-se por defini¢ao

eiz e—iz eiz _ e—iz
cosz = % e senz = —o—| . (1.17)

As demais fungoes trigonométricas sdo definidas a partir das fungées senz e cos z:
tanz = senz/cosz, cotz=cosz/senz, secz=1/cosz, cscz=1/senz .
As funcgoes assim definidas:
1) para z = z € R, coincidem com as fung¢oes trigonométricas de variavel real.
2) satisfazem as relagbes trigonométricas ordinérias:

2

cos’z+ sen’z=1, cos(z1 & z2) = cOS 71 COs 2o F senzj senzs ,

cos2z = cos’z — sen®z  sen(m/2 —z) =cosz, etc.
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3) satisfazem as férmulas ordinérias de derivagao:

(cosz) = —senz, (senz) =cosz, (tanz)' =sec’®z, etc.
4) tém a mesma periodicidade apresentada no dominio real:

cos(z+2m) =cosz, sen(z+2m)=senz, tan(z+7w)=tanz, etc.
5) tem a mesma paridade apresentada no dominio real:
cos(—z) =cosz (par), sen(—z)= —senz (impar), etc.

6) tém apenas aqueles mesmos zeros que apresentam no dominio real:

senz=0 = z=kn, cosz=0 = z=2k+1)n/2, etc

Todas essas proposigoes decorrem da definigdo, equagao (1.17), e sua verificagdo é deixada como
exercicio.

1.13 As Funcoes Hiperboélicas

As funcgoes hiperbolicas de variavel complexa sao definidas de modo anélogo as de variavel real:

z —Zz 4 -z
e’ +e e —e
coshz= ———— |, senhz = ———
2 2
senh z cosh z 1 1
tanh z = , coth= , sechz = , cschz = .
cosh z senh z cosh z senh z

Deixa-se como exercicio verificar:
1) que continuam validas as relagbes ordinarias, incluindo as féormulas de derivacao:

cosh? z — senh?z = 1

senh (z1 &+ z9) = senhz; cosh zo + senh 25 cosh 2

cosh(zy £ 25) = cosh 27 cosh 25 &+ senh z; senh 29
cosh(—z) = cosh z (par), senh(—z) = —senhz (impar)

(coshz) = senhz, (senhz)’=coshz, (sechz)' = —sechztanhz, etc.

2) as seguintes relagoes entre o seno e o cosseno hiperbolicos e os trigonométricos:

senhiz = isenz coshiz = cosz

seniz = ¢senhz cos iz = cosh z

1.14 As Inversas das Funcoes Hiperboélicas e Trigonométricas

Sabemos que as inversas das fungoes hiperbélicas de variavel real podem ser expressas em termos
da fungao logaritmica real; exatamente as mesmas expressoes se obtém para as inversas das fungoes
hiperbolicas de variavel complexa em termos da fungao logaritmica complexa:

1+z2

1
arcsenhz = log(z + V22 + 1), arccoshz=1log(z++v22—1), arctanhz= 5 log T , ete.
-z

Para as inversas das fungoes trigonométricas de variavel complexa hé a novidade de também pode-
rem ser expressas em termos da fungao logaritmica complexa:

arcsenz = —ilog(iz + 1 — 22) arccos z = —ilog(z +v22 —1)

1+iz 1 z+1
arctan z = — log - arccot = — log -
24 1 -1z 21 z—1

1+v1—22 i+vz22-1
z z

arcsecz = —i log arccescz = —i log
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Por dependerem da fungio logaritmica, multivalorada, todas essas fungoes inversas (de fungoes
hiperbolicas ou trigonométricas) sao também multivaloradas. A raiz quadrada que aparece em alguma
delas, cujas duas determinagoes hao ser consideradas, contribui adicionalmente para a multivaloragao
dessas funcoes. Para mostrar o método de se obterem as expressoes dessas fungoes inversas, deduzimos
abaixo a expressao da fungdo arcsenz:

—iw ein —1 ) )
arcsenz =w = 2z = senw = - = —— = (™) —2iz(e™) =1
29 25w

(e —iz)?=1-2%> = eY=iz+\1-22 = w= arcsenz= —ilog(iz+/1—22) m

As demais sao obtidas por um procedimento anélogo.

1.15 As Funcoes Poténcia w = z¢ e Exponencial w = ¢* Genera-
lizadas

Tais fungoes de z € C sao definidas, em termos de um parametro ¢ € C, pelas equagoes

¢ = eclogz e oF = ezlogc ,

onde, para dois numeros complexos a e b, a operacdo b* é assim definida:
e parab#0: b*=ealosd,

0=0 se a € Ry

b=0( la) :
¢ para (base nula) { 0% é indefinido se a € Ry

Note que b° = 1 est4d bem definido, mas sdo indefinidos, por exemplo, 0=2 e 0°.

1.16 Apéndice: Reducao Ao Primeiro Quadrante

Seja f uma das fungGes sen, cos, tan, cot, sec ou csc. Considere os dois problemas seguintes, nos
quais 6 é um angulo fora do 12 quadrante e se admitem conhecidos os valores de f no 12 quadrante:
a) o de calcular f(6) quando 6 ¢ dado, e b) o de calcular 8 quando f(6) e o quadrante de 6 sdao dados.
Resolvemo-los por meio da técnica de redugao ao 1° quadrante, que consiste em usar o angulo ¢ do 1°
quad. tal que f(p) = |f(0)|, donde f(0) = +f(p), nessa equacao devendo ser o usado o sinal "+" ou
"—" que a torne verdadeira, uma questao simples, pois o sinal de f é conhecido nos quatro quadrantes.

6 e (90°,180°) 0 < (180°,270°) 0 e (270°,360°) 6 e (-90°,0°)

As figuras acima mostram, para cada angulo 6, o angulo ¢ do 1° quad. tal que f(v) = |f(0)]. A
seguir resumimos as férmulas de redugao de um angulo 6 (no 22, 32 ou 42 quad.) a esse angulo ¢ do
1° quad., as chamadas formulas de reducao ao primeiro quadrante:

©=180°—0| se 6O ¢€ 2°quad. = (90° 180°),

p=0-180°| se 6 € 32 quad. = (180°,270°),

0 =2360°—60| se 6O ¢€4° quad. = (270°,360°),
o=—0 se 0 €42 quad. = (—90°,0°) ,

onde, para 6 € 4° quad., consideramos tanto determinagoes positivas quanto negativas de €, ambas
usadas com frequéncia.
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Acima, expressamos os angulos em graus, mas nada impede escrevé-los em radianos. Além disso,
quando se faz referéncia ao quadrante de um angulo, raramente é necessério precisar os quadrantes dos
angulos limitrofes (0°, 90°, 180° e 270°), sendo essa a razao de especifica-los por intervalos abertos.

Seguem exemplos do uso da redugé@o ao primeiro quadrante na resolu¢ao dos dois tipos de problemas
supracitados, nos quais desenhamos figuras que ajudam a lembrar as féormulas acima:

a) Exemplos de céalculo de fungoes trigonométrica de dngulos fora do 12 quadrante:

i) # = 150° € 2° quad., onde o seno é positivo, e o cosseno é negativo.

9 =150° @ =180°-150° =30°
sen150° = +sen30° = 1/2
" c0s 150° = — cos 30° = —v/3/2

ii) # = 240° € 32 quad., onde o seno é negativo, e a tangente ¢ positiva.

@ =240°-180°= 60°

sen240° = —sen60° = —v/3/2
tan 240° = + tan 60° = v/3

iv) # = —60° € 4° quad., onde o cosseno é positivo.
4
cos(—60°) = +cos60° = 1/2

b) Exemplos de célculo de # sendo fornecidos o quadrante desse dngulo e o valor de uma fungao
trigonométrica f(6):

i) Calculo de 0 € 2° quad. tal que tanf = —V3:

tanp = [tanf| = v3 = @ =060°.
Pela figura vemos que 6 = 180° — 60° = 120° m

ii) Calculo de 0 € 3° quad. tal que senf = —1/2:

A ¢

y senp = |senf| =1/2 = ¢ =230°.

4 Pela figura vemos que 6 = 30° + 180° = 210° m

4

0
iii) Calculo de 6 € 4° quad. tal que senf = —/3/2:

4
seng = [senf| =v3/2 = ©=60°.
Pela figura vemos que 6 = —60° (ou 360° — 60° = 300°) =
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1.17 Exercicios

1] Passe para a forma polar:

(a) 1+ (b) —5+5i (c) —3+iV3 (d) V3 —3i
(e) —3i (f) =5 ()i (h) —i
(i) 1 () -1 (k) 2+ 2 1) —V6—iv2
2] Reduza a forma a + bi:
3430 — 19 5+ 5i 20 2+14) (3 —2i)(1+2i

(2) 531 a0 (b)3i—4i+4+3i O )((1—i))2( =

it — 39 4 i1 L[4 2 144\ 1-4\°
<d)2—¢5+z’1+0—z‘15 (e) (2 —1) {1—i+1+zl (f)3<1t¢) _2<1+z’)

V3—i) 14\’ 1iv3\
() (\m) (15) W <1+>

3] Sezy =2+1i, 20=3-2i, e z3=—(v/3—14)/2 calcule:
220 +21 —5—1

(a) 321 — 429 (b) 2§ — 322 + 421 — 8 (c) (23)® (d) S — 2 13

4] Encontre nimeros reais x e y tais que:

(a) 3z + 2iy —ix + 5y =7+ 5i
(b) 22 —3iy +4ivr —2y —5—-10i = (v +y+2)— (y—x+3)i

5] Sezy =1—1i, 20 =—2+4i e 23 =+/3—2i, calcule:
(a) Im(223 + 323 — 522)
(b) Re(z122/23)

6] Identifique e desenhe o lugar geométrico do plano complexo dado por:
(a) 22 —2—-2i|=12 (b) Im22 =4 1l<|z4+i<2 (d)|[(z=3)/(z+3)=2

(e) |2 —2| =2z +2i] (f)Re(1/2z)<1/4 (g) Rez?>0 (h) Re2% > 1
(i) Re [2*(z+2)] =3 (j) |Arg(z%)| < m/2

7] Encontre a equacdo apresentando apenas a variavel z (= x + iy):

]
(a) do circulo de raio 2 e centro em (—3,4)
(b) do circulo 4(x — 2)% + 4(y + 3)% = 36

8] Determine a curva do plano de w que é imagem do quadrado de vértices em 0, 1, 144 e i do plano
de z sob a transformacgio w = z2.

9] Mostre que:

(a) (e*)" =el*)  (b) (cosz)* =cos(z*) (c) (senz)” = sen(z*) (d) (tanz)" = tan(z*)
(e) |senz|? = sen?z + senh?®y = cosh®y — cos? z (f) | cos z|? = (cos 2z + cosh 2y)/2

10] Determine os zeros das seguintes fungoes:

(a) senz (b) cosz (c) senhz (d) cosh z

17 _ i
11] Calcule Zlgnl 05T

12] Separe a parte real u e imaginaria v das seguintes fungoes:

(a) 222 — 3iz (b) z + % (c) 112 (d) vz (e) senz (f) cosh z (g) e3=

22



13] Calcule:
(a) V1 (c) V/—8i (e) v/—64 (g) V—-8+6i

(b) V2 +1i2V3 (d) v/—4 (f) V-8 +i8V3
14]
(a) Calcule /15 — 8¢

(b) Fatore em monémios: P(z) = (1 —i)2% + (=5 +1)2% + (6 — 4i)z

15] Resolva:
(a) 22+ (44 3i)z2—2+8 =0 (b) 2?2 — (1 +2i)z2+1+3i=0 (¢) 22+ 224+1=0

16] Calcule todas as raizes de cada uma das seguintes equagoes:

. 3 . .
3 im 2cotz _im o m
(a) log” z = Y (b) log 3 = (c) logcosz = )

17] Calcule, na forma a + bi, as expressoes abaixo. No caso de fun¢ao multivalorada, forneca todas
as determinacoes.

(a) 4senh (ri/3) (b) coth(3mi/4) (c) sen[(m+iln8)/3] () cosh[@kﬂ)%i} (keZ)

(e) /[l —cos(iln5)]/0,1 (f) log(—1/2 —iV/3/2) (g) (-1~ (h) Im[l\/ﬁ]
ONICON () (1) (k) (1+iv3)~

18] Identifique as curvas do plano complexo ao longo das quais as seguintes fungoes tém apenas valores
reais:

(a) senz (b) senhz .

RESPOSTAS COM ALGUMAS SOLUGOES

Na solugoes que seguem, quando 2km ou km compor um angulo em radianos, esta implicito que
k € Z, a nao ser que se diga explicitamente o contrério.

1
Passar para a forma polar:
(a)z=1+4+i=rcish
7':|Z‘:\/12+712:\/§ zz\/icisil
1 6 € 12 quad. ™ 4
tanf=-=1 ———— 0=—
1 4
(b) 5v2cis(3n/4)  (c) 2v/3cis(57/6) (d) 2v/3cis(—7/3) [ou 2v/3 cis(57/3)]
(e) 3cis(37/2) (£) 5cis(m) (g) cis(w/2) (h) cis(37/2)
(i) cisO (j) cisw (k) 2v/2cis(m/4)
M) z= 6 —iv/2 = rcisf
r= 2l = (-VB)? + (—v2)2 = VB =22 i —2vies T m
tang_;\/i_i 0 € 32 quad. 9_E+7T_7l 6
V6 V3 66
2

Reduzir a forma a-+bi:

3% i 32— 3(-1)—(—i) -3+i —2—1 3+2+46i—i 5+5i

(@) 53— =~ 5 =0 2 — 1 2% —1 —2i—1 224 (1) 5 .
(b)3—i (c) —15/2 + 5i
(d)2—i (e) —(11 + 23i)/2 (f) —3 — 2i

23



(g) Calculo de (g;zy(iz)s

—im/6 4 ) 4 ) 4 )
(6 — ) _ (ez(—ﬂ'/6—7r/6) _ (e—lﬂ'/S) — 6—1471'/3 (modo 1)
et S

V3+i V33— 4

1+i\° (140 1+d\°  (1+2i—1\"
1—i)  \1—i 1+i) 1+1 B
N\ 4 .\ O
3 1 e . o560 .
. (\[ z) ( +z> = TR/ 20 2000 o120 il 05(190°) + i sen (120°)]

V3 + L—i
. V3 V3
:Z[_%H;} :

<.

T2

N | .

Note que a diferenga entre os modos 1 e 2 acima é que, no modo 1, escrevemos o numerador
e o denominador na forma exponencial antes de efetuar a divisao, enquanto, no modo 2,
efetuamos a divisao antes de usarmos a forma exponencial.

(h) Calculo de ( -
1+

. 8 /3 8
(1 + lﬁ) _ ( 2/ ) _ (i)g[ei(ﬂ'/3—ﬂ'/4)]8 _ (\/5)8 [em/lz]ff — 16 87/12 — 1 ei27/3

144 \/§ei7r/4 \/ﬁ
1 3
:16(—54—2’%) — _848iV3 m

Note que o célculo acima foi efetuado pelo modo 1 apresentado no item (g) acima. Pelo
modo 2 haveria complicacao; observe:

(1+i\/§)8_ <1+i\/§ 1—1:)8_.”_ (\/§+1H\/§—1>8’

1+ T+4i 1—3 2 2

onde, ndo tendo o complexo (v/3+1)/2+i(1/3—1)/2 argumento notével, torna-se trabalhoso
eleva-lo & oitava poténcia.

(g;z): O(ﬂ—z‘_ﬁ—i)“ ((\/5)2—2(\/§)i+i2)4 (3—2i\/§—1>4:<2—2z'¢§

(a) V157 (b) =7+ 3i
(c) Calculo de (%)%, com 23 = —(/3 —1)/2 :

_ i _ — 8 )8 £130°)8 8 i240°
_ Ve (Zg)s[ﬁ }(ﬁﬂ (2627)° _ % N

3 2 2 -

28 98 8 2

(d)1

(@Qzrz=-ley=2
(b) Se 2z — 3iy + dix — 2y — 5 —10i = (x + y + 2) — (y — = + 3)4, entdo:
20 — iy +4dix —2y—5-100 = (z+y+2)—(y—x+3)

(22—2y—5)+(—3y+4x—10)7

20 —2y—5 = r+y+2 r—3y = 7 =1
= {—3y+4:v—10 = —y+z—-3 = {3x—2y =7 = {y:—Q

24
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5
(a) Calculo de w = Im(223 4+ 322 —522), com z; =1 —4, 20 = —2+4i e 23 =+/3 —2i :

2= (1-0)° =1-31%i+3-1¢— 5 =1-3i-3+i=-2-2.

22 = (=244i)> = 4-16i —16 = —12—16i .
23 = (V3-2i) = 4-4V3i—-4=-1-4iV3.
Im [2(—2 — 2i) + (=12 — 16i) — 5(—1 — 4iV3)] = —4—48+20V3 = —52+20V3 m

(b) (2v3—-12)/7

6

Passar para a forma polar:
(a) 2z —2—2i|=12:
2:—2-2i| =12 —25 |z—(144)|=6 Ay=Imz
.. A circunferéncia de raio 6 centradaem z=1+7 ®

y=2/x
(b) Imz%2=4: R
Imz2=4 = Im(z+iy)? =Im(z? + 22yi — y?) =22y = 4 0 z=Rez
= xy = 2: A hipérbole mostrada a direita m ﬂ
(c)l<|z+i<2:
I<|z+il<2 = 1<|z—(-9)]| <2
.. A regido com a forma de uma arruela, centrada em z = —i, de 1<z 4 (y+172<2

raios 1 e 2, contendo a borda externa, mas nao a interna m

(d) [(z=3)/(z+3)| =2:
|(2=3)/(z4+3)| =2 = [2-3]=2|z+3] = [2-3]2=4]2+3]> = |r—3+iy|?> = 4|z +3+iy|?
= (23492 =4[ (z+3)*+y?] = 2 —62+9+y? = 4[2?+62+9+y?] = 2°+10z4+9+y =0
(z—3)°+y [(x43)°+y?] x*—6x+9+y [22+62+9+y7] (33—1—)23:++y
x+5)2—-25
= (z+5)2+y? =16 : circunferéncia de raio 4 centrada em z = —5 ®

(e) Circunferéncia de raio v/32/3 e centro em (—2 — 8i)/3.

00
(f) Re(1/z) < 1/4 : \ A%
1 1 1 1 z* —1 1 -
Re-<- = Ref<RefZ—:Re$2 2y2: 2:(: 5 <~ v N
z 4 z z z* i 4y i 4y 4 Dz=2
= dex<a®+y? = 24z’ >0 = (x—2)2+y>>4. ‘\\%/
(z—2)2—4
. O exterior da circunferéncia de raio 2 centrada em z =2 m OO/ \OO

(g) A regido entre as retas y = +x contendo o eixo x .

(h) A regido limitada pelos ramos da hipérbole 2% — y? = 1 contendo cuase todo o eixo 7.

V3
(i) A circunferéncia de raio 2 e centro em z = —1 . y=5
() |Arg(=%)] < /2 -
3y T Argz=0 i0\3) _ 3 30\ | _ T e >
Arg() <5 EED Janalr o)) = | Avg(r7e™) | = 801 < T R p
3 T
. T << il : a regiao aberta entre as semirretas y = iix [ ] :‘_ﬁx
6 6 >0 3
7

(a) Circulo de raio 2 e centro em (—3,4) — |z —(=3+4i)| =2

| |
(b) Circulo 4(z —2)2 +4(y+3)2=36 = (z—-2)%+(y+32=9 — [z—-(2-3i)|=3m
Trata-se da circunferéncia de raio 3 centrada em z =2 — 37 .
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8

E a curva do plano w = u + v formada pelo segmento de reta desde w = —1 até 1 e pelos arcos de
pardbolau =1—v*/4 e u=—1+v?/4 entre 2i e —1.

9
(e) Mostrar que |senz|? = sen?z + senh?y = — cos? z + cosh?y .
|senz|?> = |sen(x +iy)|*> = |senwcosiy + seniycosx|*> = |senzcoshy + isenhy cos x|
= (senzcoshy)? + (senhycosz)? = senZzcosh? y + senh?ycos?y

= sen?z(1 + senh?y) + senh?y(1 — sen?y)

= sen’z + sen’#senhizy + senh?y — senh®ysenzy

B { sen’z + senh’y m

1—cos?z+cosh’y—1 = —cos?z + cosh’y m
10
Determinar zeros de fungoes:
(a) senz: .
iz _ =iz i 9is ] )
senz=——"—=0 — ¥ =1 = 2z=logl=Wl+i2kr = z=kn (k€Z)n
29 ~~

0

(b) (2k + 1)7/2

(c) kmi
(d) coshz :
coshz = & +2€ —0 =

= 22 =log(—1) =In(~1) +i(r + 2kr) = 2= 2kr+1)~i (kcZ)m
—— 2
0

11

i AT—i T —d U indeterminad
1un = = = = — ! Iorma mdeterminada.
z—izl04 1 041 2241 141 0

17 1

-1 1—1

. 2MT—i 17216 1716 177 178 174
o lim ——— = lim = — = e - m
z—i2l0 41 2= 1029 1049 10 10 10
12
Separar as partes real u e imaginaria v de funcgoes:

(a) 222 —3iz = 2(x +1iy)? — 3i(x +iy) = 2(2? — y? + 22yi) — 3iz + 3y = 222 — 2y + 3y + (drvy — 3x)i m

u v

1 z* z* . T — 1y T Y .

b - = = = _— — [ ]

()z—&-z 2t — z+‘z|2 x+zy+x2+y2 x+z2+y2+y x2+y2l
(C)l—z_l—x—iy_l—a:—iy 1—z—1y
142z l1+a+iy l+a+iy l+z—iy

1—2% —y? + (1 —2)iy —iy(1 + z) 1—x2—y2+ —2y -

= = 1

(I+2)*+y? (I+az)+y? (1+2)?+y°

(d) vz = Vel = Jrei®/2 =/ [sen(0)2) +isen(9/2)]u: \/rcos(0/2) —:\/?sen(ﬁ/2)i [

u v

(e) senz = sen(z + iy) = senx cosiy + seniycosx = senz coshy+ icoszsenhy M

(f) cosh z = cosh(x + iy) = cosh z: cosh iy + senhz senhiy = coshx cosy + i senhzseny m

u v
(g) %% = 31(@H) = =3Y¢3% — ¢=3Y(cos 3 +isen3x) = ¢ Y cos3x+ie Y sen3z W

u v

26



1(0°+360°k) ei 120°k _

(a) V1=

k=0
=0 =1m
k=1 1
o .
— eil20° — = VO
2
k=2
=7 izaoe _ 1
2

(b) v/2 4 12v/3 = VAT TB0R) — g ¢i (30°+150°K)

k=0 \/g i

— 130 :2<7 7)

_ ¢ 2 T3
e g8y
2 2

(c) V=8i=

(d)r_\/m fe(
1

Z \[ 245":\[(\[

) — 135":\/5(_%
1
2

— 225° _

v2(- 73
V(5

(e) V=64=v

ol
[l
o

2e530° —2( 224 2)

k=2 -
] = 2(—?+%
N k:3261210° 2(7?7%

9 pi270 % m

k;S NEEE

/R I (=005 360K — 9 i (—

=+(V3+i) m

30°+120°k)

45°490°k)

7

—|-f)—1+zl
1

2
—=)=-1+im
ﬁ)

! ):—l—il

V2

)=

64 ¢i(180°+360°k) — 9 i (30°+60°k)

=V3+im
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(F) /=8 +i8/3 = /16 ¢(120°F860°K) — 9 ¢i (30°+60°K)

k=0 - V3 1200 -~~~
/9630 2(7 ,): '» ol BN
f@ B +2 \/§+Z , II ~N 300
k=1 1 3 L) \
= 26120 :2<—§+i§)=—1+i\/§l o IR
= ‘l I !
k=2 . V3 % b
75 i210° _ A R X ~ !
= 2e =2 2 2)* Vi-im 210° DT~k L )
k=3 1 3 “ThT7300°
— "9 ¢i300 :2(f—i£>=1—i 3m
2 2
3
(&) V-_8+6i = x+iy = -8+6i =a>—y*+2yi = {%y:fiy:x
¢ —y°=-8

2y =6 = 22 = —9 (ndo serve, pois = € R)

32
= m2—<7) =—8 = oM48&?-9=0 = (ou 5

v =l=>zx=41 = y=—=43
= V84160 = £1+i(£3) = £(1+3i) m

14
(a) Calculo de 15 — &;

V16 —8i = x+iy = 15—8i=(z+iy)? =22 —y>+ 2y

o =8 = y=—dfe = 22— (—4/x)*=15 = a*—1522—16=0
¢ —y* =15
x? = —1 (ndo serve, pois = € R)

= ou

=16 = z=44 = y=—-4/(+4)=—(£1)
V15 —8i=44—i(£l)=+(4—i) m

Comprovagio: [£(4—i)?=16—-8i —1=15—8i.

(b) Esbogo da solugdo:

P(z)=1-9)23+(=5+i)22+6 —4i=(1—i)(z — 21)(2 — 22)(2 — 23) .

Uma raiz 6bvia desse polindémio é z; =0 .

As outras duas sao as raizes de (1 —4)2z? + (=5 +14)z+6 —4i = 0, dadas por 2z =2+3ie 23 =1—1i
(calculem-nas!).

Logo,

P(2) = (1 )z — 0] - (2 +8)] [z — (1~

15

(a) Calculo das raizes de 22 + (4 +3i)z =2+ 8 =0 :

(1—i)2(z—2-3i))(z—1+1) =

VA

V(44 30)2 — 4(1)(—2 + 8i)

V(16 4 24i — 9) + 8 — 32i

V15 —8i = #(4 —1i) : calculado no prob. 14(a) .
—(4+3i) + (4 —1i)
—(@+3)+VA (43 EE-) _ ) . 2
2(1) 2 (44 3i) — (4—4)

2

(b) Célculo das raizes de iz — (1 +2i)z+1+3i=0:

VA = V1 +20)2 —4i(1+3i) = V(1 +4i—4)—4i+12 = V9 = +3.
4+2i
%= m
142+vVA  1+2i+3 2i
s AT 2% = %
—242
T iiznm
21

28

S — T
2
—8—2
=—4+im
5 +1



Observe a validade das formulas z1 + 22 = —b/a (soma das raizes) e z1z2 = ¢/a (produto das raizes),
onde, no caso,a =4, b=—(14+2i) e c=1+3i:

A= (1-20)+(0+i)= 2-i\. . (L-20)(1+i)=14+24i-2i= 3—i\. .
—bja = (1+2i)/i=—i42/ 81 ¢ cla=  (143i))i=—i+3 /B

() +(1+1iv3)/2 e +(1 —iV3)/2

16
(a) Solucio da equagao log®z = —in®/8 :
P00) i
‘ 2
logz = — _Ts / ¢i(270°+360°k) £t(90°+120°k) _ T £1(210%) ,ﬁ _t _)_ 7 3 _ ﬂ
2 2 2 2 4 4
£i(330°) _ ﬁ ot ™3 mi
2 2 4 4
e'2=1im

= z={ e V3Tl = ef’”/g/‘l\/ﬁ(l —4)/2 m
emV3/4 gmmi/4 e“‘/g/4\/§(1 —i)/2 m

2 cot ;
(b) Solu¢ao da equagao log cg AL

2
2 cot ) 2 cot . 3
log C;)Z:% COVF _gimlz o cotz:%.
cosz (elizﬂ-e*liz)/?. fiz :i.ezfz’i—l _ 3 9T 9 _ 3% 3
senz (ezz _ 6_“)/22 etz esz + 1 2

¥ =5 = 2z=logh=In5+i2%knr = z=kr—ilnV5 (k€Z)m

(¢) Solugao da equagao logcosz =im/2 :
cosz=i — eFteiT=2 < (€)? = 2i(e”*) +1=0.
- 21 \/ —4—-4 21 £2
elr — 1+ 7 271\/> (1 + \/>)
iz = log[i(1+ f)] In[i(1 + V2)| +iarg[i(1 £ v2)] = In(v2+1) + i(£7/2 + 2k7) .

z = —iln(V2+1) £ 7/2+2kr = (V2 + 1) +i(2kr +7/2) ou In(vV2—1)+i(2kr —7/2) m

17
(a) 4senh T :4isenﬂ:4i§:2i\/§l
3 3 2
37 cosh@ COS@ _\/5/2
(b) coth% = 342. = ?flm' = =
senh — ise Z\/ﬁ/Q
T+11n8 m iIn8 iln8 iln8 T
(¢)| sen——| = sen(er ) = sen— cos + sen cos —
3 3 3 3 3 3
3 In8 In8 3 j
= {cosh%—i— (zsenh%>§ = %coshlnSl/‘?’—l—%senh In8L/3
B @ eln2_~_e—ln2+£’ eln2_e—1n2 B @ 2_'_1/2—’_2 2_1/2
2 2 2 2 2 2 2 2
V520 32 5VB+u
22 2 N 8



(d) cosh[(Qk-i—l)gi: = cos[(?k—i—l)g} =0m

©) 1—cos(iln5) | [T—cosh(n5) _ [1—(e"®+e ™%)/2  [1—(5+1/5)/2
0,1 0,1 0,1
1—(26/5)/2 1—(13/5) —8/5 .
0.1 0.1 o1V L.
1 V3 1 V3 . 1 V3 (4w
()| log (~ 5 —i% ) | = |~ g — ity | viae(— 5 it ) =i (5 +2%) m
Inl1=0
(g) (_1)71' — [elog(—l)]7r — [6111\—1|+7:arg(—1)]77 — [eo+i(w+2lm)]” — [ei(2k+1)ﬂ')}ﬂ'

— ik cos[(2k + 1)m?] +isen|[(2k + 1)7?] =

(h) Im[lﬂ] — Im|:e\/§log1:| _ Im|:e\/§(lnl+iargl):| — Im|:e\/§(0+i2k,7r):| — Im|:€i2k7r\/§j|

= Im[cos(2kmv/2) + isen(2kmv2)] = sen(2kmv2) m

(1) |(_Z)|z _ ‘ eilog(—i)| _ ’ ei[ln|—i\+iarg(—i)]| _ | etlInl+i (377/2+2k7r)]| _ ‘ et [0+i (377/2+2k7r)]|
— | 67(377/2 +2k7r)| — 67(37r/2 +2km) n
(j) (1 + Z)’L _ 6ilog(1+i) — 6i[ln|1+i\+iarg(1+i)] — 6i[ln V2+i(n /4 +2km)] etln V2—(m/442km)

— e—(ﬂ/4+2k7r) eiln\/i _ e—ﬂ'/4—2k‘n’(cosln\/§+isen ln\/ﬁ) ™

(k) (1+i\/§)’i — e—ilog(1+iv3) _ —i[ln[1+iV3|+iarg(1+iv3)] _ —i[lnvIF3+i(n/3+2km)]

— e—tln2+ (m/342km) _ eTr/3—i—2k'rr e~ tn2 _ 67r/3 +2k7r(cos In?2 —isen In 2) n
18

(a) senz:

senz = sen(x + 1y) = senx cosiy + seniycosx = senz coshy + isenhycosx .

senhy =0 = y=kn
Im(senz) = senhycosz =0 = ou
cosx=0 = z=2k+1)n/2.

Assim, o seno é real ao longo do eixo real e das retas verticais z = (2k + 1)7/2 m

(b) senhz :

senhz = senh(x + iy) = senhx coshiy + senhiy coshx = senhx cosy + isenycoshx .
hz) = ha — _ o
Im(senhz) = seny co; : z=0 = seny=0 = y=kn

Assim, o seno hiperbélico ¢ real ao longo das seguintes retas horizontais:

y=0, y==Fn, y=L£27, y=+£37 --- A

30



Capitulo 2

Séries de Funcoes Ortogonais

- Ref. [4], se¢.5.7 e 5.8
- Ref. [8], se¢.11.1 a 11.4
- Ref. [6], cap. 2 (Séries Duplas de Fourier: p.34 e 52) e cap. 3

2.1 Ortogonalidade de Fungoes e Expansao em Funcoes Orto-
gonais

2.1.1 Produto Escalar

A defini¢do de espago vetorial envolve um conjunto néo vazio de elementos denominados vetores e um corpo
de numeros chamados escalares. Para nossos propositos, basta restringir esse corpo ao dos nimeros reais, caso
em que usamos a denominagao espago vetorial real, ou ao dos nimeros complexos, que é o caso do chamado
espaco vetorial complexo. Um espago vetorial real ou complexo é dito euclidiano ou unitario, respectivamente,

se for dotado de um produto escalar, cuja definigdo é a seguinte:

Denominamos produto escalar dos vetores u e v — aqui denotado por (u,v) — o escalar produzido por
qualquer operagao entre eles que satisfaga as quatro propriedades abaixo, sendo u e v qualquer par de vetores
do espago considerado:

PE1) Simetria: (u,v) = (v,u)” (nota: {u,v) = (v,u) se o espago for real)
PE2) Linearidade em relagao ao 2° fator: (u,av + Sw) = a (u,v) + S {u, w)
PE-3) Quadrado escalar ndo negativo: (u,u) >0

PE-4) Quadrado escalar nulo apenas no caso do vetor nulo: (u,u) =0 < u=20

onde « e 8 sdo escalares (neste capitulo, numa expressdo matematica, escalares sdo denotados pelas letras
gregas a e 3, e vetores de espagos vetoriais genéricos, pelas letras latinas u, v e w), e empregamos o simbolo 0
para denotar tanto o niimero zero quanto o vetor nulo, o que nunca é passivel de confusao.

Note que a desigualdade na propriedade PE-3 s6 faz sentido se o escalar (u,u) for real, o que de fato ocorre
em vista da propriedade PE-1.

Das propriedades PE-1 e PE-2 deduz-se que

(au+ Bv,w) = (w,au+ Bv)* = (a{w,u) + B{w,v))" =™ (w,u)" + B (w,v)" (2.1)
=a" (u,w) + 8" (v, w) .

Por meio do produto escalar podemos dotar o espago vetorial com o conceito de ortogonalidade do mesmo
modo que o expressamos no R3: dizemos que dois vetores u e v diferentes do vetor nulo sdo ortogonais se
(u,v) = 0 (essa expressdo é consistente com o fato de que, se (u,v) = 0, entdo (v,u) = 0, mesmo quando
{uyv) # (v,u)).

Das propriedades do produto escalar também se deduz a desigualdade de Cauchy-Schwarz, a qual, para
dois vetores u e v quaisquer, é dada por

| {(u,v) | < +/(u,u)y/(v,v) (valendo a igualdade se e s6 se u e v forem linearmente dependentes) .  (2.3)

Provemos essa desigualdade:
De imediato vé-se que ela é satisfeita quando v = 0 ou v —0, pois (0,v) = (u,0) = 0("). Passemos entao a admitir que
nenhum dos vetores u e v na desigualdade de Cauchy-Schwarz seja o vetor nulo. Nesse caso, podemos definir o seguinte

(Y Para, qualquer v tem-se que (v,0) = (v,0-0) =0 (v,0) = 0.
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vetor, cujo quadrado escalar é igual a 1:

N u
U= —F— =

Lo u u _ <u’u> _
(u, w) 4 = <\/<u,u>’ \/W> - < (u,u)>2 -

Considere agora a seguinte decomposicao de v em dois componentes, um paralelo, v||, e outro, v, , perpendicular ao
vetor u:

v=wv|+vL, onde UHE(ﬂ,v)ﬁ e vy =v—uy|.

A justificativa das qualificacdes "paralelo" e "perpendicular" decorre do fato de que, no espaco vetorial R3, usando a
definigdo de produto escalar que é ordinariamente empregada, a decomposi¢do acima realmente produz o componente
v|| e o v, respectivamente paralelo e perpendicular a v. Além disso, em qualquer espago vetorial, essa decomposigao
produz componentes v € o v que sao de fato ortogonais:

<<a,u>a,u—<ﬁ,v)ﬁ> - <(ﬁ,v)ﬁ,v>—<<ﬁ,,v>ﬁ,(ﬁ,v>ﬁ,>
(G, v)* (G, v) — (G, v)* (U, v) (4, 4) = 0.

1

(v, v1)

Pois bem, desenvolvendo o produto escalar (v, v), obtemos
(w,v) = (v +oL,v+vr) = oo+ (o) + (vr, )+ (vr,vl)
0 0

(@) a, (@,0) ) + (vr,00) = (8,0)"(@,0) @ 8)+ (v1,00) = [(@0) [+ (v1,01)

1
2 2
= L’U v v = #U’U v v — |<U7U>‘2 v )
_K <u’u>,> T (orion) ‘ )| + o) = Kl ),
donde
u,v) |2
“””‘%:(%”920 = (wu)(0,0) = [(wv) P20 = |(w0)] < Viwu) Vo),

que é a desigualdade de Cauchy-Schwarz.

Nela, a igualdade ocorre quando (v, ,v,) = 0, donde, pela propriedade PE-4, v; = v — v =0, isto é, v —au =0
(onde a = (4, v) = (u,v) / (u,u)), ou seja, quando u e v forem linearmente dependentes. Reciprocamente, se u e v forem
linearmente dependentes, entdo v = Bu, donde

[(uw,0) | = [{u,Bu) | = |B] (w,u) = /182 (w,u)® = /{u,u) /B*B (u,u)
\/(u’ u) \/(5“: B“) = \/(u’ u) \/(’U, v) )

que é a desigualdade de Cauchy-Schwarz, que agora se encontra provada.

Neste estudo do produto escalar convém trazer a baila o conceito de norma de um vetor, que é qualquer
funcdo que associa todo vetor u do espago vetorial considerado a um namero real ||u|| que satisfaz as proprie-
dades definidoras desse conceito, que sdo as seguintes:

N-1) [|ul| = 0

N-2) [Jaul| = |a||ul|

N-3) [lu+ v|] < ||ul|| + ||v]| (desigualdade triangular)

N-4) ||u|]| =0 < wuw=0 (o tnico vetor de norma nula é o vetor nulo)

onde « é um escalar qualquer, e u e v sao dois vetores quaisquer. A norma permite definir a distancia entre
duas grandezas vetoriais u e v pela expressao ||u — v|| (a qual, no R?, reproduz o conceito familiar da distancia
entre os dois pontos representados por u e v). Assim, ||u|| também pode se denominar o comprimento ou a
magnitude do vetor u (no R3, trata-se da distancia entre a origem e o ponto designado por ). Se a magnitude
|lu|| for igual a 1, o vetor u é dito unitario. Note que se v # 0 ent@o v/||v|| € um vetor unitario, uma vez que
o/l 1] = [loll/lv]] = 1.

Pois bem, o produto escalar também permite dotar o espago vetorial com a norma

[lul| = v/ (u, u) . (2.4)

Note entao que
2
[l = (u,u) , (2.5)

onde, & esquerda temos a norma quadratica e & direita o quadrado escalar do vetor w.
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Vejamos se a expressao no membro direito dessa equagao realmente satisfaz as propriedades da norma. N-1
é uma consequéncia direta de (2.4). N-4 decorre diretamente da PE-4. Ja N-2 e N-3 séo assim verificadas:

N-2: [Jaul| = V{ou, au) = Vara (u,u) = /]af? (u,u) = |aly/(u,u) = |a] ||ul| v

N-3: flutol]* = (utouto) = (uu)+ (u,0) + (©,u) + (0,0) = [Jull® + (u,0) + (v,0) + [Jo]|*

)
= [lull® +2Re (u,0) +[[ol* < [lull* +2[(u, v)| + [Jo]|*

)
<l + 2V (uud /o, o) + Il <l + 2ffull[[ol] + [1l* = (full + [o]])®
= Nlutoll < lull + [jol] v

onde, na passagem (1), usamos a desigualdade Re z < |z|, valida para todo namero complexo z (a prop. (ii) na
segao 1.3), e, na passagem (1), usamos (2.3), a desigualdade de Cauchy-Schwarz, que agora pode ser reescrita
em termos das normas de u e v:

| {(u,v) | <|lul|||v]| (valendo a igualdade se e s6 se u e v forem linearmente dependentes) . (2.6)

Num espago vetorial com produto escalar, a norma é sempre aquela em (2.4), que tem a importante
propriedade
2 2 2
(w,0) =0 = Ju+2|]" = [[ul|” +[lv]|", (2.7)

analoga ao teorema de Pitagoras, que é assim provada:

(o) =0 = |lu+ol = (utv,u+o)= (uu)+ (u0) + (v,u) + (v,0) = [[ul|* + [[o]|* v
—_————
0
Um conjunto de vetores nao nulos é dito ortogonal se todo par de vetores desse conjunto for ortogonal, e

um conjunto ortogonal de vetores é dito ortonormal se todo vetor desse conjunto for unitario. A defini¢ao do
chamado

_ 1l sei=y
delta de Kronecker : d;; = {0 se i (2.8)
permite expressar a ortogonalidade e a ortonormalidade de um conjunto de vetores B = {v1, vz, - ,vn} como
segue:
_ [ 6i;1lvl|* se B for ortogonal
{vi,v5) = {Jij se B for ortonormal. (2.9)

Usemos essa relagao de ortogonalidade para provar que tal conjunto B é necessariamente linearmente indepen-
dente:

n n n n
dlevi=0 = (v,) cuy )= ¢ (vi,v) =Y byl =ci|lul’=0 = =0V
=1 j=1 j=1 =1 oud
J J J J 20

Vejamos alguns exemplos de produto escalar, que varia conforme o espago vetorial.
O produto escalar de duas énuplas u = (a1, -+ ,an) e v = (81, , Brn) é comumente definido por

(u,v) EZOC:Bi no C" ou (u,v) EZa,ﬂi no R™.
i=1 i=1

E facil mostrar que as propriedades PE-1 e PE-4 so satisfeitas (exercicio).

Seja F[u,v] o espago vetorial complexo formado por todas as fungdes complexas de uma variavel real
definidas no intervalo [u, V], podendo y — —oco e¢/ou v — oco. O produto escalar de duas fungdes f e g desse
espago é definido por

(fr9) = / " @)@y, (2.10)

onde w(z) é uma funcdo continua e positiva em [u,v] chamada de fungdo peso. Por exemplo, as fungoes
sen (mmzx/l) e cos(mmz /L), com m e n inteiros, sdo inteiros, sdo ortogonais no intervalo [—¢, ], porque é nulo
o produto escalar

¢
<sen¥,sen$>:/4 senm;-x senﬂ;dwzo, (2.11)
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2.1.2 Operadores Lineares

Num certo espago vetorial V, uma transformagao linear L de V sobre si mesmo, isto é, L : V — V &
denominada operador linear; observe dois exemplos:

1) L: R? — R?

I I RG
2) L: Fluy] — Fluv 2

f@) e Mmy:Lf@ﬂ:E%£+ile@ﬁh.

Seguem a nomenclatura e a defini¢do de alguns operadores importantes:

e Nulo, denotado por 0: Ou =0 Vu

e Identidade, denotado por I: Tu = u Vu

e Inverso de L, denotado por L™': L™ (Lu) = L(L™'u) = u Yu
e Adjunto de L, denotado por L™: <L+u , v> = (u, Lv) Yu,v

e Autoadjunto: se Lt = L, isto ¢, (Lu,v) = (u, Lv) Vu. Tal operador ¢ dito simétrico ou hermitiano, conforme
seja real ou complexo o espago vetorial, respectivamente.

e Ortogonal ou unitério, conforme seja real ou complezo o espaco vetorial: se LT = L™,

Chegamos agora ao objetivo desta secdo, as duas propriedades dos operadores hermitianos abaixo; para
esse tipo de operador, tem-se que:

Propriedades dos operadores hermitianos:
OH-1) Sao reais os autovalores.

OH-2) Sao ortogonais os autovetores correspondentes a autovalores distintos.

De fato, se Lu; = A\ju; i = 1,2,---, sendo L™ = L, e, lembrando que u; # 0 (ndo h4 autovetor nulo), temos
que
0= (ui, Lus) — (Lui ,ui) = (Ui, Mtg) — (Nats, ws) = Aq (Ui, wq) — A7 (ws, us)
=\ = A) (ui,u) =0 = XN—X=0 (ie, M €R). (2.12)
£0

e, no caso de dois autovalores distintos A\; # \; (reais, como ja demonstrado), temos que
0 = (ui, Luy) = (Lui yuy) = (i, Ajug) — (Nawi, ug) = Aj (ua s ug) — A (ua s ug)
= (Aj _)\i) (ui,uj> =0 = (ui,uj) =0 (i.e., U; J_Uj) . (2'13)
N—_——

£0

2.1.3 Expansao em Fungoes Ortogonais

Seja {u1,us2, -+ ,un} um conjunto ortonormal de vetores do R™ (de dimensdo n), e considere o problema
de escrever um vetor genérico v do R™ como combinacéo linear daqueles vetores ortogonais:

n
v = E QiU .
=1

Como calcular esses coeficientes «;? Resposta: usando a relacdo de ortogonalidade dada por (2.9):
n n n
2
U:ZajUj = (u,v) = Ui,zajUj :Zaj (ui ,uj) = agl|usl|”
— — — N~
! J J [luil1285;

donde a conclusao:

n
<ui 7U>
v = Uy = Q; = . 2.14
2 ] (244
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Considere agora o problema analogo no espago de fungdes F'[u, v] (de dimensdo infinita), o de escrever uma
funcdo f(x) como combinagdo linear de um numero infinito de fungdes ortogonais,

{vi(@)},, sendo (i, 1) = [[Will*6i; - (2.15)
x) = Z a;pi(z) :  expansdo de f(x)em série das funcGes ortogonais v (z) . (2.16)
De posse da relagao de ortogonalidade em (2.15), podemos realizar formalmente operagdes de produto escalar

similares aqueles na dedugao da equacao (2.14) para obter uma foérmula, também similar, para os coeficientes
da expansdo de f(z) na equagdo (2.16):

. " gt (@) f@)w(e)de
= ‘ / s P de

(2.17)

Nessa expanséo, temos os chamados coeficientes de Fourier de f(z). Eles foram deduzidos formalmente, sem
cogitar véarias complicagoes:

1) Sabemos que um conjunto B de vetores é uma base se satisfizer dois requisitos: o de B ser linearmente
independente e o de gerar todos os demais vetores ("gerar"significa reproduzir todos os vetores por meio de
combinagoes lineares dos vetores de B). Aqui, estamos interessados apenas em bases formadas por vetores
ortogonais, o que torna automaticamente satisfeito o requisito de independéncia linear. J& a questdao de saber
se B gera o espago vetorial difere radicalmente conforme seja finita ou infinita a dimensao do espago: quando
a dimensao é finita, digamos igual a n, todo conjunto ortogonal de n vetores é uma base, mas, em espagos
vetoriais de dimensao infinita, um conjunto ortogonal com uma infinidade de vetores nao forma necessariamente
uma base. Por exemplo, {sennx}:O:l ¢ um conjunto ortogonal [considere (2.11) com £ = 7| contido no espago
F[—7, 7], mas esses senos nao geram nenhuma fungao par definida em [—m, 7]. Nesse intervalo, além dos senos,
é necessério acrescentar os cossenos {cos n:c}zozo para obtermos uma base.

2) Ha também a questdo de se aplicar a propriedade PE-2 (distributividade) a um produto escalar entre
uma fungdo e uma combinagdo linear de uma infinidade de fungoes:

<¢i,§jaj¢j> [ vi@ Za]wj wds LS ozj/ U@ @)z = 3 oy (i) |

j=1

Nota-se nesse calculo que a validade da passagem (t) requer a integrabilidade termo a termo de uma série
infinita de fungoes.

3) H4 ainda a questdo da convergéncia dessas séries, bem como outras questoes cuja analise esta fora dos
nossos objetivos.

Diga-se, entretanto, que investigagoes bastante complicadas confirmam a validade da férmula (2.17) sob con-
digdes bem determinadas. Quando estas sdo satisfeitas, temos em (2.17) a chamada série de Fourier generalizada
de f(z) formada pelas fungoes ¥;(x).

Como exemplo de (2.17) , considere as fun¢des ¥, (z) = sen(nnz/f) (n =1,2,3,---). De acordo com (2.11)
[observe a funcdo peso unitdria], elas formam um conjunto ortogonal em [0, ¢]. Calculando os coeficientes da

série
o0
Z nTrx
L
2 S NTTX V4
" e =<,
[ / en® " ds =

1 ‘ " mrx o

Ora, essa ¢ a série de Fourier em senos da funcao f(x) estudada na secdo 5.3 da Apostila de Calculo 4.

Nas aplicagoes, além das fungbes trigonométricas, surgem véarias outras que também sdo ortogonais e em
termos das quais se deseja expandir fungdes como uma série de Fourier generalizada. Tratamos disso na préxima
secao, onde estudamos os famosos problemas de Sturm-Liouville, que oferece uma abordagem comum a diversos
conjuntos de fungoes, tratando da questdo da ortogonalidade e das séries de Fourier generalizadas formadas
com elas, em vez de analisa-los caso a caso.

tendo em conta que

obtemos

2.2 Teoria de Sturm-Liouville

Considere o operador diferencial linear

L=ax@) s o )d‘i tao@), € (). (2.18)
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O operador L apresenta uma propriedade importante: a de tornar-se hermitiano sob a escolha correta da fungao
w(z) do produto escalar na equagdo (2.10) e de certos tipos de condig¢bes (ditas condigdes de fronteira) nos
extremos z = p e x = v do intervalo considerado. A caracterizacao dessa propriedade é o principal objetivo
desta segao.

Admitimos que se encontram satisfeitas todas as condigbes necessérias para que as grandezas e operagoes
envolvidas no desenvolvimento da teoria ora apresentada sejam bem definidas; assim, citem-se, desde ja, as
fungdes reais ao(x), ai(z) e az(z), e as derivadas que compdem o operador L definido para x € (u,v), bem
como toda integral f: [cujo célculo, por convengdo aqui adotada, ha de ser segundo a extensao do conceito

de integral dada por lim(l;j’;;r )fab] que surge nesse desenvolvimento [ela ja apareceu no produto escalar em

(2.10)]. Esta fora do escopo deste texto descrever tais condigbes necessarias.

Para investigar a hermiticidade de L {Ref. [1, sec. 5.10]}, consideramos duas func¢oes complexas de variavel
real f(z) e g(x) arbitrarias e calculamos

(f.Lg) = / " (@) Lo(@)w(a)de = / " F(azg” + arg + aogywde

[wlmf*g/ + walf*g] - / [(wazf*)' g + (war f*)' g — wao f*g] da ,

v
H W
onde integramos por partes uma vez os termos envolvendo g”’ e ¢’. Analogamente, temos que
(Lf.g9) =9, L)

= [wazgf*' + wa1gf*r - / [(wazg) f*" + (waig)' f* — waogf*] dx
H Iz

equagao que pode ser obtida mais facilmente da anterior permutando f e g e tomando o complexo conjugado
do resultado, lembrando que essas duas fungdes sdo complexas (as demais sdo reais) e que f'* = f*'.
Subtraindo membro a membro as duas equagoes deduzidas acima, obtemos

v

(fiLg) —(Lf,9) = [wa2(f*g' - f*'g)] */ [(waz) —wai] (f*g" = "' g)da .
H w
Esta equagdo mostra que, para L ser hermitiano, isto é, o 1° membro anular-se, é necessério e suficiente impor
a condigdo de fronteira

[was (1" - f*'g)]: —0 (2.19)

juntamente com a condig¢ao
(waz)" = was , (2.20)

pela qual se determina a fungéo peso do produto escalar: w(z) = [C/az(z)] eJ (@1/a2)dz Bgse resultado mostra
que, para a func@o peso w(x) ser positiva, de acordo com a exigéncia enunciada logo ap6s (2.10), devemos nos
restringir a EDOs em que a fungéo az(z) tenha sempre o mesmo sinal no intervalo (i, v) e escolher o sinal da
constante de integracdo C igual ao de as.

Nota:

Os problemas ditos singulares, nos quais o intervalo [, V] seja infinito ou a fungéo az(z) se anule em
algum ou ambos extremos desse intervalo, requerem anélise mais cuidadosa que nao serd abordada
aqui; entretanto, as conclusbes aqui tracadas permanecem validas.

Convém usar (2.20) para substituir a1 = (waz)’/w em (2.18), eliminando a presenca de a1, mas fazendo a
fungéo peso figurar explicitamente na expressao de L:

Ly = ap’ +ay +ao = a2y’ + [(waz) /w]y’ + aoy)

= [(wa2)y" + (wa2) ¥’ jw+aop = (waz’)'/w + aoy)

1/d d
= oy +uasvlfw =~ (G +0)¥
onde, também por conveniéncia, em vez das fungdes arbitrarias as e ap, passamos a usar as fung¢es também
arbitrarias™)
u(z) = —w(x)az(z) e v(z) = —w(z)ao(x) . (2.21)

Podemos entao dizer que o operador de Sturm-Liouville

1 d d
~w(x) Eu(x)%

+ov(@)| [ze(pr), wx) >0 (2.22)

() L deixou de ser expresso em termos das trés funcdes ag, a1 e ag, passando a exibir as trés novas fungoes u, v e w.
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é hermitiano num espago vetorial com produto escalar de fungdo peso w(z) e formado por fungdes que satisfagam
condigoes de fronteira que por sua vez tornem satisfeita a condigdo em (2.19).
A equagéo diferencial

Lp(x) = Mp(z) (2.23)
com a substituigdo da expressdo de L dada por (2.22), toma a forma da chamada equagio de Sturm-Liouville:
@ P 1 o) + do@)] @) =0, @€ (uv) (2.24)

dx dx ’ H ' '

Caso se rejeite a solugao trivial 1 (x) = 0, essa equagao sob as condigoes de fronteira que tornem L hermitiano
constitui um problema de autovalor, no qual se buscam os valores de A\ (autovalores) que possibilitam solugoes
distintas da trivial (autofuncoes).

Denomina-se problema de Sturm-Liouville o problema de autovalor formado pela equagao diferencial (2.24)
e quaisquer condigdes de fronteira que impliquem a validade da condigao (2.19)

u(f'g = 1"9)] =0 (2.25)

Note que, para a validade de (2.25) e, por conseguinte, da hermiticidade do operador L, os limites laterais hao
de ser tnicos e finitos; ou seja:

S6 devem ser aceitas solu¢oes (autofuncées) no intervalo (u,v) tais que tanto ela

. . . . _ 2.26
quanto sua derivada possuam limites tinicos e finitos quando =z — p* e z — v™. ( )

Além dessa exigéncia matemaética, podem existir outras de natureza fisica, quimica, econdmica, etc., sendo a
mais corriqueira, e admitida em todos os problemas de resolucdo de EDPs considerados neste texto, a de nao
se aceitar que a autofungao se torne infinita em qualquer ponto de (u,v).

A equagdo (2.25) estara satisfeita se f e g satisfizerem uma das condigdes CF-1 a CF-5 quando z — u™ e
z — v~ ou ainda a condigdo CF-6 (que nao envolve tais limites laterais) que seguem listadas abaixo:

CF-1: (M) = (07 ) = 0o condicio do 12 tipo (Dirichlet)

CF-2: ¢/ () =/ (07) =0 condigao do 2° tipo (Neumann)

CF-3: {w(lfr) * C“//(Mj) =0 (o e B reais ndo nulos) .......... condigao do 3° tipo (Robin)
YT)+BY' (V) = — | @227

CF-4: u(pm) = () = 0 condigao supressiva

CF-5: Uma das condicdes acima quando z — p e outra quando z — v ™. ...... condicao mista

CF-6: ¢ e u definidas em R e periodicas de mesmo periodo v — pt.......... condicao periddica

Outras condigoes poderiam ser citadas, mas listamos apenas as mais frequentes.

Ao serem modeladas (com base nas propriedades fisicas, quimicas, etc., do sistema), as condigoes de fronteira
envolvem os limites laterais ou as derivadas laterais de ¥ nos extremos do intervalo (u,r) considerado. Mas,
note acima, que sao usados os limites laterais ao invés das derivadas laterais. Nao ha inconsisténcia nisso, pois
prova-se(*> que sao iguais esses limites laterais de derivadas e as respectivas derivadas laterais empregadas nas
modelagens; isto &, ¥/ (u™) = ¥/ (1) e ' (v™) = ¥_(v).

No que segue, usaremos a expressdo "uma condigdo CF-n" para fazer referéncia a uma das condig¢Ges
CF-1---CF-6 da lista acima. Também nao mais escreveremos limites laterais para expressar as condigdes de
fronteira, mas eles estarao implicitos; assim, ao escrevermos ¥ (u) = 0 e 9'(v) = 0 expressando uma condigao
mista Dirichlet-Neumann, subtende-se o uso dos limites laterais apropriados: ¢(u") =0e ¢'(v™) = 0. E rara
a necessidade de explicitar tais limites laterais nos céalculos. Por rigor, foram considerados no desenvolvimento
da teoria; por simplicidade nas aplicagbes, sdo omitidos.

(*) Sendo a EDO (2.24) bem definida em (i, v), uma solugdo 1 dela deve ser, no minimo, duas vezes derivavel e também
continua nesse intervalo. Além disso, 1) deve possuir os limites laterais quando  — u+ e z — v~ de acordo com (2.26).
Logo, identificando 1(u) e 1 (v) respectivamente com os valores de 1 (u1) e ¥ (v ™) oriundos da modelagem das condigdes
de fronteira (sendo isso, na verdade, um complemento consistente da modelagem), tornamos v continua no intervalo
fechado [u, v].

Em vista disso, ¢ é continua em [y, u + h] e derivavel em (u, u + h), onde h é um incremento tal que p+ h € [u,v], o
que, com base no Teorema do Valor Médio, nos permite dizer que existe algum ¢ € (u, u+ h) tal que [¢(u+h) —(u)]/h

= ¢/(c). Tomando o limite de ambos os membros dessa equagio quando h — 07, isto &, lirn+ W(p+h) —y(p)]/h =
h—0

lim+ 1’ (c), obtemos, tendo em conta que c, situando-se entre p e p + h, tende a p pela direita, o que desejamos provar:
h—0

¢y (u) = ¢'(u+) . De modo andlogo prova-se que ¢’ (v) = ¢'(v~). CQD.
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No caso da condigdo CF-6, em que ¥(z) = ¢(z + p) Vo € R (com p = v — p), sendo todo o eixo real o
dominio do problema, nao é apropriado referir-se & condigdo periddica como uma condigao de fronteira, pois,
se ¢ € (—00,00), ndo ha fronteira! Além disso, encontramos frequentemente na literatura, no lugar da CF-6
acima, as equagoes u(p) = u(v), ¥(u) = Y(v) e ¥'(u) = ¥'(v), que decorrem da CF6 e produzem os mesmos
resultados (mesmos autovalores e autofungoes) que a CF6 produz, sendo, por isso, também denominadas
condigoes periddicas.

Considere o problema de autovalor formado pela EDO de Sturm-Liouville Li(z) = Ap(z), com L dado
por (2.22), e por uma das condigdes acima (i.e., por uma condigdo CF-n). As solugdes desse problema devem
pertencer ao subespago vetorial V, de F|[u,v] contendo todas as fungdes que satisfazem a condi¢do CF-n
considerada, e como esse operador L é hermitiano em V,, [pois a condigdo (2.25) é satisfeita por duas fun¢oes
f e g quaisquer de V,], concluimos que, para esse problema de autovalor, sdo ortogonais as autofungbes que
correspondam a autovalores distintos, isto é,

(Vm, hn) = /U Yo () (T)w(T)dT = 0 S€ Ay 7 A | - (2.28)

A importancia dos problemas de Sturm-Liouville reside no fato de que, ao se resolverem EDPs da Fisica
Matematica pelo método de separacao de variaveis, com frequéncia obtém-se problemas de autovalor formados
por EDOs lineares homogéneas de 22 ordem sob condicoes de fronteira dos tipos listadas acima. Isso se respalda
na possibilidade de se escrever qualquer desses problemas, genericamente descritos por asy” +a1y’+ao = Ay(x),
na forma da equag@o de Sturm-Liouville em (2.24), em que as fungbes u, v e w s@o determinadas usando-se
(2.20) e (2.21).

Notas:

1) Logo apés a condi¢do em (2.25), afirmamos que qualquer condicdo CF-n imposta a f e g implica na
validade daquela condigdo. Mostremos isso no caso da CF-3, o menos 6bvio. O lado direito da equacao
(2.25) consiste na diferenca de dois termos: um é calculado com z = v e o outro com = = u. Ambos se
anulam se f e g satisfazem a CF-3. De fato, para = = 1, temos

{f(u) taf(W)=0 {f(u) = —af'(n)
9(n) + ag'(p) =0 9(n) = —ag'(p)
logo,

w() { £ (g () = £ (g } = u(){ [ = af (]9 (W) = £/ () [ ag' W] } =0,

lembrando que « é real. Para provar que o termo com x = v também se anula, age-se de modo analogo.

2) Usamos a denominagdo supressiva para a condigdo CF-4 porque a sua ocorréncia numa parte da fronteira
"suprime" a necessidade de, nessa parte, se impor alguma condicdo para . A primeira vista parece que
tal tipo de condi¢do ndo impoe restrigdes as autofuncgoes; observe, entretanto, que os pontos onde a funcao
u(x) se anula sdo pontos singulares da equag@o, onde geralmente a solugdo geral 1 (z) também apresenta
componentes singulares que geralmente devem ser descartados. Temos, nesse caso, o chamado problema
singular de Sturm-Liouville; os outros sao ditos regulares.

2.3 Problemas de Sturm-Liouville com a EDO 9" 4+ \¢)(x) = 0

O aluno ja aprendeu, ao cursar Calculo 4, que, na separagao de variaveis das equagoes do calor e da onda,
surge a EDO
P+ Mp(x) =0, (2.29)
que é a equagdo de Sturm-Liouville (2.24) com u(z) = 1, v(z) = 0 e w(z) = 1. Assim, exigindo que a
solucao ¥ (x) de (2.29) satisfaga uma condicdo CF-n, obtemos um problema de autovalor cujas autofungoes
sdo ortogonais com respeito ao produto escalar de funcdo peso unitaria. Obviamente, problemas de autovalor
formados por essa mesma EDO, mas sob condi¢oes de fronteira distintas, apresentam solugoes (i.e., autofungoes
e autovalores) distintas. Abaixo resumimos os autovalores e as autofungoes de problemas de Sturm-Liouville
formados com a mesma EDO acima sob as condi¢Ges de fronteira mais usuais (todas sendo uma condi¢do CF-n).

Fornecemos também, para cada problema de Sturm-Liouville, a série de Fourier generalizada de uma fungao
f(x) com base em (2.17).

Problema de autovalor (i)
2
z€(0,0), ¥(0)=1(€) =0 (Dirichlet) Un(z) = sen¥ .
¢
e Relagdo de ortogonalidade: / sen m;rz sen %daz =0se m#n.
0
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¢
e Normas quadréticas: ||sen@|\ / sen? %
0

4 4

e Série de Fourier generalizada:

<sen ,f> /04 f(w)senm;fxdw

oo
nwx
= E bnsen —— | com b, =
— L nmx

| sen ==

/2

Esta é a série de Fourier em senos, ja estudada em Calculo 4.

Problema de autovalor (ii)

An = (nm/0)? (n=0,1,2,3,--)

P+ Mp(x) = (2.31)
/ / = nmwr
z €(0,£), ¢¥'(0)=4¢'(¢) =0 (Neumann) Pn(x) = cos -
‘ mmnx nwx
e Relagdo de ortogonalidade: / cos —,— cos de =0se m#n.
0
‘ >
e Normas quadraticas: || cos EH / cos® gy = /2 senz1
0 l l se n=0.
e Série de Fourier generalizada:
. / f(x)cos —dm
i <cos 77f> se n>1
= Zancos— , com ap = —————
L nwL o
eos "7 / e
se n=20.
Esta é a série de Fourier em cossenos, ja estudada em Calculo 4.
Problema de autovalor (iii)
nm\ 2
W+ Mp(x) = An = (ﬂ) (n=1,3,5,--)
=
€ (0,6), ¥(0)=1'(¢) =0 (mista Dirichlet-Neumann) Yn(z) = sen nne
" 20
(2.32)
¢ T onne
e Relagdo de ortogonalidade: / sen 20 se Y ——dx =0 se m#mn.
0

e Normas quadréaticas:

nTT o ¢ 2mAT !
|| sen —— 57 |I” = sen”——dr = 5 .
0

e Série de Fourier generalizada:

¢
nwx
oo il LY
—Zb e - <sen i ,f> _/0 f(z) sen Y
= SN —— . com b, = -
—~ 20 HsennmﬂH2 £/2
20
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Problema de autovalor (iv)
nm\ 2
"+ Mp(z) =0 A":(ﬂ) (n=1,3,5,--")
=
€(0,6), ¥'(0) =¢(f) =0 (mista Neumann-Dirichlet) Un(x) = cos nmx
" 20
(2.33)
¢
e Relagao de ortogonalidade: / c0s 2 cos M gz = 0 se m #n.
0 20 20
e Normas quadraticas: || cos mm:H / cos? T g = ‘ )
2¢ 2
e Série de Fourier generalizada:
<cos @ / f(z) cos —dx
Zancos— , com ap = oo mmHQ 7
20
Problema de autovalor (v)
"+ Xp(x) =0 2
1/) 1/)( ) )\n = (%) (n:0,1,2,3,---) (2.34)
zeR: Y(z)=v(x+20) = n s
(CF-6, com v —p = periodo 2¢) ¥ (@) = an cos —5= 4 = o b sen 4 (b0 =0)-

e Relagdo de ortogonalidade:

- - mnx mnx
Se m # n, entdo qualquer das duas autofungdes cos e sen

é ortogonal a qualquer das duas

autofungoes cos DT o sen ? em qualquer intervalo I de largura igual ao periodo 2¢ {por exemplo, I = [0, 2¢)

u [—¢,{) }; portanto, a relagdes de ortogonalidade sao

mmnx nmx mnx nmx mnx nmx
cos cos —dx = [ sen sen —dx = [ cos cos——dr =0 se m#*mn.
I l L I l l I L l

e Normas quadraticas:

nwT amrx L sen>1
|| cos —=||* = [ cos dx =
I

1 L 20 se n=0.
e
Hsen@H /sean;mdxzf.
I

e Série de Fourier generalizada de uma fungao f(z) de periodo 2¢:

nwx
g an cos —|— b, sen 7
n=0

com

nmx
feos 72, f) J 1@ Czsedx

o — 7 se n>1

HCOS@HQ f(z)dx

o se n=20.

e

<sen@,f /f sen—daj
b, = ,

nmx
[| sen 7”2

que ¢ a série de Fourier (completa) ja estudada em Calculo 4.
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As solugdes dos problemas (i), (ii), (v) e (vi) acima encontram-se deduzidas na segao 6.1 da apostila de
Calculo 4. Abaixo deduzimos as referentes aos problemas (iii) e (iv), buscando os autovalores (sabidamente
reais) separadamente, isto é, conforme A seja nulo, negativo ou positivo:

’ Resolugdo do problema de autovalor (iii) ‘ :

Para A = 0:
_ / —
zgg)) B 51 i(c)ga: = Y(z) =co ¥(z) =0 (Vx) é a tnica solugao;
Tﬂ/(f)__ Cl f_— 0 = =0 logo, zero néo ¢ autovalor.

Para A <0:)X=—k* (k> 0):

¥(z) = ¢1 cosh kx + c2 senhkx

ﬁ(g) — cihsonh o cakicosh ke > _ {w(x) — 0 (¥2) é a tinica solugio;
=c = N .

W (0) = s kcoshkl =0 = ¢35 =0 nao ha autovalor negativo.

#0

Para A > 0: A =k* (k> 0):

Y(x) = ¢1 coskx + casenkz .
P (x) = —ciksenkx + c2k cos kx .
P(0)=c1 =0 = Y(x)=cosenkx .

(*) (1)
W' (f) = cokcoskl =0 = coskl=0 = kli=nn/2 = k=k,=nn/2 (n=1,3,5,7---).

(*) admitimos c2 # 0 para viabilizar solugdo ¥ (z) nao nula

(1) excluimos n = ---—7,—5,—-3,—1 e 0, pois k> 0

Logo, A = A\, = k2 = (nw/20)®> (n = 1,3,5---) sdo os autovalores, e ¥n(x) = con sen(nwx/2f) sdo as
autofungodes correspondentes, nas quais as constantes cz, podem ser ignoradas, pois basta tomar uma tnica
autofuncao do autoespago de \,. Estdo assim justificados os resultados em (2.32).

Resolugdo do problema de autovalor (iv) ‘ :

Para A = 0:

/ — —
V() =e2=0 logo, zero nao é autovalor.

Y(l) =c1=0
Para A <0: )X = —k* (k> 0):

Y(@)=c1+ex = P (z)=co > _ {¢($) =0 (V) é a tnica solugio;

¥(x) = ¢1 cosh kx + co senhkx
¥'(z) = ciksenhkzx + cok cosh kx >
- {

(z) = 0 (Vx) é a tnica solugao;

el — B .
P(0)=c2k=0 = c2=0 (pois k#0) nao ha autovalor negativo.

Y(l) =cicoshkl =0 = ¢ =0
#0

Para A > 0: A =k* (k> 0):

Y(x) = ¢1 coskx + casenkz .
Y (x) = —ciksenkx + c2k cos kz .
P'(0)=c2k=0 = c2=0 (pois k#0) = (z)=cacoskz.

() (1)
Y(l) =cacoskl =0 = coskl=0 = kl=nn/2 = k=k,=nn/20 (n=1,3,5,7---).

(*) admitimos cg # 0 para viabilizar solugdo ¥ (z) nao nula
(1) excluimos n = ---—7,—5,—-3,—1 e 0, pois k> 0

Logo, A = A\, = k2 = (nw/20)® (n = 1,3,5---) sdo os autovalores, e 1, (x) = cos(nmz/2¢) (ignorando-se
quaisquer constantes multiplicativas) sdo as autofungoes correspondentes. Estéo assim justificados os resultados
em (2.33).
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2.4 Problemas de Sturm-Liouville Com Outras EDOs

Seguem duas outras EDOs que, em capitulos vindouros, surgirdo quando resolvermos certas EDPs pelo
método de separagdo de varidveis. Aqui, nesta se¢do, ndo resolvemos problemas de autovalor baseados nelas
pelo simples fato de ainda nao termos discutido as solugoes delas; isso é feito no Cap. 4.

i) 2% +xy’ + (A — vH)(x) = 0. (2.35)

No Cap.5, veremos que as autofungdes de problemas de autovalor com essa EDO séo as chamadas fun¢des de

Bessel. Obtemo-la na forma da equacao de Sturm-Liouville, (2.24), com u(z) = z, v(z) = —*/z e w(z) =
dip V2 B

dx ( dl’) ()\x B ?)w(x) =0. (2.36)

Portanto, as autofungdes sdo ortogonais com respeito a fungéo peso w(x) = z:

/wm(x)wn(m)xdaz =0se m#mn,
sendo a integragdo efetuada no intervalo em que a EDO é resolvida.
i) (1—a2*)y" — 229" + Mp(z) = 0. (2.37)
Essa EDO & a de Sturm-Liouville com wu(z) =1 — 22, v(z) =0 e w(z) = 1:

Lla-a%] 4 2@ =0

Com frequéncia resolve-se essa EDO no intervalo (—1,1). Neste caso, o fato de u(z) = 1 — z? anular-se quando
z — —1T ez — 1~ [uma condigdo de fronteira do tipo CF-4: supressiva] torna (2.37) singular nesses pontos,
nos quais a exigéncia da existéncia dos limites de v e ¢’ quando x — —17 e © — 1~ condiciona o parametro
A a tomar apenas certos valores (os autovalores). Assim, o problema de encontrar as solugdes ndo nulas da
EDO (2.37) com z € (—1,1) sob as exigéncias delineadas em (2.26) ¢, por si s6 (sem qualquer condigdo de
fronteira), um problema de autovalor. Veremos que as autofungdes sao formadas pelos conhecidos Polindmios
de Legendre, estudados no Capitulo 4 e usados no Capitulo 6.

2.5 Série de Fourier Generalizada Dupla e Tripla

Sejam {Yn(&)}n=1,2-.. € {Pn(n)}n=1,2... dois conjuntos ortogonais com respeito a produtos escalares de
fungdes peso w1 (§) e wa(n), respectivamente, provenientes de problemas de Sturm-Liouville distintos, sendo as
relagbes de ortogonalidade dadas por

<¢m,wn / 'd}m wn(ﬁ) w1(§) df =0 se m # n

(Dm, Pn)y / Om (M) Pr(n) wa(n)dn =0 se m#n,

onde, para distinguir os produtos escalares, apomos o subindice 1 ou 2 ao paréntese angulado direito. E
frequente a ocorréncia de séries duplas do tipo

DD Cnn¥m(€) dnln) = £(€,1) (2.38)

m=1n=1

em que se deseja calcular os coeficientes ¢ da expansao de f(€,n) nas citadas autofungbes. Mostraremos que
tais coeficientes sdo dados por

e NGO

(2.39)

Prova:

Basta, comegando com a equagdo (2.38), tomar, pela esquerda, o produto escalar de ambos os membros
por ¢, e, depois, na equagao resultante, por ¥,,, usando a distributividade do produto escalar bem como as
relagdes de ortogonalidade (¢n, dn/)y = ||0n|[*6nrn € (Yms¥ms); = |[¥m||*Gmim ; observe:

= 'm/ / ’ ny 2: m/'n' Wm! ny n’2: n2 m/nWPm/
F=" oot = (bnf)y= D o (dn, ) \|¢||%jc D

m/ nl m/ nl
’ ’ H¢7LH267,,’7L
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<¢ma ¢”ﬂa >1

2 2 AREMEMEAETS |
<"/)ma<¢n; > > _qunH Zcmn wﬂ’uwm> _meH ||¢n|| Cmn = Cmn = ||me ||¢n”2 )

m
Nm 1281,

onde

v2

(W (s £ = [ W (b f)p wnd = / wm{ / ¢wazdn}w1d€
"

2
Uz
/ [ emvi @6 s ©usmasin . QD
Ha também séries triplas, quadruplas, etc. Exemplo de série tripla:

S S ot (©dmmxn(Q) = F(En.Q) - (2.40)
I m n

Se {¥1(£), € € [p1, 1]}, {dpm(n), N € [p2,v2]} e {xi(), ¢ € [us,vs]} sdo conjuntos ortogonais com respeito
as fungoes peso wi(€), wa(n) e ws(C), respectivamente, é facil mostrar, por uma extensdo 6bvia da prova
apresentada acima para o caso da série dupla, que

// / F(E,€) 65 (€) B2 (1) X (€) wr (€) ws () ws (C) dE d
Cimn = @ T6m @I Tn QI

Vejamos um exemplo da série dupla na equagao (2.38), considere os dois conjuntos de fun¢oes { sen (mnz)/€} m=1,2,3..-
e {cos(nmy)/2h}n=1,3,5.... Eles sdo ortogonais com respeito a produtos escalares de fungbes peso unitérias, pois
sao formados por autofungoes dos problemas de Sturm-Liouville (i) e (iv) listados na segao 2.3. Temos portanto

que se
Z Z ¢ fz

m=1n=1,3,5--

(2.41)

entdo os coeficientes, segundo a equagao (2.39), sao dados por

hopt
mrr iy
7/0 /Of(x,y)sen 7 oS 2h dz dy

Cmn = MTT T )
2 2
sen ™7 2 cos "7
onde
||senm7m||2— lsenzmmvdm—é e HcosnﬂyH 2mryd h
[ “Jo [ T2 27

Note que, nas séries de Fourier nas equagdes (2.38) e (2.40), admitimos que cada tipo de autofuncao tem um
indice apenas. Mas a dependéncia indicial pode ser mais intricada, havendo autofung¢des que tém dois ou mais
indices, sendo alguns deles em comum com autofun¢ées de outra categoria. Mas, ainda assim, os coeficientes sdo
calculados por féormulas como aquela na equagio (2.41). Para exemplificar isso, tomemos a seguinte expansao
de uma funcao das coordenadas esféricas nas autofungoes ortogonais que surgem na resolucdo da equagao do
calor ou onda numa esfera de raio b centrada na origem, isto é,

T 9 90 ZZ Z Cnllen le( )ém(ﬁp) (242)

(ndo ¢ necessario aqui expor os detalhes dessas autofun(;f)es)7 sendo as relagoes de ortogonalidade dadas por
(observe as funcdes peso 72, senf e 1)

(Rin, Rin), /Rm ") Rin(r) 12dr = || Rin (1)) 26,0
(O, Oun)y = [ €0 (0)00 (6)sen01d0 = 61, (0)| 11
0

27
(Pmrs Pm), = / @ (0) P (0)dip = || S ()] -
0

Os coeficientes dessa série sd@o obtidos pelo mesmo procedimento usado para a série em (2.38): tomamos o
produto escalar de ambos os membros de (2.42), pela esquerda, por @p,, Oy € R,y (nessa ordem), usando, em
cada etapa, a distributividade do produto escalar e a relacdo de ortogonalidade associada a este. O resultado é

// / F(r,0,0) Rio(r) O5in(6) () (r2) (send) (1) dr-df dep
Cimn = G RESCHIECE ’

(2.43)
onde

27
|| Rin(r /Rm Vr2dr |G (6 /elm Jsenfdd o H@mwm?:/ S2.(p) dip .
(0]
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2.6 Auséncia de Autovalores Negativos

Nesta segao, provamos que nenhum dos autovalores de um problema de Sturm-Liouville é negativo quando
as condicoes de fronteira forem aquelas em (2.27), exceto a CF-3, e, na EDO (2.24), u(z) > 0 e v(z) < 0
para z € (u,v). Note que essas condi¢bes para as fungdes u e v encontram-se satisfeitas nos problemas de
Sturm-Liouville ja mencionados.

Para o operador L em (2.22), temos que

— (Y, LYy = / 7/:: [(wy') +vyp] wdae = / w*(ud/)'dx—i—/ u” P v d
" " m

=[] = [Coravtdo s [Conlds,
N . H w w
onde o primeiro termo se anula por causa das condi¢Ges de fronteira consideradas: CF-1,2,4,5,6. Logo,
witw) = [ llolde+ [l olde >0,
M Iz

pois u(z) > 0 e v(z) < 0 no intervalo (u,v).
Mas
(¥, L) = (b, Xp) = A (s, 9) = ||y,
onde, (1, Ly) > 0, de acordo com o resultado anterior, e ||¢||*> > 0. Esta provado, portanto, que A > 0 sob as
condigbes estabelecidas.

De acordo com esse resultado, ndo havia necessidade, na secio 2.3, ter suposto A = —k? na busca dos
autovalores, mas negligenciamos o que acabamos de provar por considerarmos instrutiva a anélise desse caso,
tanto que, mais adiante, pela mesma razdo, continuaremos considerando a hipétese A = —k?, ainda que ja

cientes da inexisténcia de autovalores negativos.
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Capitulo 3

Aplicacoes das Séries de Fourier

Trigonométricas na Resolucao de
EDPs

- Ref. [5], se¢.12.3, 12.5 e 12.8
- Ref. [§], seg. 12.7 (Exemplo 2) e 12.8
- Ref. [6], cap.2

3.1 Equacgoes do Calor e da Onda nas Coordenadas Cartesianas
em Mais De Uma Dimensao

O estudo desta seg@o deve ser precedido de uma revisdo das equagdes unidimensionais do calor e da onda
empreendido nas sec¢bes 6.2 e 6.3 da Apostila de Calculo 4. Aqui resolveremos tais problemas em duas ou trés
dimensoes.

Exemplo 3.1.1. Calculo da temperatura T (z,y, t) na placa retangular mostrada na figura, de bordas
submetidas a 0° e inicialmente a temperatura To(z,y).

AY 0° Vamos primeiramente proceder a chamada separagao espago-temporal: ad-

h mitimos que
0° 0 T(w,y,t) = (z,y) (1), (3.1)
isto &, que a solucao T'(z, y, t) € produto da fun¢ao sé das coordenadas espaciais
o ¥(z,y,z) pela fungdo s6 do tempo 7(¢t) (a parte espacial e a parte temporal

0° 1 da solugdo, respectivamente), e entdo substituimos essa expressao de T na
equagao do calor:

2 10T
T )= - — . 2
v (x7ya ) a 8t (3 )
Obtemos
2 _ 10 2 l / VQQ/) _ i —
Vi(yr) = o o1 (1) = TVY= a¢7' = % o A (constante)
V2 +2(2,9) =0 oo EDP espacial (equagdo de Helmholtz) (3.3)
T AT (t) =0 v, EDO temporal . '

Além disso, como consequéncia de (3.1), as condigdes de fronteira desse problema de calor — dadas por
T(z,y,t) = 0 se (z,y) for um ponto na borda da placa —, por serem homogéneas, se transferem para a
parte espacial ¥ (x,y):

T(z,y,t) =¢Y(z,y)7(t) =0 = (z,y) =0 para todo (z,y) na borda da placa. (3.4)
#0

Portanto, como nos problemas unidimensionais, a parte espacial da solucao deve ser solugao de um problema
de autovalor formado pela chamada equag@o de Helmholtz apresentada em (3.3) e pelas condigdes de fronteira
em (3.4), isto é,

{V21/J + M)(z,y) =0 no dominio D = {(z,y) € R? ,z € (0,£) ,y € (0,h)} (3.5)

¥(z,y) = 0 na fronteira de D .
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Esse é um problema de autovalor bidimensional, possuindo autofungdes 1 (x,y) correspondentes aos auto-
valores de \. Para resolvé-lo, realizamos outra separacao, a das variaveis z e y:

P(z,y) = X (@)Y (y) - (3.6)

A substituicdo dessa equagdo na EDP espacial em (3.3) fornece

2 2 = XY " "
(%+%)XY+/\XY:X”Y+XY"+)\XY:O = )§(+Y7+)\:0, (3.7)
SN
~

uma forma que apresenta dois termos separados que dependem de apenas uma variavel e que, portanto, devem
ser constantes; acima foram igualados as constantes de separacdo (—u) e (—v). Assim surgem as EDOs

X"+ uX(z)=0 e Y'+vY(y)=0,

que, para serem resolvidas, é necessario considerar as condigoes de fronteira para X (z) e Y (y) que podem ser
deduzidas daquelas para 1, na equagdo (3.4), usando a equagao (3.1):

P(zo,y) = X(z0)Y(y) =0 = X(x0)=0 se o =0 ou ¢ , (3.8)
——
#0
Y(zo,y) = X(@)Y(y) =0 = Y(yo)=0se yo=0 ou h . (3.9)
iecy

Como consequéncia, as partes X e Y da expressdo de T (= XY 1) devem ser autofungdes de problemas
de autovalor (unidimensionais), sendo ambos, no caso, do mesmo tipo do Prob. (i) resolvido na segao 2.3.
Escrevamo-los juntamente com as solugdes:

{X”+/LX(:L‘):O, z € (0,0) N {pm:(mw/£)2 (m=1,2--+)
X0)=X{)=0 Xm(z) = sen(mmx/l)

{Y”—i—Z/Y(y)zO7 y € (0,h) N {Vnz(mr/h)2 (n=1,2--+)
Y(0)=Y(h)=0 Y. (y) = sen(nny/h)

Desses resultados obtemos as solugdes do problema de autovalor bidimensional formulado em (3.5). Como
A=p+vcf (3.7)] e y = XY, podemos escrever:

V2 + M(z,y) = 0, (z,y) € (0,£) x (0,h) Amn = (mm/0)* + (nm/h)?
Pp=0se =0 ou z=/¢ = wmn(a;7y) = senm;x sen% (310)
Pp=0se y=0o0uy=~h mn=1273--

Agora calculamos a solugao Tmn(t) da EDO temporal separada em (3.3), com X dado em (3.7):
Thon F AmnTmn(t) =0 = T (t) = e ot (3.11)

Vale ressaltar que, para resolver o problema de autovalor bidimensional, convertemo-lo em dois problemas
de autovalor unidimensionais usando o método de separacdo de variaveis. Além disso, observe que a enume-
ragdo dos autovalores e das autofungoes acima é feita com dois indices. No tultimo exemplo deste capitulo,
tridimensional, veremos que trés indices sao necessarios. Mas isso nao é regra geral, havendo, por exemplo,
problemas tridimensionais cujos autovalores sao enumerados por meio de dois indices.

Estao determinadas, portanto, tanto a parte espacial da solu¢ao, dadas pelas autofungoes ¥, (z, y), quanto
a temporal, dada por (3.11). A solugao geral é a combinagao linear das solugdes Trn (2, Y, t) = YVmn (T, Y)Tmn (1),
isto é,

T(z,y,t) = Z EAmn sen m;r:c sen %eﬂ\m"at , Amn = (%) + (%) . (3.12)
m=1n=1

Nota: Chamamos de "solucao geral" a solugao que se obtém na forma de uma série infinita pelo
método de separacgdo de varidveis e que satisfaz todas as condigbes de fronteira homogéneas. Na
verdade, deveriamos nos referir a ela como a solugdo mais geral que esse procedimento fornece,
pois nédo se provou que ela é de fato a solugdo geral. Ela se torna a solugao especifica do problema
fisico quando os coeficientes da série sdo determinados a partir das condigoes ndo homogéneas, tais
como, por exemplo, as condig¢bes iniciais, que é o proximo passo dessa resolugao.
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Para determinar os coeficientes A,,, da solugdo geral, impomos que ela satisfaga a condi¢do inicial do

problema:
(z,9,0 Z Z Amn sen sen nzy =To(z,y) .

m=1n=1

Essa equagao, de acordo com as equagoes (2.38) e (2.39), mostra que

//To sen 7 senmda:dy

A'mn - T | o m‘ry 5 (313)
|| sen—7=I|" [ se Iy
2/2 h/2

onde os valores da normas quadraticas indicados sdo os das autofungdes do Prob. (i) na segéo 2.3.
A solugdo do problema é dada pelos resultados quadriculados: equagoes (3.12) e (3.13). Observe o correto
comportamento assintético no tempo: T'(x,y,t — 0o) = 0.

Exemplo 3.1.2. Célculo da deflex@o z(7,t) = z(z,y,t) de uma membrana retangular de bordas fixas
(v. figura), largada inicialmente com a forma dada por z = zo(z,y) e as velocidade de seus pontos dadas por
0z/0t = vo(x,y).

a) FORMULACAO:

z
1 9?
T y h V=5 atf(w y,t), (z,y) € (0,£) x (0,h)

\?//, / z(7,t) =0 se 7 € bordas (condicdes de fronteira)

Z(Fv 0) = Z(Z’ y,O) = Zo(w,y)

9% 92 (condigbes iniciais)
a(/’jv ) at( ,0)—Uo(l’,y)
b) SEPARACAQO ESPACO-TEMPORAL:
1 0°yYr 1
2z, y,t) = P(z,y)r(t) = V(Y1) = = 3;/; = TV = 6*27/)7'//
vy o 17" V2 + M(z,y) =0 (Eq. de Helmholtz)
= = —— = -\ (constante) = , 9
P T 7' 4+ Ac“T(t) =0 (EDO temporal) .

Observe que, como no problema de calor do exemplo anterior, também a parte espacial ¢ da solugdo da
equagao da onda deve satisfazer a equacao de Helmholtz. A diferenga entre este exemplo (onda) e o anterior
(calor) reside na parte temporal. Ao final deste capitulo listaremos as similaridades e as diferengas nas solugoes
das equagoes da onda e do calor.

¢) PROBLEMA DE AUTOVALOR PARA A PARTE ESPACIAL:

As condigoes de fronteira para ¥ (x,y) sdo deduzidas a partir daquelas para z(z,y,t) de modo analogo ao
feito na equacao (3.4), similarmente obtendo-se ¥ = 0 nos pontos das bordasem z =0,z =¢, y=0ey =nh
da membrana. Ora, tais condicoes de fronteira e a equagdo de Helmholtz (separada acima) formam o mesmo
problema de autovalor bidimensional do exemplo anterior. Ou seja, continua valido aqui o que se apresenta em
(3.10).

d) A PARTE TEMPORAL CORRESPONDENTE AO AUTOVALOR X\ = Apn -

Como todos os autovalores sao positivos, podemos definir

=i =2 (B4 (2 mn=1.25-

para escrever a EDO temporal e entdo resolvé-la como segue:
" 2
Tmn + WimnTmn =0 = Tmn(t) = Amn COSwmnt + Bmn S€Nwmnt .

e) SOLUCAO GERAL:

Esta é a combinagao linear de todas as solugoes zmn (Z, y,t) = Ymn (T, Y)Tmn (t):

oo o0
mnx nmwy
Amn mnt an mnt - . 3.14
(z,9,t Z Z( Ccos w + SeNwWmnt) sen 7 sen b ( )

m=1n=1
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Diga-se, de passagem, que, para cada par de valores de m e n, Zmn(2,9,t) = Ymn (T, y)Tmn(t) € dito um
modo de vibra¢do, em que toda a membrana vibra harmonicamente com a frequéncia angular wm,.,, sendo

Ymn(z,y) a amplitude da oscila¢ao no ponto (z,y).
f) CALCULO DOS COEFICIENTES NA SOLUCAO GERAL

Impondo as condigbes iniciais, obtemos

z(x,y,()) = Z

1n

An sen m;ra: sen % = zo(z,y)

NgE

Il
—

oo

0z > mnrr n
E(az,y,O) = Z Zwmann sen ;T sen%y =vo(z,y) .
m n=1

=1

Devemos entao calcular Amp € wmnBmn como sendo os coeficientes de uma série dupla de Fourier de zo(z,y) e
vo(z,y), respectivamente. Logo, de acordo com a se¢ao 2.5, e ja substituindo os conhecidos valores das normas

quadréaticas envolvidas, temos que

ol
Amn:%/o /O zo(x,y)senm;msenn—zydxdy ,

hoope
Winn Bmn = %/0 /0 vo(z,y) sen m;r:c sen% dx dy

As equagdes (3.14), (3.15) e (3.16) fornecem a solugdo deste problema ondulatério.

(3.15)

(3.16)

3.2 Peculiaridades das Resolugoes dos Problemas de Calor e

Onda

Considere o problema de resolver, numa regiao R (da reta, do plano ou do espago) de fronteira OR, as EDPs

10T
V3T = faa—t(f', ) v equagao do calor homogénea
a
1 92
Viu = 0—2%(77, ) e equacao da onda homogénea

sob condigbes de fronteira homogéneas. Realizando a separagao separagao espago-temporal, obtemos

Vi T {v2w+w(?):o

T(7t) = 9(r,t) =

(0 ar 7 4+ dar(t) =0
e
. . VQ " VQ +>\ -\ 0

onde o uso das mesmas letras ¥, 7 e A em dois problemas distintos ndo causara confusao.
Nos problemas de calor e onda ja resolvidos acima, observamos o seguinte:

(3.17)

(3.18)

(3.19a)

(3.19b)

solucdo, verifica-se que a parte espacial ¥ (7) satisfaz a equagdo de Helmholtz homogénea,

V3 4+ Mp(F) = 0.

de calor e onda resolvidos nas se¢oes 6.1 e 6.2 da Apostila de Calculo 4].

(autofungoes) e de valores (autovalores) da constante A originada na separagéo espago-temporal.

arbitrarias que surgem na resolugdo dessa EDO, ainda indeterminadas neste momento.

a) Tanto no problema de calor quanto no de onda, apds a separagao espago-temporal ¥ (7) 7(t) da

(3.20)
[que, em uma dimenséo, torna-se ©" + Ap(z) = 0, a EDO espacial obtida nos problemas unidimensionais
b) A resolugdo da EDP (3.20) sob a imposi¢ao de 1 satisfazer as mesmas condigdes de fronteira

do problema de calor ou onda original é um problema de valor de fronteira homogéneo que constitui
um problema de autovalor. Ao solucionar este problema, obtém-se uma infinidade de solugoes ¥ (7)

¢) Uma vez determinados tais autovalores, a EDO temporal pode ser revolvida para se determinar
completamente a parte temporal 75 (¢) correspondente a cada autovalor de A\, a menos das constantes
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No caso da equagdo do calor, 7x(t) € solugao de 73 + Aar(t) = 0, isto é,
T2 (t) = Axe . (3.21)

Observe, em particular, que 70(t) = Ao (constante) é a parte temporal associada ao autovalor nulo A\g = 0,
quando este ocorre.
No caso da equagdo da onda, 7 (t) é solugao de 74 (t) + Ac*ma(t) = 0, isto &,

| Axcoswiat + Basenwit (wx = cﬁ) se A>0
Tk(t) - {Ao + Bot se A=0. (3'22)

Portanto, a solugao geral da equagao do calor ou onda é a combinagao linear das solugdes T (7, t) ou ux (7, t)
dadas por ¥ (7)7a(t):

Ta(Ft) = Y Axe 2T n(F), (3.23)
A
ux(7t) = (Ao + Bot) ¥o(i') + Y  (Axcoswat + By senwat) a(F) . (3.24)
—_— BN

*

Nessas equagoes, entenda-se > como o somatoério nos indices usados para enumerar os autovalores; assim,

X

esse somatorio pode ser simples (no caso de Ay), duplo (no caso de Apmy) ou triplo (no caso de trés indices:
Aimn). Quanto ao termo marcado com *, s6 ocorrerd quando existir o autovalor A\g = 0.

Analisando a estrutura dessas solugbes, concluimos que, qualquer que seja o problema de calor ou onda,
a forma da parte temporal é sempre a que se apresenta acima (somente os autovalores de A mudam). Por
outro lado, o célculo da parte espacial, definida pelas autofungdes, é elaborado: trata-se de resolver a equagao
(homogénea) de Helmholtz sob condigdes de fronteira homogéneas, um problema de autovalor que depende do
nimero de dimensoes e da geometria do problema.

Aplicamos o exposto acima no exemplo seguinte.

Exemplo 3.2.1. Vamos resolver as equagoes do calor e da onda, dadas pelas equagoes (3.17) e (3.18),
na regiao V paralelepipedal formada pelos pontos (z,y, z) € (0,£) x (0, h) x (0, s), sabendo que T =0 e u = 0 na
fronteira OV e que, no instante inicial ¢ = 0, sdo conhecidos T' = To(7), bem como u = uo(7) e Ju/Ot = vo(7).

Esses dois problemas — calor e onda —, tendo as mesmas condigbes de fronteira — 7' e u se anulam na fronteira
—, para serem solucionados, passam pela resolu¢gao do mesmo problema: da equac¢ao de Helmholtz (oriunda da
separagao espago-temporal) sob as condig¢oes de fronteira comum aos dois:

V2 +M(F) =0, FeV
PY(F) =0 se 7€V .

Resolvemos este problema de autovalor tridimensional por separagao de variaveis:

2 2 2
(% n (%2 n %)XYZ IAXYZ = X'YZA4XY"Z+XYZ" +AXYZ =0

+xyz X" y" z” X TuX(m) =0
= Tty tFA=0 = A=ptvif e Y +vY(y) =0
~~ \ﬁ/ Z”—l—ﬂZ(z):O

T, D

Cada uma dessas trés EDOs deve ser resolvida sob as condi¢des de fronteiras que herdam das condigoes de
fronteira do problema de calor ou onda original, que sdo deduzidas de modo anélogo ao empregado na obtencao
daquelas em (3.8) e (3.8); no caso, as condig@o de fronteira sio

X(xz0) =0 se 2o =0 ou £, Y(yo) =0 se yo=0 ou h, Z(z0) =0 se z0=0 ou s.

Entao percebemos que as partes X, Y e Z que compdem 1) devem ser autofungdes de problemas de autovalor
unidimensionais, sendo, no caso, todos os trés do mesmo tipo do Prob. (i) resolvido na se¢ao 2.3; assim,

{X//-i-/J,X(ZE):O, z € (0,£) N {,ul:(mw/f)2 (l=12--)
X0)=X{)=0 Xi(z) = sen(lrx /)

{Y"+uY(y):0, y € (0,h) N {I/m:(mr/h)2 (m=1,2--+)
Y(0)=Y(h)=0 Y (y) = sen(mmy/h)

{Z” +BZ(y) =

0, z€(0,s) Brn = (nm/s)> (n=1,2--")
Z(0) = Z(s) = 0 = {

Zn(z) = sen(nmz/s) .
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Logo, os autovalores e as autofungdes do problema na equagao (3.5) sdo
I\ 2 mr 2 nm\ 2 l,m,n=1,2-- Imx mmy nmz
Aimn = (7) + (—) + (—) ———" % Yymn(z,y,2) = sen —— sen sen —— . (3.25)

h S l h S
Usando as equagdes (3.23) e (3.24) [em que o somatoério deve ser triplo, realizado nos trés indices [, m e n,
para somar todos os termos associados a todos os autovalores|, podemos escrever as solugdes gerais

[e3]

oo oo _ l
T(x,y,z,1) E E E Dimne” M sen % sen m;ry sen ? (3.26)
=1 m=1n=1

do problema de calor e

mmy nmz

oo oo o0 l
(z,y,2,t) Z Z Z(Almn COS Wimnt + Bimn senwimnt) sen % sen — = sen —— (3.27)

do problema de onda, onde wimn = ¢V Aimn , COM 0 Ay, dado em (3.25).
As constantes na solugao geral sdo determinadas impondo-se as condig¢Ges iniciais:

T(z,y,z2,0) :i

1m=1ln

l
Dimn Sen% sen m;:y en% = T0($7yaz) )
S

NgE

1

>
>

o0 o0
l
u(z,y, 2,0) Z Z zmnsen%x senm;lry en% =uo(z,y,2) ,
=1 m=1n=1
oo oo oo l
at $ Y, z, 0 Z Z ZwlmnBlmn Sen%sen m’:.y sen% = UO(%?/,Z) .

=1 m=1n=1
Os coeficientes dessas séries triplas de Fourier em senos sao calculados de acordo com a segdo 2.5; ja
substituindo os conhecidos valores das normas quadraticas envolvidas, temos que

8 hort mnx nmy nmwz
Dimn, = The / /0 /0 To(z,y, z) sen g Sen = sen—— drdydz| , (3.28)
8 mnx nmwy nmnz
A mn — 7 Y, > > — S — N 2
I The /0 /0 /0 uo(w,y, 2) sen g Sen— = sen — dr dydz (3.29)
Wimn Blmn = 8 / /h/ vo(z,y, z) sen ML o 1TY sen— dr dydz (3.30)
ImnDimn = Ths o 0 o\T,Y, ¢ h Y . .

As solugbes dos problemas de calor e onda sao formadas pelas expressoes quadriculadas nas equagoes (3.25)
a (3.30).

3.3 Equacao de Laplace em Trés Coordenadas Cartesianas

O estudo desta segao deve ser precedido da leitura, na Apostila de Calculo 4, do preaAmbulo da segéo 6.4
bem como de uma revisdo das resolugdes da equagao de Laplace apresentadas nas sec¢oes 6.4.1 e 6.4.2.1. Aqui
apenas complementamos essa categoria de problemas acrescentando um célculo tridimensional.

Exemplo 3.3.1. Caélculo da solugao da equagdo de Laplace no paralelepipedo da figura sob as
condigbes de fronteira indicadas.

Z A formulagao desse problema é a seguinte:
“:,(\“ u= f(z,y) em cima

atrds V2u(z,y,2) =0, (2,9,2) € (0,0) x (0,) x (0,5)
S
u(0,y,2) = u(l,y,z) = 0
ou 0 5
- = u
6y u=~0 @(x7ovz):u(x7h7z):0

—
A esquerda a direita

: w(@,y,0) =0, u(z,y,s) = f(z,y)
oL-------- \h* —> Y

\ Realizando a separagao de variaveis
G u(e,y,2) = X (@)Y () 2(2) | (3.31)

u=0 A frente
embaixo
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obtemos

PP
(@ t ot @)XYZ =X"YZ+XY"Z+XYZ" =0

> 7+7+7:0. (332)
N~ =
“u e

Expliquemos a separagdo realizada acima. As condi¢oes de fronteira homogéneas nas faces em z = 0 e
x = /f bem com em y =0 e y = h revelam que as partes X e Y ser@o provenientes de problemas de autovalor.
Dai havermos separado os dois primeiros termos acima usando as constantes independentes (cujos autovalores
resultarao de problemas independentes) —p e —v.

Nota — Padronizagao da forma da equacao diferencial de um problema de autovalor:

Os sinais negativos nas constantes de separagdo —u e —v em (3.31) estéo de acordo com a convengio
comumente adotada de sempre se escrever a equagao diferencial de um problema de autovalor na
forma da equagdo de Sturm-Liouville (2.24), na qual o sinal "+" precede a constante A.

Obtemos para X e Y respectivamente os problemas de autovalor ja resolvidos nos Probs. (i) e (iv) da secéo

2.3; logo,

{X”—i—MX(m):O, z € (0,0) N {Mm:(mﬂ/ﬂ)Q (m=1,2,3--)
X0)=X({¢)=0 Xm(x) = sen(mmnz/l) ,

{Y”Jrz/Y(y) =0, ye(Ohn) {l/n:(mr/h)2 (n=1,3,5---)
Y'(0)=Y(h)=0 Y, (y) = cos(nmy/2h) .

Para determinar a parte Z de u, resolvemos a EDO Z” — (i + v)Z(2) = 0 que se obtém com a separagio
do terceiro termo em (3.32), mas com u e v substituidos respectivamente pelos autovalores p., e v, acima,
sob a condigdo de fronteira homogénea que Z herda daquela que u satisfaz na face em z = 0. Esse problema é
formulado e resolvido a seguir:

Zir = (pm +n) Zmn(2) =0, 2€(0,8), Zmn(0)=0.

* Zmn(2) = Amn cosh(Kmn2) + Bmn senh (kmnz) , onde | Kmn = vVttm + Vn ) | - (3.33)
Zmn(0) = Amn =0 = Zpn(z) = Bmn senh (kmnz) .

Logo, em vista de (3.31), a solucdo geral é a combinacdo linear de todas as solugbes Umn(z,y,2) =
Xm(‘r)Yn(y)Zmn(z)7 ou seja,

mnx nmwy

u(x,y,z):z Z Binn senh (Kmn 2) sen 7 oS oy

m=1n=1,3,5---

(3.34)

Nesta, os coeficientes sdo determinados impondo a condi¢ao de fronteira ndo homogénea na face superior do
paralelepipedo:

oo
mnx nmw
u(z,y,s) = E E [an senh(mmns)] sen 7 cos Thy ,
m=1n=1,3,5---
donde concluimos que o termo entre colchetes sdo os coeficientes dessa série dupla de Fourier generalizada, que
podem ser calculados segundo a segao 2.5 ; ja substituindo os valores das normas quadraticas fornecidos nessa
secao, obtemos

)
Bin senh (Kmns) = % / / f(z,y)sen m;m' cos % . (3.35)
o Jo

As solugoes dos problemas de calor e onda sao formadas pelas expressoes quadriculadas nas equagoes (3.33)
a (3.35).
Nota — Fronteira isolada termicamente:

A resolugdo da equagio de Laplace V2u(7) = 0 pode ser interpretada como o calculo da temperatura
estacionéaria T'(7) (a temperatura independente do tempo que se estabelece num sistema em equilibrio
térmico). Admita, entdo, essa interpretagdo para o problema que acabamos de resolver: u é a temperatura
estacionaria T. A condi¢ao de fronteira T" = 0 numa face do paralelepipedo é simples de entender: ela é
mantida em 0°. Mas como entender a condigdo 0T /dy = 0 naquela face a esquerda?

O fluzo de calor é uma grandeza vetorial, denotada por ¢ (7), que expressa a condugao de calor no ponto
7 na direcdo de ¢. Pela lei de Fourier, ela é dada por ¢(7¥) = —VT(F), onde k é a condutividade térmica
do meio. Nas coordenadas cartesianas, temos que
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. aT 9T aT
q(z,y,2) = (

—_— = componentes de 7 : =—k—, = —k—, =—k— .
oz’ ay Bz> p q: Qqz qy qz

Assim, no problema acima, a condigao de fronteira

oT

aiy(xzovz) =0

indica que g, = 0 na face situada na ordenada y = 0; que o vetor ¢ é paralelo a essa face; que, em qualquer
ponto dela, a corrente de calor a tangencia; que, portanto, nao ha passagem de calor através dela. Ora, isso
significa que essa face é isolada termicamente.
.. or . . .
Outro exemplo: a condigao a—(é, y, z) = 0 expressa que a face situada na abscissa © = £ (perpendicular ao
x

eixo z, obviamente) é isolada termicamente.

3.4 O Nicleo de Poisson para a Solucao da Equacao de Laplace
num Disco

No Exemplo 6.8 da Apostila de Calculo 4, foi resolvida a equagao de Laplace nas coordenadas polares r e 6,
V2u(r,0), no disco de raio b centrado na origem sob a condigao de fronteira u(b,§) = f(0), obtendo a seguinte
solugdo [v. 14 as equagdes (6.44) e (6.45)]:

oo
u(r,0) = Co + Z r" (A, cosnb + By senf) ,
n=1
onde os coeficientes sdo dados por
1 27

o f0)sennf do .

1 27 1 2m
= — A, = — B, =
Co o /0 7(0)de , o f0)cosnfdl e

Embora a resolugado ja esteja concluida, ela pode ser expressa sem a série infinita. Conseguimos isso
substituindo essas férmulas dos coeficientes Cy, A, e B, na expressao da solugado u(r, ) acima:

1 %" > cosnb sen
= — 0)de r’ d d
2”/0 f(9) +ngl [ / f¢) cosng ¢+ / fo)sennd d)}

em que, antes de substituir, trocamos a letra que denota a variavel de integracao de 0 para ¢, para que, no
passo que realizaremos em seguida, possamos introduzir os termos cosnf e senf [inicialmente presentes na
expressao da solugdo u(r,#) nas integrais. Fazendo isso e admitindo que o somatorio de integrais é a integral
do somatorio, obtemos

u(r,0) = % 02 {1 +22 ( ) [ cos nf cosne + sen@sennd)]}f((b)d(b
1 27
=0/ {1+2Z ) cosn(p — 0)}f(¢)d¢. (3.36)
Definindo
z = % 09 — % [cos(¢p — @) +isen(d — )] ,
donde

1= (50 = ) Lot st ]
3.

podemos desenvolver o termo entre chaves em (3.36) como segue( )
l-l-QZ( ) cosn(p—0) = 1—|—22Rez" = Re{l+222”}
n=1 n=1
o0 oo 1
Req 1 2[—1 = Req 142> 2"t = Red —142—
e{ + +Zz } e{ + ,;)Z} e{ + 1—z}

[l (o) ()

1+z 1+
= Re + =
1—-2z 1-—
se |z| <1 série geométrica e z—z" =2iImz.
z

N

N

(*) Usamos os seguintes resultados
oo
IEEES
n=0 1-

Note que, de fato, |z| = /b < 1 no interior do disco.
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14 (z—2") — |27

| [1 = (r/b)cos(¢p —0)] —i(r/b) sen (¢ — 0) |2
1+ 2iTmz — (r/b)?

[1 = (r/b) cos(¢ — 0)]* + [(r/b) sen (¢ — 0) |2

1— (r/b)? b —r?

= Re

= Re

 1—2(r/b)cos(p —0) + (r/b)2 ~ b2 —2brcos(¢p—0) +r2 ’

resultado conhecido como ntcleo de Poisson. Substituindo-o em (3.36), obtemos a solu¢ao do problema na
forma da chamada integral de Poisson :

I f(9)do
u(r,0) = 27 /0 b2 — 2brcos(¢p — ) +1r2 | (3.37)

3.5 Problemas Nao Homogéneos de Calor e Onda

Num problema ndo homogéneo de calor ou onda, a equagdo, a condi¢gdo de fronteira ou ambas nao sao
homogeéneas (ignoram-se as condigoes iniciais, geralmente ndo homogéneas, nessa terminologia). Desde Céalculo
4 ainda nao tratamos de tais problemas dependentes do tempo que nao sejam homogéneos (ressalte-se que os
célculos de temperatura estacionaria — que consistem em resolver a equagao de Laplace — sob condigoes de
fronteira ndo homogéneas que ja resolvemos nao envolvem a variavel temporal).

Seguem técnicas simples para tratar de problemas simples, aqui apresentadas tdo somente para resolver
problemas unidimensionais de calor (numa barra) e onda (numa corda). Os exemplos seguem em ordem
gradativa de complexidade:

Exemplo 3.5.1. Extremos da barra & mesma temperatura constante:

Definimos T'(z,t) = u(z,t) + T1, obtendo:

*T 10T
92 oo &t =0 *u  10u

92 aar =0
€0,0), t>0

z€(0,0), t>0
u(0,t) = u(l,t) =0
u(z,0) =To(z) —T1 .

T(0,t) = T(¢,t) = T1 = const.
T(xz,0) = To(x) .

Este problema nao pode ser resolvido direta-

mente por separacio de variaveis. Este é um problema homogéneo, que ja foi resolvido

por separacgao de variaveis.

Exemplo 3.5.2. Extremos da barra sob diferentes temperaturas constantes:

9*T 19T
503 faa(ac,t)—O, z€(0,0), t>0

T(0,t) =Ty = const., T(£,t) =T = const. , T(z,0) =To(z) .

Definimos T'(z,t) = u(z,t) + n(z), obtendo:

8°T 10T du ., 1 0u
922 —aa(%t) = 221" (m)—ag(%t) =0, z€(0,6), t>0
T u(0,t) +n(0) =T

(O7t) =
T(¢,t)
T(z,0) =

u(l,t) +n(l) =Tp

u(z,0) + n(z) = To(x) .

Para obter um problema homogéneo para u(zx,t), devemos escolher

n'(x) =0, n0)=T1 e n()="T»,

assim obtendo para n(x) um problema (formado por uma EDO de 22 ordem e duas condigoes de fronteira) que
¢é bem definido, isto é, que tem uma unica solugdo, dada por n(x) = (T> — T1) /¢ + T1 , cuja substituigdo no
problema de calor acima leva ao seguinte problema, que ja sabemos resolver:

0%u 1 0u

dx? o ot
*N w(0,t) = u(l,t) =0

u(z,0) = To(z) — n(z) .

(z,t) =0, 2€(0,0), t>0

53



Exemplo 3.5.3. Barra com extremos sob temperaturas constantes, de condutividade térmica k

[W/m°C] e na qual a densidade de poténcia é dada pela fungio Q(z) [W/m?]:

*T 10T Q(x)
_ -7 t) = —

or?  a Ot () k

T(0,t) =Ty = const., T(¢,t) =Ty = const. , T(x,0) =To(z) .

, z€(0,0), t>0

Definimos T'(x,t) = u(z,t) + n(z), obtendo:

ﬂ_iai( t) = @+ "( )_17
922 oot Y T e T T
T(07 t) = u(07 t) + 77(0) =T
T(,t) = u(l,t) +n(l) =Tz

T(z,0) = u(z,0) + n(x) = To(x) .

Ao escolher

n'(x) = -Q(z)/k, n(0)=T1 e n(t) =T,
formamos para n(z) um problema bem definido, cuja solugao, ao ser substituida no problema de calor acima,
leva a0 mesmo problema homogéneo para u(x,t) em *, obtido no Exemplo 3.5.2, mas com uma solucao n(z)
diferente, evidentemente.

Exemplo 3.5.4. Corda esticada com tensdo T [N/m| e submetida & carga f(x) vibrando entre
extremos fixos a diferentes alturas:

Py 10%  fla)

y(0,t) = y1 = const. , y(¢,t) = y2 = const.

y(w,0) = yo(e) , 22 (2,0) = vo(x)

Definimos y(z,t) = u(z,t) + n(z), obtendo:

%—%% = %-ﬁ-n”(z)—é% = —@, z € (0,0), t>0
y(0,t) = u(0,1) +1(0) = y1

u(l,t) = u(l;t) +n(f) = yo

y(,0) = u(z,0) +n(z)

% gy =

2 (2,0) = 52 (2,0) + n(e) = volz) -

Ao escolher

n'(z) = —f(@)/T, n(0)=y1 e n(l) =y,
formamos para n(z) um problema bem definido, cuja solugao, ao ser substituida no problema de onda acima,
leva ao seguinte problema homogéneo, que ja sabemos resolver:

Pu_ 10
or? 2 ot?
u(0,t) = u(,t) =0

ou

u(@,0) = yo(e) —n(z), 5/ (2,0) =vo(z) —n(z).

=, z€(0,0), t>0

Por fim, ressalve-se que as técnicas de homogeneizagido expostas também se aplicam no caso das outras
condigbes de fronteira consideradas.

3.6 Exercicios

3.6.1 Enunciados

1] Resolva o seguinte problema de calor:

10T

2 —_— ——
V(e t) = SO0 (ay) € (0,0 x (0,h)
T7(0,y,t) =T(¢,y,t) =0
oT
a—y(w,o,t) =T(z,h,t) =0
T(z,y,0) = To(z,y) .
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2] Resolva o seguinte problema de membrana vibrante:

9 1 9%z
\% Z(xvyvt) = Cﬁﬁ ) (xvy) € (ng) X (O7h)
0z
Z(O>y7t) - %(&yﬂt) =0
0z 0z
Fy(m’07t) - @(‘r?h?t) -

0
2(957%0) =0, ai‘z(xvgﬁo) = vo(x,y) .

3] Resolva o seguinte problema de calor:

VAT(r, .20 = ~ 00 =0, (0,9:2) € (0,6) x (0,1) x (0,5)
oT oT

8 (0 y,Z t) 81} (€7y7z7t) 70

oT or

9y — (2,0, 2,t) = ay(ac,h,z,t)—O

oT oT

a ( ,y,O,t)—E(x,y,s,t)—O

T(m7yvzao):T0(x7yaz) :

4] Resolva o seguinte problema:

V2u(x,y,z) =0, (z,y,2) € (0,£) x (0,00) x (0, s)

ou ou
%(0,% Z) - %(ﬁ,y,z) =0

u(z,0,z) = f(z, 2)

ou
u(xvyao) = &(xfya S) =0.

5] Considere uma barra reta situada entre x = 0 ¢ = 10 cm, de difusividade térmica o = 1 cm?/s e
condutividade térmica k = 1 W/m°C, em que ha uma geracio de calor constante de 2 W/cm®. Calcule a
temperatura T'(z,¢) na barra sabendo que seus extremos esquerdo e direito sdo mantidos em 20°C e 10°C,
respectivamente, e que, T'(x,0) = 9z — 22 [°C].

3.6.2 Solucoes

S

T(z,y,t) = d(z,y)7(t) = =

2 2
{V ¢+/\1/1—M+M+)\¢(x,y):0

= —) (constante) .

<
QI

y?
1 sob as mesmas condi¢ées de fronteira que T .
Xl/ Yl/

X + v +A=0.

<=~

L 7

X"+ uX(x)=0, z€(0,¢ N tm = (m/0)? (m=1,2,3---)
X0)=X{) =0 Xn(z) = sen(mmz/l) .

P(z,y) = X (@)Y (y) =

{Y”+uY(y) , y€(0,h) N {Vn:(mr/Qh)2 (n=1,3,5--+)
Y'(0) =Y (h) = Y. (y) = cos(nmy/2h) .

—Amnat

T’r/nn + )\mnOCTmn(t) =0 [)\mn = m + Vn] = Tmn(t) =€

3

A t nm
T(z,y,t g E C’mne mnetgon L o VY

E 2h
m=1n=1,3,5--

Mg

T(x,y,0) =

Z Cmn sen m;m: cos Y — To(z,y) .

2h
1 n=1,35-

3
I
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vy t) =vl@y)rt) = —F=5T=

0? 0?
VI X = G S X y) = 0
1) sob as mesmas condigoes de fronteira que z .
X/l Y/l
P(z,y) = X(2)Y(y) = X + v +A=0.
< =~
—u —v
XN+/'LX(1'):07 ZEE(O,E) = ﬂm:(mﬂ'/zg)Q (m:17375)
X0)=X'(¢)=0 X, (z) = sen(mnz/20) .

0, y€(0,h) vn = (nr/h)? (n=0,1,2---)
= y = {Yn(y) = cos(nmy/h) .

{Y”—i—l/Y( y) =
Y'(0) =Y'(h)

[Wmn = ¢VAmn | -

(,4,0) =¢Y(z,y9)7(0) =0 = 7(0)=0 = Tmn(0) =Amn =0 = Tmn(t) = BmnsenwWmnt

Tvir/w,n + )\mnCQTmn (t) =0

Tmn(t) = Amn COSWmnt + Bmn S€eNWmnt

z(z,y,t) = Z Zansenwmntsen % nzy

m=1,3,5--

nmwy

%(xvyao): Z Zwmn mn SE€IN 2€$COS h _'Uo(l’,y).

m=1,3,5--

//voxysen 20 cos zydmdy

wmann -
g oM
sen? dx / cos? —d
/0 2¢ o h

£/2 {h/2 sen#0

h sen=0

3

V2

T(z,y,2t) =z, y,2)7(t) = " : = —\ (constante) .

17
a T

V2ih 4+ Mp = B2 9.2
1) sob as mesmas condigoes de fronteira que T .
Xl/ Yl/ le
x Ty Tz A=
< =S
—H —v -8B
MUm = (mﬂ/€)2 (’ITL = 07172)

0, z€(0,0)
=0 = { Xm(z) = cos(mmz /L) .

2 2 2
{ 8—w+8—1#+8—¢+Aw(ac7y7Z):0

P(x,y,2) = X(@)Y(y)2(2) =

X" + X (z) =
{ X'(0) = X'(¢)
y € (0,h) vp = (nm/h)? (n=0,1,2---)
0 = { Y, (y) = cos(nmy/h) .
0, z€(0,s) /Bj:(jﬂ_/h)Q (j=0,1,2--+)
=0 = { Zj(z) = cos(jmz/s) .

{ Y'+vY(y) =0,
Y'(0) =Y'(h) =

{ 7"+ BZ(y) =
7'(0) = Z'(s
—Amnjat .

Trlnnj + )\mnj aTmnj(t) =0 [Amnj = Um + Vn + /B]] = Tmnj (t) =€

nTY o ST

o0 o0 o0
T(x,y,2,t) = Z Z Z Chnj e mni®t cog m;rx cos 5 cos S

m=0n=0 5=0

56



T(z,y,2,0) = Z Z Zcmm cos Zm cos L;:y cos % =To(x,y, %) .

m=0n=0 j=0

hopt
/ / To(z,y, z) cos ML o5 Y cos —daz dydz
0o Jo Jo ¢ h

Cm"J = Y] h s .
2 NTY 2 JTZ
cos” L dx cos® —=dy cos” —dz
0 0 h 0 s
£/2 se m#0 h/2sen#0 s/2se j#0
L sem=0 h sen=0 s sej=0

Nota:
Uma vez que Agoo = 0, entdo, denotando pela mesma letra V tanto a regidao (z,y,z) € (0,£) x (0,h) x (0,s)
quanto o volume V = ¢hs dessa regido, temos que

T(x,y,2t) = Cooo + ZZZ e i i (Y, 2)

m n

_,—/
m#0,n#0,5#0
s h L
/ / / To(z,y, z)dz dy dz
o Jo Jo
Lhs

1
= V/ To(7)dV : média da temperatura inicial em V.
\4

T(z,y,z,t— 00) = Cooo =

Esse ¢ o resultado assintético no tempo que se espera nessa regiao V de fronteiras isoladas termicamente: que
toda a energia térmica inicial tenda a se distribuir uniformimente na regiao V.

4
Z A

Oz |, _, Oz |, _,
0 "~ —00
z=0 oz |,_, N R
% Y
N, z
X// YI/ Z//
uz,y,2) = X@)Y([)2(z) = —F +5 +—5 =0
—n —v

0, z€(0,0 N {uXm(:(mw/f)Q (m=0,1,2--+)

) = cos(mmx/L) .

{Z”+VZ(y):0, z € (0,s) N {un:(mr/Qs)2 (n=1,3,5--+)
Z0)=2Z'(s)=0 Zn(y) = sen(nmz/2s) .

Yoin = (m +v0) Y (y) =0 = Yin(y) = A e 4 By €t (Kmn = Vi + Vi ) -

= k2
= Fmn

Yin(y = 00) finito =  Bmn =0 = Yuu(y) = Amne "mmY .

oo
mnrx nwz
u(z,y,2) = g Amne kmnd cog n—-=
s
m=0 n=1,3,5--
> mnx nwz
0 T
u(z,0,z) = E E Amn cos sen — = f(x,2) .
l 25
m=0 n=1,3,5---
s ot mnx nwz
f(z, z) cos sen ——dz dz
o Jo l 2s
Amn - 7 S
i o MTXT ’ 2 NTZ
cos dx sen”——dz
0 L 0 2s
£/2 se m#0 s/2
V4 se m=0

o7



5
—Q(z,t)  a=k=1, Q(z,t)=2

Equagao do calor ndo homogénea: Tp, — th = A Tow — Ty = —2.
«
7(0,t) =20, T(10, t) =
T(x,0) = 9z — 2° .
T(z,t) = u(z,t) +n(z)
Ugw + 0 (T) —ur = —2 = 7n'(z)=-2
T(0,t) = u(0,t) +n(0) = 20 = n(0)=20 = )= —-2>+9z+20.

t)
T(lO t) = u(10,t) + n(10) =10 = n(10) =10
T(z,0) = u(x,0) +n(z) =9z —2° = u(z,0)=9z—2"—n(x) = wu(x,0)=-20.
Ugy —ur =0, z € (0,1), t>0
u(0,t) = u(10,t) =0
u(z,0) = —20.
A solugéo u(z, t) deste problema homogéneo pode ser calculada por separagao de variaveis (omitimos os detalhes,

ja conhecidos):

B, 7(n7r/10 nﬂ-x .
> L
= nwx
u(z,0) = 7;1 B, sen — = -20
2 [0 nrx 4(10) 1040 40 (-2 sen=1,3,5
Bn—ﬁ/o (—20)sen1—0d:r—ﬁcosmr:ro —%(cosnw—l)—nw- 0 sen—246

u(z,t) = ngl —:jro e_(""/w)zt sen L{gc .
T(z,t) = n(z) +u(z,t) = —z°+ 9z +20 + i =80 0% o, T
’ " ’ nmw 10

n=1
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Capitulo 4

Método de Frobenius e Funcoes
Especiais

- Ref. [4], se¢.5.1 a 5.6
- Ref. [7, se¢. 6.2 a 6.5] ¢ Ref. [8, Ap. ]
- Ref. [6], cap.4,6 e 7

4.1 Meétodo de Frobenius

Pré-requisito ao estudo do método exposto nesta se¢ao é o Cap. 2 da apostila de Célculo 4, a qual fazemos
referéncia usando a abreviatura Ap-Calc4.

4.1.1 Parte 1 (Frobenius I)

Os pontos singulares de uma EDQO, ja definidos e explicados na se¢do 2.1 da Ap-Calc4, sdo, por sua vez,
classificados em regulares e irregulares como segue: Dizemos que um ponto singular da EDO

A(x)y" + B(a)y' + C(z)y(z) =0 (4.1)

¢ um ponto singular regular (ou uma singularidade regular) se, ao reescrevermos essa EDO na forma dada por

Y+ pla)y + qlz)y(z) =0 , (4.2)

[obtida dividindo (4.1) por A(z)] constatamos que (z —xo)p(x) e (x — 20)?q(z) ou suas extensdes continuas sao
fungdes analiticas em xg.
O ponto singular que nao é regular é chamado de ponto singular irregular (ou singularidade irregular).
Novamente, para evitar a analise de analiticidade de fungdes, fornece-se a seguinte receita, vilida no caso
de EDO cujos coeficientes sao polinémios:

Considere (4.1) com coeficientes polinomiais, e escreva essa EDO como em (4.2), mas com p(x) e g(z)
na forma de um quociente irredutivel de polindbmios completamente fatorados em mondémios. Se o fator
(z — xo) aparece nos denominadores de p(z) e g(z) com multiplicidades m, e mq, respectivamente, entéo
T = xp é um ponto singular
o reqular se mp <1l e mg<2
o irregular se mp >1 ou mg > 2

Assim, por exemplo:

i) Os pontos © = 1 ¢ & = 2 sdo pontos singulares da EDO (z — 1)(z? — 4)%y" + (x — 1)(z — 2)y +y =0

(sem fator comum nos coeficientes polinomiais). Reescrevendo essa equagao na forma

"t L = L =0
Y T e+22@-2"Y Te-D@+22@—22Y" "

verificamos, de acordo com a receita acima, que r = —2 é um ponto singular irreqular; ja x = 1 e x = 2 sado
pontos singulares requlares.

ii) A EDO 2%(z + 1)%y” + (z® — 1)y 4+ 2y(z) = 0, ou

//+ z—1 /+ 2
Y xZ(x—Fl)y z2(z+1

PyZO,
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tem, em x = 0, um ponto singular irreqular e, em x = —1, um ponto singular regular.

iii) (1—2z%) ¢’ —22y +30y =0 = = +1 sdo pontos singulares regulares.
(z+1)(z—1)
z+1)(z—1

2
iv) 23y” — 22y’ + 5y =0 = ' — 2 v+ % y=0 = 1z =0 é& ponto singular irregular.

v) 8xy” — 22y’ + 5wy = 0, ou (cancelando o fator comum ) 8" — 22y’ +5y =0 = a EDO ndo tem
ponto singular (somente pontos ordinarios).

3xy n 1—x
(z—30)(z+3) Y " (@—30)(z +39)

vi) (22 4+9)y" =32y’ +(1—2)y=0 = ¢’ — y=0 = x==3i

sdo pontos singulares requlares.

A seguir estudamos o chamado método de Frobenius, usado para se obter solu¢do em série de EDO linear
em torno de ponto singular regular. Antes de explicar esse método, convém apresentar dois fatos que motivam
esse método:

o y1 =% e yo = 2% Inx sdo solugdes de z?y” — 3xy’ + 4y = 0 para = € (0,00). Essa EDO tem um ponto

singular regular em z = 0, em torno do qual, se intentassemos uma série de poténcias Y a,z" como
solucdo, s6 obteriamos y; = 2, pois o fator In z na solugdo y2 nao tem série de Taylor em torno de = 0.

e A EDO 6z%y” + 529/ + (2> — 1)y = 0 tem um ponto singular regular em x = 0, mas nio possui solugao
alguma na forma da série ) anz™ (centrada em x = 0). Pelo método de Frobenius, podemos obter duas

o0 o0
solugdes em série com as formas y1 = > anz" /2 e Y2 = >, bz t1/3,
n=0 n=0

Pois bem, considere o problema de resolver a EDO (4.1), isto é,
A(z)y” + B(z)y' + C(z)y =0 ,

em torno de um ponto singular regular x = xo. Aqui, por questdo de simplicidade, supomos sempre que
zo = 0. Pelo chamado método de Frobenius, é sempre possivel encontrar uma solu¢do na forma da série
(relativa a zo = 0)

oo oo
y=x" E anx" = E anz™t" = aox” + a1z +asz" T2+ , com ag#0 . (4.3)
n=0 n=0

Nao permitindo que ao se anule, impomos que esse coeficiente seja o primeiro da série. Faz parte da resolugao
determinar:

1. Os valores de r para os quais a EDO tem solucao na forma da série em (4.3). Esses valores surgem da
resolucio de uma equagio algébrica do 2° grau (do 3° grau se a EDO fosse de 3% ordem e assim por
diante), denominada equagdo indicial, cujas solugdes 71 € r2 sdo as chamadas raizes indiciais.

2. A relagdo de recorréncia para os coeficientes a,.
3. O intervalo de convergéncia da solugdo em série obtida.

Os detalhes do método™ serdo apresentados através de exemplos, nos quais * = 0 é o ponto singular
regular em torno do qual se deseja a solugdo. Conforme as raizes indiciais, trés casos importantes devem ser
considerados (ndo consideraremos raizes indiciais imaginérias):
4.1.1.1 Caso de raizes indiciais que nao diferem por um inteiro: 1 —re ¢ Z

Neste caso, o método de Frobenius sempre fornece duas solugoes linearmente independentes.

—— Exemplo 4.1.1. 3zy”" +¢y' —y =0

(e o) oo (e o)
y = Z anmn-&-r = y/ _ Z(n + 7ﬂ)anmn+r—1 = y// _ Z(n +r— 1)(n + 7n)anxn+r—2
n=0 n=0

n=0
3z Z(n +r—1)(n+r)az"T? + Z(n +r)anz" T — Z anz™ " =0
n=0 n=0 n=0
Z Bn+r—1)(n+nraa" T+ Z(n +r)anz T - Z an_1z"TT =0
n=0 n=0 n=1

(*)Isso ndo significa perda de generalidade, pois, mediante a mudanca de variavel t = x—x¢, sempre podemos transformar
uma EDO com ponto singular regular em = = x¢ noutra para a qual esse ponto singular regular é dado por ¢t = 0.

(D Consulte as secdes 4.3 a 4.6 da referéncia: Hildebrand, F. B. Advanced Calculus for Applications, Prentice-Hall,
Englewood Gliffs, New Jersey, 1976.
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[B(r — 1)r + rJaoz” ' + Z { Bn+r—1)(n+r)+(n+7)]an— an,l}x"”’l =0

n=1

(3n+3r—2)(n+r)

————

3 —2)race’™ 4 3 [0+ 3= D+ r)an —an ] =0
n=1 Y

(3r —2)r =0 (equagdo indicial) = r = 0 ou 2/3 (raizes indiciais)

(B3n+3r —2)(n+r)an —an—1 =0 (relagdo de recorréncia dependente da raiz indicial)

As relagoes de recorréncia especificas para cada raiz indicial sdo dadas por

An—1
=0 = n=———>
" “ n(3n — 2)
ou
po2 o L o Ono1
3 " n(Bn+2) > 1

A essas duas relagbes de recorréncia correspondem duas séries distintas, nas quais ap permanece arbitrario:

A série correspondente a r = 0:

a 40 a
1= =aop
(D)
a al aop
g = Y
2)4) 8
az a0/8 ao
as = = = —
3)(7) 21 168
s = as _ a0/168 _ ao
*T @10) ~ 40 6720
z? a2l z?
“y(z) = 2%ao+ a1 x4 a2 2+ a3 ¥+ ag 2t40) = ao(l—i—m—l—@—i—@—&- 6720 +) .
ao ag ag _ap_
8 168 6720
A série correspondente a r = 2/3:
a ao ao
1= = —
ME) 5
ail (10/5 aop
a2 = = =
(2)(8) 16 80
P az _ CLU/SO _ ao
>T (3)(11) ~ 33 2640
s — as . a0/2640 . aop
YT @(14) 56 147840
L yp(z) = 23(a0+ ar x4 ax 2+ a3 2+ as at+ )
Y pY Y o
3 50 640 147840
2 3 4

Y OO A LA
ao (+5+80+2640+147840+ )

Assim, obtemos duas solugdes, cuja combinagao linear é a solugdo geral: y(z) = y1(z)+y2(x) (considerando
0 ap que multiplica cada uma delas como sendo duas constantes arbitrarias independentes).
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4.1.1.2 Caso de raizes indiciais iguais

Neste caso s6 se consegue uma tnica solu¢ao na forma da série em (4.3), na qual r é igual ao Gnico valor
da raiz indicial.

Exemplo 4.1.2. zy” +y —4y =10

o0 oo oo
Z n+r—1)(n+ r)anx"+r_1 + Z(n + 7”)ana:n'~'r_1 —4 Z anz" T =0
n=0 n=0 n=0
Z(n+r7 D(n 4 r)anz™ ! + Z n+7r)anz" 74Za "t =0
n=0 n=0 n=1

[(r = 1)r + r]aox™™ 1+Z{ (n+r—1n+r)+ (n+r)]an—4an,1}x"”*1:0

(ntr)2
2 r—1 2 n+r—1 _
r° aox + z:l [(n +7r)an — 4an,1} T =0 .
0 n=

Vemos que r = 0 é o dnico valor da raiz indicial e que

4a,,
an = 7@ i n;2 para n>1 . (4.4)

Essa equagio, com r = 0, torna-se a, = 4an—1/n°> (n > 1), donde

__4@0
al—?
o = da _ L
2T 2 T (1.2)2
gy = da2 _ _4ac
2732 T (1-2-3)2

4"a0

an =

Logo, temos no méximo uma tnica solugao linearmente:

o, 4" . 16
Zana:+ :aoz(nl)Qx = ao(1+4x+4x2+§m3+--~) . (4.5)
= n=0

r=0

4.1.1.3 Caso de raizes indiciais que diferem por um inteiro positivo: ry — r, € N*

Nesse caso, a série em (4.3),
1. Com 71 (a maior raiz indicial), sempre fornece uma tnica solugao.

2. Com r = ry (a menor raiz indicial), leva a uma das seguintes ocorréncias:

(a) Ela nao fornece nenhuma solugao.

(b) Ela fornece a solu¢ao geral (permanecendo arbitrarios dois coeficientes), que inclui, portanto, a
solugao correspondente & maior raiz (r1).

(c¢) Ela fornece uma tnica solugado linearmente independente.
Disso concluimos que convém tentar obter primeiramente a solugao correspondente a menor raiz indicial, pois,

ocorrendo 2(b), a resolugdo estara concluida.
Vejamos exemplos das ocorréncias de 2(a) e 2(b) [ndo exemplificaremos a ocorréncia de 2(c)]:

Exemplo 4.1.3. Ocorréncia de 2(a): zy”’ +3y —y=0

Z(n +r—1)(n+r)az™t 4 Z 3(n +r)anz™ T — Z anz™t" =0
n=0 n=0 n=0
o0 oo 0o
Z n+r—1)(n+r)az"" 7 + Z 3(n +r)anpa™ T - Z An_1z"tTT =0
n=0 n=0
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r—1)r + 3r] apz” ! 3 n+r—Dn+r n+r)]an — an_y bzt =
[(r = 1)r + 3r] +3 { [ +r =D +7) + 30+ 7)] } 0

r(r+2) n=1 (n+r+2)(n+r)
[e o]
r(r+2)aoz’” Z [(n+7r+2)(n+7)an —an1]z"" "1 =0
H,—/ —
0 0
Vemos que r = —2 e r = 0 sao as raizes indiciais; além disso, a relagado de recorréncia dependente de r é
dada por
(n+r+2)(n+r)an —an-1=0 (n>1) . (4.6)
Ser=—2:
A relagado de recorréncia especifica para r = —2,
n(n - 2)an = 0n-1 (n 2 1) )
fornece
e comn=1: 1(-1l)ai=a0 = a1 =—ao
e comn=2: 20az=a1 = 0=a=-ao

Mas ap = 0 é contrario a nossa hipétese estipulada em (4.3). Logo, nao existe série associada a raiz indi-
cial r = —2. Passemos, ent@o, ao calculo da tunica solugdo linearmente independente associada & maior raiz
indicial, que, conforme o item 1 acima, sempre existe:

Ser=0:

A relagao de recorréncia especifica para r = 0,

Qan—1
n — Un-—-1 = m = —, ay > )
(n+2)nan —an-1=0 = a n(n+2) (n>1)
fornece

a aop aop

1=

@ 3

w1 ao/3 _ ao

T @R 8

as ao/24 ao
as = = =

(5)(3) ~— 15 360
as _ a0/360 _ ao
(6)(4) 24 8640

2 3 4

0 2 3 4 z z
= 1 Loyt ) 4.
y(z) Ll?(CLO"'ljl T+ Zz$+lj3ﬂc+(34$+ ) = (+3+ +360+8640+ (4.7)
5 39 360 5640

Exemplo 4.1.4. Ocorréncia de 2(b): z%y" + (2> +z)y’ —y =0

Z(n +r—1)(n+r)ax"t" + Z(n + a4 Z(n + Manz™" — Z anz™ T =0

n=0 n=0 n=0 n=0
Z(n—l—r—1)(n+r)anm"+r+2(n+r— l)an71wn+r+2(n+7“ Janz"” Zan =
n=0 n=1 n=0

[(r=Dr+r—1] aoxr-i-i{[(n+r—1)(n+r)+n—|—r—1} an+(n+r—1)an—1}x"+r20
| —

(r=1)(r+1) = r2-1 n=t (n+r—1)(n+r+1)

(* ~Vaoa” + 3" {(ntr—D(ntr+ Day+(ntr—Dan s )™ =0
——

n=1

0 0
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donde obtemos as raizes indiciais 7 = £+1 e também a seguinte relagdo de recorréncia dep. de r:
(n+r—1D[n+r+1)an+an1] =0, paran>1.
Ser=—1:
A relacao de recorréncia é (n — 2)[nan + an—1] =0 (n > 1), donde:
e Com n =1, obtemos —[a1 +ag] =0 = a1 =—ao.

e Com n = 2, obtemos 0=0, significando que a2 permanece arbitrario.

e Para n > 3, temos que an:—an,1/n,0u seja:
g 02 e —a/3 a g = G _ _@/12 a2
2T T T T T 1 °T s 5 60 ’
Logo,
(oo}
y(@) = > anz™" :m_l[ao+ a1 z+ax’ + az 2® + as 2+ az 24 ]
— ~~ ~~ ~~ ~~
n=0 r=—1 —ag _az az _az
3 12 60
3 4 5
—1 —1 2 x x xT
_ - (-t Ty
aozx ( z) + azx T 3 + 3 60+
u1 ()

uz(z)

que ¢é a solugao geral da EDO, pois é a combinagao linear das duas fungoes linearmente independentes u1(z) e

uz(z) formada com as constantes arbitrarias ag e as.
Fica como exercicio mostrar que, se fizéssemos os calculos com a maior raiz indicial, r = 1, obteriamos

apenas a solugao uz(x).

4.1.2 Parte 2 (Frobenius II)

Descrevemos aqui alguns procedimentos para o célculo de uma segunda solugao linearmente independente
y2(z) quando apenas uma solucao y1(z) = aoui(z) de (4.1) na forma da série em (4.3) é obtida; a saber, quando
as raizes indiciais r1 e 72 se enquadram numa das circunstancias:

e 12 circunstancia: r; = ro
e 2% circunstancia: r1 —rp = K € N e ndo existe solugdo na forma de (4.3) com r = r2 (a menor raiz)

Procedimento 1: Fazemos uso da férmula

ya(z) = Cul(x)/[e_fp(w)dx] [L] da (4.8)

uf(x)

obtida pela técnica da redugao de ordem™. Acima, p(z) é o coeficiente de 3’ na EDO escrita na forma dada
por (4.2), e C' é uma constante arbitraria.

Procedimento 2: Substituimos(
(oo}
y2(z) = ap u1(z) Inz + Z bpaz" T2 (4.9)
n=0
na EDO para determinar os coeficientes b,,. Acima, r2 é o inico ou o menor valor da raiz indicial, conforme a

circunstancia.

Para exemplificar esses procedimentos, usemo-los para completar a resolucao das EDOs dos Exemplos 4.1.2
e 4.1.3, obtendo uma segunda solugdo linearmente independente.

(*) Essa férmula é deduzida e apresentada como a equacao (4) da sec@o 4.2 na referéncia: Zill, Dennis G. e Cullen,
Michael R. Equagoes Diferenciais, Terceira Edigao, volume 1, Pearson Makron Books, Sdo Paulo, 2001.

(1) V. segéo 4.5 da referéncia: Hildebrand, F. B. Advanced Calculus for Applications, Prentice-Hall, Englewood Gliffs,
New Jersey, 1976.
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Uma segunda solucdo no Exemplo 4.1.2: xy” +4y —4y =0

Célculo com o procedimento 1

Tendo em vista o uso de (4.8), expliquemos os passos necessarios:

Passo 1 - Para calcular u?(z), usamos a formula (a+b+c+---)? = a®> +b*>+c* +-- -+ 2ab+ 2ac+ 2bc+ - - -
(que é a soma de dois somatoérios: dos quadrados de cada termo e dos dobros de cada produto de dois termos
distintos). Assim, usando (4.5), que é a expressdo de ui(x) obtida no exemplo 2, e considerando apenas as
poténcias de até o 32 grau, temos que

Wi (z) = (1+4x—|—4x + 96 +- ) = 1+162° +8z+8z +39a: +320% 4+ = 1+8x+ 24z +390 B

Passo 2 - Agora devemos calcular 1/u3(x), isto é, obter a série infinita que resulta da divisdo de 1 pela série

=ad #0, poisr1 =0eap #0,

w:O

o) 2
ui(x) computada acima. Como neste problema ui(0) = (m” Z anx”)

podemos admitir que 1/u?(z) = Z enz™™), ou equivalentemente ui(x) Z cnz™ = 1, que é uma equagio com

a forma apropriada para determlnar os desejados coeficientes c,; substltulndo nessa equagao a expressao de
u?(z) deduzida acima, obtemos

= 2
x)chm (1+8:r+24:c —&—% 34 ~~>(co+clm+02:c2+03ac3+---):1 ,

donde, mantendo explicitas apenas as poténcias com grau até 3, obtemos

320
co +(cl+800)x+(02+801+24co)x2+(C3+8cz+2401+—co)x3+«~:1 .
N N—— —_——— 9

1 0 0 p

Logo, calculando iteradamente os valores de ¢, a partir das equacGes indicadas pelas chaves acima, obtemos:

2 1472
60:1 — C1:—8 — 62:—861—2460:40 — C3 = —862—2461—%607—T7 .
Assim,
1 1472
27:co+clx+02x2+03x3+---=1—8x+40x2——7x3+---
us(z) 9

Passo 3 - A EDO na forma apresentada em (4.2), isto é, ¥’ + (1/z)y’ — (4/x)y = 0, mostra que p(z) = 1/x

e, portanto, que

effp(z)dz — eff(l/z)dz _ eflnz _ 1/m )

Passo 4 - Logo, usando (4.8), obtemos, finalmente.

ya(z) = Cul(m)/[eff”md””] [uftx)] dx = Cm(a?)/i(l — 8z + 402° — #x?’ +- ) dx
:Cul(x)/ (% — 8+ 40z — &f—{—---)d‘r
= Cui (o) (Inz — 82 +200% - % *4) () dado por (4.5)] m (4.10)

o0
) Quando u1(z) = 2" Y. anz™ com 1 # 0, calculamos 1/u?(z) como segue:
n=0

1 1 1 & n
@ @ o P = e

Uma vez que PQ(O) = a% # 0, o inverso da série P2 (z) pode ser calculado pelo modo ja apresentando: admitimos que
o0
1/P2%(z) = . cpax™ e determinamos ¢, conforme explicado no Passo 2. Veja um célculo desse tipo no problema 5(d)

n=0
resolvido na segao 4.1.3.
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Calculo com o procedimento 2

Impondo uma segunda solucdo para a EDO Ly = zy”’ + vy’ — 4y = 0 com a forma

oo}
y2(z) = apui(z) Inz + Z bpz" T2 [y =0]
" .0
= f(=) —_—
= g(x)

sendo ui(z) dado por (4.5), isto &,

1
Ul(l’):1+4$+41‘2—|—66;1;3+... 7

obtemos
Lys = L(aof +g) =aolf + Lg=0 = Lg=—aolf . Q)
Mas
Lg:xg”—l—g—élg—:cz (n—1)byz™ anm —4ana5"
n=2 n=0
= Zn(n — Dbpz™™ Ty annx e Z4bn_1:r"_l = by — 4bo + Z[nzbn — 4bn_1}:cn_1
n=2 n=1 n=2
= (by — 4bo) + (4ba — 4b1)x + (9b3 — 4bo)x” + --- (1)
e
7 / 7" ;1 -1 ’ 1
—aoLf = —aolaf" +f —4f| = —ao x(ul Inz + 2u; — —l—ul—Q) + (ul lna:—l—ulf) —4uiInz
T T T

= —ao [(ln x) (zuy 4+ uf — du) +2u'1] = —2ao (4 + 8z + ?ﬂcQ + - )
~—_——
0

= —8ap — 16apz — 323ﬂx2 4o (111)

Logo, em vista dos resultados em (II) e (III), a equagao (I) fornece

b1 — 4bp = —8ap = by = 4bp — 8ao
4by — 4by = —16ag = bo =b1 —4ag = 4bo — 12a9

32a0 4 32 4 32 16 176
9b3 bo 3 = bs 9b2 27&0 9 bo ao) o7 ao 9 bo o7 ao

Finalmente,

y2(z)= ao ur(x) Inx + bo + biz + box? + bya® + - -

=aoui(z)Inz

16 176
+ bo + (4bo — 8ao)z + (4by — 12a0)a> + (—bo - —ao)x?’ T A%
9 27
_ 2, 16 3 81242 Y76,3
7b0(1—|—4x—|—4x + 913 + )—l—ao(ul(az)lnx 8x — 12z o + - )
uy ()
:boul(m)Jrao(m(x)lnfo:vf12x2f@xSJr---) ] (4.11)
27
= uz ()

que é, na verdade, a solucdo geral, haja vista as duas constantes arbitrarias ap e bp, bem com as duas solugdes
linearmente independentes u1(z), ja deduzida, e uz(x), aqui obtida.
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Uma segunda solucdo no Exemplo 4.1.3: xy” +3y —y =0

Calculo com o procedimento 1

3 1 _ - -
vy +3y —y=0 = o'+ - y,_;yzo 5 @ e J@rede RS Ve
<~

p(z)
Usando (4.7), que é a expressao de u1(z) obtida no exemplo 3, temos que

2 3

2 T T 2
g’ 1 4
ui(z) = (+3+ 1t3e0 T )
3 2
2 (5Y b o 421 o E)(E) -
+(3) 2005+ 2055 + 200555 +2(5) (57) +
3
1+2x+lx +7+
N 37 36 30
-\ 2 3 2 7 x®
uf :2; = (co+clx+62x + c3x +~~)(1+3x+%x +%+---):1
= \CO/+(C1+3) (2+ + )1’—|—(c—|—3+36—|—30) +o=1
! 0 0 0
261 760 1 262 761 Co 19
-1 —_=z .z o2 —__a_ %7
- = 7 oa 72T T3 4 0 ®T 73 T3 30 210
= ! —1—gx+x—2—£3+
ui(z) 3 4 270
2
o — |p(z)dx 1 1 2 T 19 3
y2(z) Cul(x)/[@ Jr ][%(x)}dm—Cul(:r)/m:a(l—gx—&—z 570 + )dm
_ a2 et 1%
me(:v)/(:v 3 ) 270+ )d
™2 227t 1 19z
:Cul(:c)(iln:rféJr%f;g%Jr ) [ui(x) dado por (4.7)] m (4.12)

Calculo com o procedimento 2

Impondo uma segunda solugao para a EDO Ly = xy” + 3y’ —y = 0 com a forma

y2(z) = apui(z) Inz + Z bux" 2 [ro = 2] ,
——

=f@ 2
=g(=)
com u1 (z) dado por (4.7), isto &,
z? 2P
w(@) =145+ g5+,
obtemos
Lys = L(aof +g) =aolf+Lg=0 = Lg=—aolf . Q)
Mas
Lg = z¢"+3¢ —g==x Z n—2)(n—3)b,z" * +3 Z(n — Dbz — Z bpz™ 2
n=0 n=0 n=0
= Z(n—?)(n—S)bnxnfz—l—ZS(n—Z an 12" 3 = Bbgr " — Bbgr
n=0 n=0
+3 { [(n—2)(n—3) +3(n—2)] by — bn_l}x"_3 = Z {n(n — )by — bn_l}azn_3
n=1 n(ne2) n=1
b1 + b b
- - 1:2 22 By —ba) + (Sba—ba)a+ - (ID)
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—aoLf

—a

o

[ 1 -1 1
acf”—i—?)f' —f} = —ap {x(u'{lnm—i—?u'l; +u1§) +3(u'11n:c+u1;) — U lnm}
[ " ’ ’ (251 3uy ’ 2
= —ao|(Inz) (zuy +3u; —u1) +2u; — — + — = 2u; + —uy
L N T T T
0

. '2(1+£+£+...)+2(1+£+ﬁ+£+...)
O3 12 T 120 x 3724 360
:,@,@,@,aoszr... (I11)

Logo, em vista dos resultados em (II) e (III), a equagao (I) fornece

b1+bo=0} bo = —2a0
*bl = 720,0 bl _ 2(10
bs :  permanece arbitrario
4ag 4ao bo
3bs3 — by = ——— b3 = —— + —
3 2 3 = b3 9 + 3
_ aop _ ao b3 _ ao ao bz _ 25&0 b2
ba—bs=—7 = =t ST T T s
Finalmente,
_ bo | b1 2
ye(x) —aoul(x)lner?+;+b2+b3az+b4x +---
=aoui(z)Inz
2&0 2a0 4&0 bz 25&0 b2 2
2 + T +62+( 9 +3)JU+( 288+24)x + (4.13)
2 3
176
:b2(1+ % +;—4+?i%0+-~) —|—a0(u1(x)lna:—8:r— 12z% — ?x3—|—~-~)
uy (z)

=byui(z) + ao (u1 (z)Inz — xg (4.14)

que é a solugdo geral, com as duas constantes arbitrarias ag e bo.

4.1.3 Exercicios Resolvidos

oo
Seguem exercicios de resolugdo de EDOs de 22 ordem por meio da substituicio y = 5 a,z™"" (método
n=0
de Frobenius), em que r1 e r2 denotam as raizes indiciais, sendo r2 a menor das duas.

1] Caso em que 1 =72 : Calcule uma solugao das EDOs:
a) 2%y’ 4+ 3zy + (1+22)y =0
b) 4zy” + (1 +42)y =0

2] Caso em que r1 — 12 € Z : Calcule a solugao geral das EDOs:
a) 2xy" +y —6y=0
b) 22%y" —zy' + (1 +2)y =0

3] Caso em que r1 — 13 € Z, e 72 ndo leva a uma solugdo : Calcule uma solugdo das EDOs:
a) zy" +xy' +3y=0
b) 16x%y” — 40y’ + (322 + 13)y =0
c) oy’ —y=0
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4] Caso em que 11 — 12 € Z, e 12 leva & solugdo geral : Calcule uma solugao geral das EDOs:

a) zy" +2y —xy =10
b) zy” +5zy’ — 5y =0
c) z(z—1)y" +3y —2y=0

5] Usando o método Frobenius II, calcule uma segunda solugao linearmente independente:
a) da EDO em 1(a)
b) da EDO em 1(b)
¢) da EDO em 3(b)
d) da EDO em 3(c)

6] Calcule a solugao geral da EDO zy”’ + 3" — 2y = 0.

RESPOSTAS COM ALGUMAS SOLUCOES:

(1]
a) Solugio de z*y” + 3zy’ + (1+22)y =0:

oo oo oo [e o]
S n+r =1+ + > 3(n+r)ana™ + Y ana™ + ) 202" =0
n=0 n=0 n=0 n=0

oo
Z 2"4n—lzn+r
1

n=

r(r — r aoz” ! 3 n+r—Dn+r n+r an n_1 2" " =0.
[r(r—1)+3r+1] + > { [+ =D +r) +30+1)+1]an+ 2001} 0

n=1

r2 42041 = (r+1)2 (n+r)(n+r+2)+1

r+1)2=0 r = —1 (raiz dupla
{< HI=0 = vl {rain dupla) > = [ = DD+ 1an + 2000 =0,

[(n+r)(n+7r+2)+1]an+2an-1=0 (n>1) —
w| =-2a
">t nz Tl
alzf%%:*QaO’ GQZ*E‘“:*%(*ZGO):%, a3:*§a2:f§ao,
Z/(fﬂ):ao$71(1*2x+x273m3+---) ]
b) 7'1:7‘2:1/2 a :70”"‘71 y=a .1'1/2(1 $+*$27ix3+ )
) nn>1 n2 0 4 36

a) Solugdo de 2xy”’ +vy' — 6y =0:

') oo

S 2n4r =D +r)anz" T 4D (ntr)ana™ T = Y 6ana™T =0,
n=0 n=0 n=0

————

)
> 6a, _jazntr—1
n=1

r(r — r laoz" ! 3 n+r)n+r— n4+7r)]an — 6an_1 """ =0.
[20(r = 1) Jaoa"™ 30 { [2n 4 )t 7 1)+ (04 1) Jan — 60 } 0

n=1

r(2r—1)

{ r(2r—1)=0 = r=0 ou r=1/2 raizes indiciais

(n+7)(2n+2r—2+1)

[(n+7r)@2n+2r —1)]an =6a,-1, com n>1 (relagdo de recorréncia dependente de r) .

e Para r =0 a relagao de recorréncia é an, = L an—1, € obtemos:
n>1  n(2n—1)
6 6 2 12a9
ax 1(1)“0 ao , as 2(3)611 ao , as 3(5)a2 5( ao) 5

1223
yl(m):mo(a()+a1x+a2x2+a4x4+~~~):a0(1+6x+6x2+%+-~) ]

ui (x)
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6
nx1 n(2n+1)
6 3 6ao 6 2 /6a0y  12a0
= 2 = —< = = 2 = — = — = — =

@,  az=grver=g(200) =7, a3 =grma 7( ) 35

6x 12:1’ ) .

e Para r =1/2 a relagdo de recorréncia é a, Gn-1, € obtemos:

5

@=-2q
1—1(3) 0

(@) = aoa /3 (

uz ()
Obtivemos duas solugoes linearmente independentes, nas quais o coeficiente ap em cada uma delas deve ser
considerado como duas constantes arbitrarias independente, digamos c; e c2. Logo, a solucao geral é dada por
y = ciui(z) + couz(z) W

2 3 2 3

x oz x 1/2 T x
by ymem(1-E4 L) (et @)
Jy=as(l-g+55 -Gt ) Fer Tt T )"

[3]

a) Solugdo de zy" +zy +3y=0:
Z(n+r—1)(n+r)anxn+r by Zn—i—r anz™ T+ ZSanx”*"’ -0.
n=0 n=0 n=0

oo oo
S (ntr—Dan_1an+r=1 5 34, qentrl

n=1 n=1

(r — Draoz" ' + Z {(n+r—Dn+r)an+n+r—1+3)an1}z"" "1 =0.

n=1

(r=1)r=0 = r=0oul
{(n+r—1)(n+r)an+(n+r+2)an1—0 (n>1).

e Verifiquemos primeiramente a menor raiz r =0 :
A relagao de recorréncia é n(n — 1)an, + (n +2)an—1 =0 (n>1) .

Essa relagdo com n = 1 toma a forma 3ao = 0, o que contradiz a hipotese ag # 0 . Logo, ndo obtemos solugao
com a menor raiz indicial.

e Vamos calcular a solugao associada a maior raiz r =1 :

A relacdo de recorréncia é (n + )nan + (n+3)an—1=0 = an ot = —%an,l .

G = gy = —%a, a3 = —ay = —2(~2a0) = a af;ﬁaf;l(ﬁa)f—f’ao

R 10 ) T R TR BEyw™m T 237 T e
5 5

y(a:):aox(l—Q —1—%—%-% )l

b) Solugio de 16z%y” — 402y’ + (322 4+ 13)y =0:

Z (n+7r—1(n+raz"” 240 n+r)anx "+T+Z32a x"+r+1+213an "=0.

n=0 n=0 n=0 n=0

=
3 82a,_antr
1

167(r — 1) — 40r + 13 |aox” + 16(n+7r—1Dn+7)—40n+7) + 13]an + 32an_1 2" =0.
[ 16r(r = 1) Jaoa" + = { [16( J(n+7) = 40(n + 1) +13] }

n=1

1612 —567+13

16r2 —56r +13=0 = r=1/4 ou 13/4
16(n+r—1)(n+r) —40(n+r) + 13]an +32an-1 =0 (n>1).

o Verifiquemos primeiramente a menor raiz 7 = 1/4. A relagao de recorréncia é

[16(11 - §) (n—|— i) - 40(n + %) + 13} an+32an-1=0 = 16n(n—3)an = —32an_1 (n>1).

4
Substituindo n = 1,2,--- | obtemos
n=1: —32a1 =—-32a0 = a1 =ao;
n=2: —32a2 = —32a1 = —32a0 = a2 =ap;
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n=3: 0-as3 = —32a2 = —32a0 = ao =0: contradicdo com a hipétese ag # 0 .

Vemos assim que nao existe solugdo correspondente & menor raiz indicial.

o Calculemos a solucao associada & maior raiz r = 13/4. A relagdo de recorréncia é

9 13 13 2an-1
16( 7)( 7)_40( 7) 13|an +32an-1 =0 n = T o
[ n+4 n+ 1 n+ 1 + an + 32an-1 = a o1 n+3)m
a =20 4y = 21 _ %0 s = 22 _ %
T T 75 100 T 79 T 90
2 3

_ 13/4( r, r T

y(z) = aox +10 90+ )
2?28

c) r=0ou 1. Com r =1 obtém-se y—aox(1+ +*+m+ )

[4]
a) Solugdo de zy"' +2y —zy=0:

oo oo [eo]
Z(n+rfl)(n+r "t Z (n+r)az™t Tt — Zaan'H'l =0.
n=0 n=0 n=0

§ ,2z7l+7 1

[ (r=1r+2r ]amﬁril +[r(r+1)+2(r+1) Jara"

—_—

r(r+1) (r+1)(r+2)
+ Z { [(n+r—=1)(n+7)+2(n+7) |an 7an72}.’1]n+7‘ =0.
n=2 (n+4r)(n+r+1)

rr+1)=0 = r=0 ou —1

(n+r)n+r+1an =an—2 (n>2).
e Verifiquemos primeiramente a menor raiz r = —1:

O 2° termo da série: (r + 1)(r +2)a1 =0 =21, 0=0 = a1 permanece arbitrario.

(n+r)n+r+1an =an—2 (n>2) =, annzzzﬁ.

Assim,

aop as ao al as ail
as = — s = — = — a3 = — s = — = ——
T MT 12T g 7% T 20 120°
Finalmente,

z! (1—|—1z + 1x +- )+a (z—l—lm —|——1 x° + - ) (ao e a1 arbitrarios) m
— il itrari
Y 2" T2 T T 120 0¢m

Uma vez que duas constantes (ao e a1) permanecem arbitrarias, a solugdo que se obtém é a geral.

b) Solug¢io de z*y" + 5xy’ — 5y = 0:

i(n+r—1)(n+r)anxn+r+25 (n+mr)a,z™ ZSanx T =0
n=0 n=0

[(r—l)r+5r—5]aoxr+z [(n—l—r—1)(n+r)+5(n+7")—5}anm"+r:O.
—/_/ n=1
r244r—5

r’4+4r—-5=0 = r=1ou -5
{[(n+r—1)(n+r)+5(n+r)—5}an—0 (n>1).

e Verifiquemos primeiramente a menor raiz r = —5. Obtemos

[(n+r—1)(n+r)+5(n+r)—5]an

=[(n—6)(n—5)+5(n—5)—5]an=0

r=—>5

= n(n——6)ay

=0 = an

n>1

=0 e ag permanece arbitrario (tal qual ) ag
n#6
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Uma vez que duas constantes (ao e ag) permanecem arbitrarias, a solugdo que se obtém é a geral.
o .5 6y _ -5
Resposta: y = 27 °(ao + agz’) = aox™> + asz ®

Acabamos de resolver uma EDO de Euler-Cauchy; obviamente ela também pode ser resolvida de modo mais
simples pelos métodos analiticos que o aluno ja aprendeu.

c) y=2a" {ao (1 + %:r + %xQ) + as (:c4 +22° +32% + 42" + - - )} (a0 e a4 arbitrarios) m

[5]
a) Cadlculo de uma segunda solucio de z?y” + 3zy’ 4+ (1 + 2z)y =0 :
[Convém reler o procedimento descrito no rodapé (+) da pag. 65.]
3

u1(:r):%(1—2x+12—2%+~-).

= P(x)

3 3
uf(:v):%(1+4x274x+2x27%74x3+---) :$(17413v4r631327409m +)

P2(x)

1 = = 402°
E cpx”t = PQ(J:)E cnx”:(1—4x+6x2— +~~~)(co+clx—|—02x2—|—63z3—|—~~~):1.
n=0 n=0

P2(z) - 9
2 40co \ 3
co +(c1 —4co)x + (c2 — 4er + 6¢o)x +(C3*402+601* )x +...=1.
— e—— ~_— 9
1 0 0
0
Co — 1,
c1 = 4Co = 47
Co = 401—600 = 16—-6 = —10,
40co 40 536
s = 4dcz—6 = 40-24+— = 22
c3 C2 c1 + 9 + 9 9
1 1 2 2 3 2( 2 5361‘3
= = ) = 144 — 1022 — 2222 )
2@ (/2% PI() z7(co + c1x + cox” + c3x” + -+ +) T + 4z O0x 9 +
1 2 — x)dx — | (3/x)dx —3lnz 1
22y 432y +(1+422)y =0 = ' +3/x)y + +2“’y:0 O OD L =—.
N/ z x
p(z)
- 1 1 5362°
_ (z)dx _ 2 2
y2(z) = yl(x)/[e fjg ]mdx = y1(1:)/x—3a: (1+4w—10x —T+-~~)daz
1/x
2
= yl(x)/(l+4710x7536$ +---)d:r
T 9
3
= yl(x)(1n$+4x75x2f 5326; +) ~ segunda solugdo m
5, 23 4 3
b) yg(x):yl(:r)(lnx+2x+zw +ﬁx +) ~~ segunda solu¢do m
1 1 11 2
c) y2(x) :y1(:c)(—§:1c73—§x72—2—0m71+§lnx+~--) ~~ segunda solucao m

d) Cadlculo de uma sequnda solugdo de zy"’ —y =0
[Convém reler o procedimento descrito no rodapé (x) da pag. 65.]

2 3

u(m)*x(1+£+£+i+“')
= 2 " 12 " 144 ‘
= P(x)
2 2 3 3 2 3
2 2 x T 2 5z Tz
214+ zZ T ): (1 ot | (z7 )
w3(z) x(+4+x+6+72+12+ (1ot 20+ 5+
P2()

1 = > 502 7a?
- n P2 ":(1 o T ) 2 3. y=1.
P2 n§=0cnaz = () n§=0 Cn tot o+ o+ (co+c1z+coz” +caz” 4 --+)
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5co 5 7
co +(C1+00)x+(62-&—014-—)362—1-(63+62+£+ﬂ)x3+~-:1
N

12
1 0
0 0
Co = 1,
ci = —Cy = —1,
e = g0 _ 5 _ T
’ T 12 12
e = g, 001 _Tc0 _rT.5_7 _ _9
? T2 12 12 12 12 12
o _ 1 1 —i(c + 1z + ez’ + ezx® + )—i(l +7ifgi+ )
ui(z)  z2 P2(x) 2 o 2 ’ o z2 12 12
' —y=0 = o'+ Oy'—g:O pw=0, eifp(m)dz:const.zl(sem perda de generalidade) .
z

1 722 928
el v A TR

N
no
—~
8
N>
Il
<
[
—
8
N
—
ml
<
&
U
8
[
<
=
—~| =
8
=¥
8
|
<
=
—
8
N
—_
bl

1 1 7 9x
= y1(x)/(ﬁ—5+ﬁ—§+~-->dx

- —lnx—|—f———|—---) ~~ segunda solugdo m

I
NS
=
—
8
N
~~
|
—
[\]
[\
=

[6]
Solugdo de xy” +y' —2y=0:

oo oo o0
E n+r—1)(n+r) anxn'H by E n+r) anx"'”_l — E 2a,2" " =0.
n=0 n=0 n=0

—_———

oo
Z 2a, 1 gntr—1

n=1

[ (r=1)r+raoz"™ +Z{ [(n+7—1)( n+r)—&—(n—&—r)]an—Qan,l}x”*’“l:0_
~———

r2 n=1 (n+r)2
r?=0 = r =0 (raiz dupla)
= an =—an-1 = a1=2a0, a2z = -a1 =dao,
[ 2]an—2an_1 =0 (n>1) n>1 N 4
y=u(z) = aoxz’ ( 1+2z+2°+-- ) ~~ primeira solugdo m
—_—— — — - =
u1(z)
Calculo de uma segunda solugao linearmente independente usando a férmula
1
_ — x)dx .
y2(x) = Cu1($)/ [e I }[7} dz :
ui(x)
ay’ +y —29=0 = y'+(1/2)y - (2/2)y=0.
~~
P(=)
e—fP(z)da: :e—fdz/z _ ,—lnz _ l
x
ui(e) = (1+2c+2°+ ) =1+42” +40+22° + - =1+ 42+ 627 + - -
1 __ co+ a1z + cax® +
=co+ta 2
u(x)
(co+caxtea’+ - Hui(x)=1 = (cot+caztea’+ - )(1+4zx+62°+---)=1.
co + z(cr +4eg) + .TQ(C2+4C1 +6c0) +--=1 = cw=1, c1=—-4co=—-4, cg = —4c1 —6co =10 .
~— ———— ——— ——
1 0 0
Lo dey10e 4
u(x) ‘
1 1
y2(z) = Cus(z) / —(1 -4z + 102> + - )dz = Cul(x)/ (f -4+ 10z +---)dx
T NI x

y1(x)

ya(x) = y1(z)(Inx — 4z + 52° 4+ ---) ~> segunda solucio m
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4.2 Funcgoes de Legendre
4.2.1 Solugoes da Equagao de Legendre

Na se¢ao 2.4 falamos sobre o problema de autovalor formado com a equag@o (2.37) (sobre o qual convém
se releia a pequena discussdo que se encontra apos essa equagao), isto é,

(1 —2*)" =2z + Mp(z) =0, =€ (-1,1) , (4.15)

que agora passamos a resolver. Como x = 0 é um ponto ordinério dessa equagao, podemos obter a solugao na
forma da série de MacLaurin ¢ (z) = Y72 a;jz’, cuja substituigdo nela fornece

j=0
l—x Z]j—laJ —Qijajxj71+>\Zajxj:0,
j=2 j=1 =0
ou
Z (.7*1% ZJ]fl%x 722]%1' +/\Za3 )
Jj=2 j=2
—_————
2720 +2)(G+1)aj 22
ou ainda

= Aj

Z[]+2 G+ Dajt2 — [‘(j—1)—|—2j—)\]a]-]sz+2a2+6a3x—2a1x+>\ao+>\a1x:()

FGHD =X [6a3—(2=N)a1 | e+(2a242)=A1 0+ 40

onde indicamos que, usando A; para denotar o coeficiente genérico de qualquer poténcia, todos os termos da
série podem ser incluidos num tnico somatério que comeca com j = 0, isto &,

Z[J+2 ]+1)a1+2*[j(j+1)f)\]aj]xj:0.

Logo, igualando a zero o termo entre colchetes, obtemos a equagao

aﬁgz%am (G=0,1,2---). (4.16)
Esta é uma relacao de recorréncia, que permite calcular as, a4, ag, - - - em termos de ag, bem como as, as,
ar, --- em termos de a1, permanecendo arbitrarios os valores de ag e a1. E evidente que a solugao geral é dada
por
Y(x) = pp(z) +r(z), (4.17)
onde

Yp(x) = Z ajx’ e Pr(z) = Z ajz’ | (4.18)
§=0,2,4--- §=1,3,5---
ou seja, ¥p é uma série de poténcias pares apresentando a constante arbitraria ao, e ¥;r é uma série de poténcias
impares apresentando a constante arbitraria a;. As paridades distintas dessas duas séries garantem que sejam
linearmente independentes. Além disso, é facil verificar que as duas séries convergem em (—1,1) — isto &, nos
pontos interiores do intervalo do problema — por meio do critério da razao:

Je+1 -
(G+2)G+1)

+
. a Qx
lim |22

Hm = |<1:>|a:|<1.

\—|J:|hrn\

Fagamos uma anélise da convergéncia nos pontos extremos do intervalo (nos pontos x = +1). Primeira-
mente, notamos que a relacado de recorréncia (4.16) tem um consequéncia importante: Na série par, se um
coeficiente se anular, digamos ag = 0, entao todos os posteriores também se anulam (ag = a19 = --- = 0), ou
seja, a série Y¥p termina, tornando-se um polindémio par, mas — demonstra-se! — a outra série, a impar, nao
terminando, diverge. Analogamente, na série impar, se um coeficiente se anular, digamos as = 0, entdo todos
os posteriores também se anulam (a7 = ag = --- = 0), ou seja, a série 1 termina, tornando-se um polindmio
impar, mas — demonstra-se! — a outra série, a par, ndo terminando, diverge. Portanto, ao verificar se a condigao
em (2.26) é satisfeita, constatamos que s6 existem solugdes com limites finitos quando z — —17 e z — 17 se
uma das duas séries terminar.

E quais sdo os valores (ou, melhor, autovalores) de A que levam a essas solugoes polinomiais? Olhando a
relagdo de recorréncia (4.16), notamos polindmios sdo obtidos quando A tiver um dos valores dados por A; =
I(l+1)coml=0,1,2,3,---. De fato, nesse caso, passando a rela¢do de recorréncia a ser

_jE+1)-l1+1)

Gragry “r UmenEe (419)
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concluimos, para j = I, que o coeficiente a;+2 e, por conseguinte, também os coeficientes a;t4, ait6, arts, * - -,
ou seja, uma das duas séries termina, tornando-se um polindémio de grau [ (pois a; # 0 apenas para j < [); esse
polinémio é denotado por P;(z). Conforme [ seja par ou fmpar, a série que termina é a »p = (apx polindmio
par) ou a ¥; = (a1 X polindmio impar).

Os polinémios P(z) (I = 0,1,2,3,---) assim gerados (correspondentes as series que terminam) sio
as autofungoes correspondentes aos autovalores A\; = I(I + 1) do problema de autovalor em (4.15). Esses
polinémios s6 recebem a denominagao de polindémios de Legendre quando os coeficientes ag e a1 (arbitrarios
até agora), sao escolhidos conforme a normalizagdo adotada, explicada adiante, na se¢ao 4.2.2.

Para a EDO em (4.15) com A = (Il + 1)(I € N), a outra solucgdo linearmente independente é a série
que nao termina, denotada por Q;(z), que ndo é autofuncao do problema, pois nao satisfaz a condigao de
finitude em todo o dominio (diverge quando z — —1" e  — 17), e a solugdo geral é, entdo,

() =P+ Qux) . (4.20)

4.2.2 Polindmios de Legendre (As Fungoes de Legendre de 12 Espécie)

Os coeficientes ag e a1 podem ser colocados em evidéncia nas expressoes das solugdes. Note que ao aparece
em P, com [ par e (Q; impar; ja a1 aparece em P, impar e em @Q; com [ par. Esses dois coeficiente, até agora
livres, tém seus valores fixados de modo a padronizar as expressées das solugdes polinomiais P, e das séries
infinitas Q.

A padronizagdo de P, é estabelecida pela condi¢do de normalizagao

que acarreta nas seguintes expressoes para aqueles dois coeficientes:

1/2 (1-1)/2

0o — (*1)l I _ (=D L (4.22)

e a) = ——————5 =7 5 .
9! (7!)2 20-1 (—l - 1!)2
2 ! par 2 ! impar

O polindémio P;(x) assim normalizado — i.e., satisfazendo (4.21) — é o [-ésimo polindmio de Legendre ou a [-ésima
funcao de Legendre de 12 espécie e — demonstra-se! — tem sua expressao fornecida pela conhecida férmula de
Rodrigues:

1 df
o gt

Pi(z) = 2ok, (4.23)

Py(z) =1

P(z) ==

Py(z) = (32 — 1)/ 2
Py(z) = (52® — 3z) / 2
():(53 — 307> +3)/8
P, (z) = (632" — 70z* + 15z) / 8

a) Propriedades usadas na defini¢ao:
e P(z) é um polindmio de grau [
e Pj(x) s6 apresenta poténcias pares ou impares, conforme [ seja par ou fmpar: Pj(—z) = (=1)'Py(x).

e Pi(1) = 1; logo, pela propriedade anterior, P,(—1) = (—1)".
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b) Fungao geradora dos polindmios de Legendre
A fungao
oo
Gz, t)=V1-2at+2=> P(x)t', com [t|<1. (4.24)
1=0

¢ denominada fungéo geradora (ou geratriz) dos polindmios de Legendre.

c) Relagao de ortonormalidade

Essa relagao é dada por

_11 Py(2) Py (z)dz = %&m , (4.25)
que tanto expressa a ortogonalidade dos polinémios de Legendre,
! 2
[1 Pi(z) P (z)de = Ul 0 se l#m, (4.26)

quanto fornece as normas deles, fazendo [ = m,

IIH(:c)||2:/_ [Pi(2)]*dz = 2

) ST TR norma quadratica (4.27)

Para deduzir essa norma quadratica, usamos a férmula de Rodrigues Py(z) = [(#2 — 1)!] (l)/ (1'2%), dada por (4.23);

observe: @ ®
1 1 2 l 2 l
2 _ 2 _ (@ —1)] (@ —1)]
@I = [ PR [ E o

Realizando [ integraces por partes, obtemos

(l' 21)2||PZ(I)H2 — [[(IQ _ 1)l} (1) [(IQ _ 1)l} (l*l)] ! ) _ /1 [(IQ _ 1)l} (1+1) [(1‘2 _ 1)l] (1-1)
- -1

0

- ... = (71)1 /_1 [(xQ _ 1)l] (21) [(xZ _ 1)l] (0) — (21)! (71)1 /_11(932 _ l)ldx . [I]
(20)! (12,1)1

Essa ultima integral pode ser calculada por meio de [ integragdes por partes por meio das quais o grau polindmio no
integrando seja sempre reduzido:

bog Lo 2 hE Yoo —1, o 2220 =1) s s
/71(x —1)da:7[x~(x —1)]71—2l/71:c(x — 1) dr = (-1) #le(x 1)~ “dzx

0
_ s2210-1(1=2) [* 6 o s, _ _ 20 -1 -2)-1 [y
= (-1) 3.5 /_196 (2 =1)""3%dr = - = (=1) T35 @1 /_1x dx
(=D)Lt z2 91 (=D)Lt 2
T 1-3-5---(20—-1) [2l+1]—1 1-3-5---(20—1) 20 +1

. . ln 1\ (192
1-2.3-4---(2)(21 + 1) (20 + 1) 20+ 1)!
Finalmente, substituindo esse resultado em [I], obtemos
2(=DHn2hH2  2(112hH? 2
12H2(|P(2)|? = (2! (-1) = = ||P@= "=V
P R@IP = () T = S IP@IP = 5

d) Relagoes de recorréncia

Seguem algumas equagdes envolvendo polindmios de Legendre diferentes, conhecidas por relagbes de recor-
réncia (note que uma tal equagao envolvendo o mesmo polindmio de Legendre é a propria equagao de Legendre).
Elas sao uteis para integrar esses polinémios, gerar os de graus mais elevados a partir dos de menor grau, etc.

(14 1)Py1(z) — (20 + DaPy(z) + IP_1(z) = 0 (4.28)
P/(z) — 2zP/_{(z) + P/_5(z) = P_1(x) (4.29)
Plii(x) —zP/(z) = (1 +1)Pi(z) (4.30)
Pl i(z) — P_i(2) = (21 + 1) P(x) (4.31)
P/ (z) — P|_i(z) = 1P/(z) (4.32)

Vamos deduzir as duas primeiras relagdes de recorréncia acima a partir de (4.24).
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e Deducao de (4.28):

Por um lado, temos que

%—f = —%(1 —2at +t2)73/2(—2z + 2t) =

Por outro, substituindo nesse resultado a expressao de G(z,t) em série dada por (4.24), obtemos

BG
ot

—t

T @ = (@ 0G@ ) = (-2t + ) T

oo
(z—1))_ Pa)tt = (1-23t+1t%) ZIP N

=1
= ia}Pz ()t — i Pzttt = > AC Z 221 P(z)t! + Zle it
=0 =0 =1
= > aP)t' =Y Py(@)tt = D> (I + 1)Pya(a)t - Z 221P(x)t! + Y (1 — 1) Py ()t
=0 =1 =0 =1 =2
= [P (z) — P_1(z) — (I + 1) Piya (2) + 221 P (2) — (1 = 1) P () ]¢

+ zPy(z) + zP1(z)t — Po(z)t — Pi(z) — 2P2(z)t + 2zPi(z)t = 0

= > [@+DaP(x) — 1Py (z) — (I + 1)Pyq(z) ]t
=2 0

+ zPy(z) — Pi(z) +[3zPi(z) — Po(z) — 2Pa(z) |t = O,
0 0

onde igualamos trés termos a zero, obtendo trés equagoes: a terceira é a primeira no caso particular em que [ = 1, a
segunda é obviamente verdadeira, e a primeira, valida para [ > 2 e também [ = 1, é a relagdo de recorréncia (4.28).

cQp.

e Deducao de (4.29):

t
1— 2zt + t2

oG

G(z,t) = (1—2at+ tQ)% =tG(z,t)
9 ox

1 ;
—50- 2wt + 12) 73/ (—2t) =

= 2mt+t2)§:Pl'(:v)tl = tiPl(ac)tl
=0

=0

ZPl(x 229013 tl+1+ZP 2 = ZP, Yttt

8
8

= ZPZ(:E ZZ:EPZ' 1 t+ZPZ S()t! ZPZ 1(

=1

g I
8

oo

= ZP{(x = 2zP ( t+ZPl o (@)t ZPl 1(
=2

+ Pl(z) -2 P( Yt + P{(x)t — Po(x)t = 0
—— —_—

0 t—t =0

O

[ P/(x) —2zP/_;(z)+ P_y(x) — P_1(x) ] = 0,
0

U
NE

Il
0

onde, ao se igualar a zero o termo geral do somatorio (para ! > 2), obtém a relagdo de recorréncia (4.29). CQD.

As demais relagoes de recorréncia sdo deduzidas a partir dessas duas.

4.2.3 As Funcgoes de Legendre de 22 Espécie

A padronizagao das fungdes Q;(z) é estabelecida de modo que elas satisfagam as mesmas relagoes de recorréncia dos
polindmios de Legendre. Isso elimina a arbitrariedade dos coeficientes ag e a; de suas séries infinitas, que entdo passam

a ser dados por

1/2 1\2 (1—-1)/2 I—112
(—1) "2 (5!) (—1) 2(t-1) (Ti)
ar= 2 e ap= - : (4.33)
| par ! impar
Como exemplo, vamos determinar a expressio expressao das duas primeiras fungoes de Legendre de 22 espécie, Qo ()
e Q1(z), desenvolvendo explicitamente as séries que as definem usando a1 = 1 e ap = —1 [deduzidos de (4.33)]. Nessa
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tarefa, é mais facil usar a relagdo de recorréncia (4.19) nesta outra forma deduzida a seguir:

R U S D o el et

@j+2

imonoe  G+2G+D YT GHG+n Y
G-DG+D+G -0 G-DG+I+1)

G+2G+0) 7T GGy 7

G-1=2)G+1-1)

=  aj

Pois bem, calculando Qo(z) = ajz’ com a;

N\

j=2,3,4--- Jj@G-1)

j=1,3,5---
1 3 1 5 1 1
a3 =—-a1, a5 = —a3=-a1, ay= —as = —aj, , a; = —ai;
3= g0 5% pas = pa 7 5= 0 =3 1
logo,
27 (D 1 142
)= a — = —In—— = arctanhz (jz|<1) ®
Qe =g, S 5= g (Jal < 1)
1 Jj=1,3,5-
onde, na passagem (f), usamos o seguinte resultado:
In(142) = =3 (-1) % o |
— 1 J J
Ul = In +m:1n(1+z)—ln(1—m):zxf‘:2 z
) 11—z - )
In(l—2z) = _Zf i=1 J=1,3,5---
j=1 7
< i Jj—3 .
Calculemos agora a funcgéo Q1(z) = Z ajz’ com aj = ——aj_1 [que é (4.34) com [ = 1]:
j=0,2,4---
1 1 3 1 1
a2 =—ap, @1 =—a2=—-ap, 4= —a4 = ——ag , , = — ao ;
2 0 1= 302 390 6= ga4 540 j —{%
logo,
zJ zJ i+l
Q1(z) = —ap Z - =-1+ Z - =-1+ — =—-14+z Z
~~ . j—1 . j—1 = J .
Y 7=0,2,4- j=2,4,6--- j=1,3,5--- j=1,3,5---
Qo(=z)
ou seja,

a;—2 .

Qi(z) =2zQo(z) —1 (Jz|<1) m

Um bom modo de se deduzirem Q1(z), Q1(x), ---
forma:

aj—2 [que é (4.34) com [ = 0], obtemos

(4.34)

(4.35)

(4.36)

¢ usando a relagdo de recorréncia em (4.28), escrevendo-a na

l l
Qiii(x) = %IQL(Q?) - m@zfl(f) .
Sel=1:
Py
3 1 3 1 1 1
Q2(z) = 5IQ1($) - 5Q0($) = 51(33@0 -1) - 5@0 = 5(312 —-1)Qo — 5@0
= B@QE -2 .
Sel=2:

Q@) = 0@a(o) - ZQi(@) = Jo

= gx{(?)xz_ 1)@0 - 35} _

E assim por diante.

4.3 Funcgoes de Bessel

4.3.1 Funcgao Gama

P2Qo — *} - %(on -1

(6Qo—1) = [(56°~30)/2]Qo— 2a*+ 2
~———

P3

Veremos que a fungao gama esta ligada ao estudo das fungoes de Bessel. Ela é assim definida:

F(x)E/ et (z>0)],
0
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onde a restrigao para valores de x positivos é necesséria para evitar que a integral divirja. Em particular,

note que
[e ]

ra) = /OOO etdt = —e = 0—(-1)=1. (4.38)

Efetuemos a integral em (4.37) uma vez por partes, mas com x substituido pos = + 1:

oo 0 o]
z+1)= / e Hrdt = —e M|+ a:/ et at
0 0 0

————
0 I'(z)

isto é,

I@+1)=al(x)|. (4.39)

Essa é a propriedade mais importante da fungao gama.
Usando (4.39) repetidamente, obtemos

rey=1ra)=1,
r@) =2r@ =21,
r4)=3r3)=3-2-1,
F(n+1j:n! (n=0,1,2,3---). (4.40)

Esse resultado foi a motivagao para a fung¢ao gama; por meio dele faz-se a generalizagao do fatorial
para numero que nao seja natural. Assim, define-se

Zl=Tx+1) (z>-1). (4.41)

Embora a integral em (4.37) ndo convirja para

: 4 I'(x) z < 0, demonstra-se por definigbes alternativas
3+ a possibilidade de estender a fungao gama para
i todo z complexo, com excegao de z = —n com z €
2L _ i N, e ainda valendo (4.39): I'(z+1) = 2I'(z). No
E i JT -.-\I | | que segue es‘Famos 1nteressa.do apenas na funcao
A I'(x), de variavel real z, cujo grafico é mostrado

Ml e e 1!

na figura a direita. Note, que o grafico esta de
x —» | acordo com a féormula (4.40):

(-

-3 2 -1 1/2 11 2 3 4 ra=o
-1 re) =1
i r3) =2

Um valor particular da fungao gama de certo

3 interesse é
I/\ - ! ! ! rQ/2) =, (4.42)

que é assim calculado:

0 t = u? o0 5 [e’e} 5 00 o
F(1/2) = / e—tt—l/th — 2/ e du = / e~ du = (/ €_I2d$> (/ e_dey>
0 0 —o0 —o0 —o0
0 o0 ) 27 poo 1 oS
/ / 6_($2+y2)d$ dy — / / 6_1’-27"d7" do = ot |: _ 6_T2:| _ \/E v
—00 =00 0 0 2 0

Os valores de I'(x) s@o geralmente tabelados para 1 < z < 2 (como na tabela acima), a partir
dos quais todos os demais podem ser calculados usando, repetidamente se for necessario, a férmula
I'(x +1) = aI'(x), dada por (4.39). Vejamos um exemplo com z > 2:

I(5,82) = 4,82 I'(4,82) = 4,82(3,82)'(3,82)

= ... =4,82(3,82)(2,82)(1,82) I'(1,82) = 4,82(3,82)(2,82)(1,82)(0, 93685) .
——

tabelado
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Gamma Function I'(a)

a .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
1.0 | 1.00000 | 0.99433 0.98884 | 0.98355 | 0.97844 0.97350 | 0.96874 | 0.96415 0.95973 | 0.95546
’ 1.1 | 0.95135 | 0.94740 | 0.94359 | 0.93993 | 0.93642 | 0.93304 | 0.92980 | 0.92670 | 0.92373 | 0.92089
1.2 | 0.91817 | 0.91558 0.91311 | 0.91075 | 0.90852 0.90640 | 0.90440 | 0.90250 0.90072 | 0.89904
’ 1.3 | 0.89747 | 0.89600 | 0.89464 | 0.89338 | 0.89222 ‘ 0.89115 | 0.89018 | 0.88931 I 0.88854 | 0.88785
1.4 | 0.88726 | 0.88676 0.88636 | 0.88604 | 0.88581 0.88566 | 0.88560 | 0.88563 0.88575 | 0.88595
’ 1.5 | 0.88623 | 0.88659 | 0.88704 | 0.88757 | 0.88818 | 0.88887 | 0.88964 | 0.89049 | 0.89142 | 0.89243
1.6 | 0.89352 | 0.89468 0.89592 | 0.89724 | 0.89864 0.90012 | 0.90167 | 0.90330 0.90500 | 0.90678
’ 1.7 | 0.90864 | 0.91057 | 0.91258 | 0.91467 | 0.91683 ‘ 0.91906 | 0.92137 | 0.92376 | 0.92623 | 0.92877
1.8 | 0.93138 | 0.93408 0.93685 | 0.93969 | 0.94261 0.94561 | 0.94869 | 0.95184 0.95507 | 0.95838
‘ 1.9 | 0.96177 | 0.96523 | 0.96877 | 0.97240 | 0.97610 | 0.97988 | 0.98374 | 0.98768 | 0.99171 | 0.99581

Agora um exemplo com x < 1; neste caso, usamos (4.39) na forma I'(x) = I'(x 4+ 1) /x, repetida-
mente se for necessario:

tabelado

—
r-sg =48 =38 T(1,2) [=0,91817]
T (=5,8)  (=5,8)(—4,8)  (=5,8)(—4,8)(—3,8)(—2,8)(—1,8)(—0,8)(0,2)
Além disso, os valores de ['(x) para x = £1/2, £3/2, £5/2, --- podem ser calculados a partir

do valor I'(1/2) = /7 usando (4.39), repetidamente se for necessario, na forma I'(x + 1) = aI'(z)
quando x =3/2,5/2,7/2, - e'(x)=T(x+1)/x quando x =-3/2, —=5/2, —=7/2, --- :

rr/2) =3 320 = v
(=32 ri2) r(1/2) VT
PSR =555y = o3/~ (83213 15/8
Exercicios:
1] Calcule, usando a tabela quando necessario: x | I'(z)
(a) (4,5)! (b) I'(3,2) 1,2 0,918
1,4 | 0,887
(c) (—3,2)! (d) I'(3/2)I'(-1/2) 1,6 | 0,894
(e) (=5,5)!/I(=7/2) (f) I'(11/7) ) (4)7) 1,8 | 0,931

2] Se I'(r+n+1)=a e I'la—1)=b,onde zeR—{---—2,-1,0,1} e n€N,
n
calcule o valor de P = [[(z+J) em termos de a, b e x.
§=0

3] Mostre que

(a) /Oo e~ dz = (1/4)I(1/4) (b) /Oo pre=dr = 3v/7/8 .
0 0

4.3.2 Solucao Geral da Equacao de Bessel

A equagdo de Bessel de ordem v > 0 é a seguinte:

22y’ +xy + (2 = v*)y(x) =0] . (4.43)
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O ponto x = 0 é singular regular, o que enseja aplicar o método de Frobenius para resolvé-la. Substi-

[ee]
tuindo y = 3. axz*" nessa EDO, obtemos
k=0

Zk—i—r k‘—i—r—l)akxk”—i—z (k+r YapaFtT +Zakxk+r+2 ZV apz T =0.
k=0 k=0 k=0 k=0

oo

3o ag_pxktT
k=2

2 r+1

[r(r — 1)ao + rag — v?aglz” + [(r + Dray + (r + 1)as — v2as]z
+ Z {[(k +r)(k+r—1)+ (k+7)—v3ap + ak_Q}gg’“‘T —=0.
k=2

ap (r* = v®) 2" +ay (r* +2r +1 — ) 2"t 4 Z { [K* + 2rk + 7% — V?ag + a2 }a**" =0,
v 0 k=2

0

donde trés equagoes emergem:

e 12— 1?2 =0 (equagao indicial)

Af—2

ioo I s p— (relagdo de recorréncia dependente de r)

.ak:
e a1(r’+2r+1—-12)=0

As raizes indiciais sao r = +v. Prossigamos os calculos com r = v:

Gk k — 2k _ 1

e T T k(k + 20) Do T T 2w+ k)
(11(21/+1):0 = a1=0 = az=as=ar=---=0.

___ 0
2T TR0 )

_ 1 _ 1 —aQp o (—1)20,0
TR 2T T 2Qwr2 P2+ ) 2@l r2)

- 1 - 1 (<% (—1)%ag
TR w3 T 2@ ) Bt (v +2) 2623+ D(r+2)(r+3)
wor — (=1)*ao
TR 3 v+ D) +2) (vt k)

Mas

'v+DHw+1)w+2)---(v+k) = I'v+ 1)+ 1)w+2)(v+3)---(v+Ek—-1)(v+k)
r'(v+2)
=T'v+2)v+2)(v+3)---(v+k—-1)(v+k)
I(v+3)
=I(v+3)(v+3)---(v+k)
| —

(v+4)

=TI'(v+k+1),
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donde
'v+k+1)

I'iv+1)
Substituindo esse resultado na expressao de as; acima e escolhendo o valor da constante arbitraria ag
de modo que ao2”I'(v + 1) =1 para padronizar a solugdo, obtemos

v+ +1)w+2)---(v+k) =

1

——~—
v — D" la2" T+ k)] _ (—1)*F
T Rk R P+ k+1) 2R Tt k41)

A substitui¢ao dessa expressdo dos coeficientes na equagao de Bessel (4.43) leva a seguinte solucao
particular dessa EDO:

R o s N (—1)H (/2
= e > . .
Tu(w) = §2”+2kklf(u+k+1 kz:% K T(k+v+1) (v20) (444)

Realizando agora os calculos com a outra raiz indicial » = —v, mas com v ¢ N, obtemos a segunda
solucdo de (4.43), que, se igualmente padronizada, ¢ dada por

> (_1)k$2k

3 o0 1) x/2)2k v
— v > .
Jovlz) = kZ:0 2=Vt Bl (v + k+ 1) kZ:0 E'T(kE—v+1) v=0), (4.45)

que nada mais é que (4.44) com v substituido por —v. Note que o argumento da fun¢do gama acima
nunca se anula por causa da restri¢do de v nunca ser um ntmero natural.

Para v ¢ N, (4.44) e (4.45) sao duas solugdes linearmente independentes da equagao de Bessel, o
que se constata facilmente pelo primeiro termo delas (obtido com k = 0), sendo, portanto, y(x) =
c1dy(x) + caJ_,(x) a solugdo geral. Mas, para v = n € N, a raiz indicial r = —v = —n néo leva a uma
segunda solugao, caso em que se deve aplicar os procedimentos prescritos pelo método de Frobenius
[descritos na seg. 4.1.2] para o calculo dessa segunda solugdo linearmente independente que falta.
Esses calculos sao elaborados, e sua omissao aqui nao afeta os objetivos deste texto, sendo suficiente
resumir os resultados que nos interessam.

A segunda solugao linearmente independente a J,(z) é padronizada para todo v real considerando
dois fatos (que podem ser demonstrados):

1) Quando v € N, J, () e a fungao definida por

Ny (z) = Jy(x) cosvm — J_,(x) (v g N) (4.46)

senvm

sao duas solugoes linearmente independentes da equacgao de Bessel de ordem v, o que nos leva a concluir
que, nesse caso de v diferente de um namero natural, y(z) = ¢1J,(x)+ca N, (x) é outra forma da solugao
geral dessa EDO.

2) Embora (4.45) nao possa ser usado com n = 1,2,3,---, é 1til ter uma defini¢do para J_, (),
que pode ser construida de modo que J_,,(z) = (—1)"J,(x) a partir de (4.44) com v = —n como segue:

B 00 (=1)k(x/2)2k—n () © ( 1)k (z/2)2k—n )k+n(x/2)2(k+n)_n
Jn(x )=kz=:0kvr(k—n+1) B Zm zz: etn) T(k+1)

o (—1)F(z/2)2+n n
2P ﬁ = (-1"n(a) ¥

Acima, na passagem (), escrevemos o somatoério comecando com k = n porque se anulam os termos
com k <n —1; de fato, nesse caso k —n+1<0= |[I'(k—n+1)| 200 = 1/T'(k—n+1) — 0. Nas
passagens seguintes, mudamos o indice do somatoério e usamos a propriedade (4.41) de I'(z).

3) Quando v € N, J,(z) e a funcdo definida por

Np(z) = lim N,(z) (v € N) (4.47)

v—n

sao duas solugoes linearmente da equagao de Bessel de ordem v = n.
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Assim, para todo v > 0, a solugdo geral da EDO (4.43) com x € (0, 00) pode ser escrita como
Yy = Cljl/(x) + CQNV(I) ) (448)

onde N, (z) é dado por (4.46) ou (4.47) .

A série infinita que expressa N, (z) pode ser obtida inserindo (4.44) e (4.45) em (4.46) (havendo-se
de, no caso em que v € N, efetuar o limite de quando v tende a um natural n). Nao ha necessidade de
exibir neste texto a expressao genérica da série que representa N, (x).

A nomenclatura para as fungoes em (4.48) ¢ a seguinte: J,(z) é a funcdo de Bessel de ordem
v, e N,(z) (também denotada por Y, (z), principalmente por mateméaticos) é a funcdo de Neumann
de ordem v, sendo ambas também chamadas de funcoes de Bessel de ordem v de 12 e 22 espécie,
respectivamente.

Assim como a solugao geral da equagdo y” + y(x) = 0 pode ser escrita na forma y(z) = ¢; cosx +
ca senx ou na forma y(z) = c1e’® + cae ™%, pois ' = cosx +isenw e e =cosx —isenz, a solu¢do
geral da equagdo de Bessel também pode ser erpressa na forma

—ix

y=c HV (z) + coH? (2) (4.49)

mediante a definicao das fungoes
HY(z) = J,(z) +iN,(z) e  HP(x)=J,(z) —iN,(z), (4.50)

respectivamente denominadas primeira e segunda fungio de Hankel de ordem v (ou primeira e segunda
funcao de Bessel de 32 espécie de ordem v.

. ~ 1 2 ~ .
Na literatura, as fungdes J,(x), N, (z), H) )(x) e HY )(x) sao definidas com z e v complexos, mas
estamos aqui interessados apenas nos valores dessas fungoes para x e v reais e nao negativos.

4.3.3 Solugao Geral da Equacgao de Bessel Modificada

A equagdo de Bessel modificada de ordem v > 0 é a seguinte:

‘x2y" +ay — (2 +vH)y(x) =0 . (4.51)

Um modo de se obter a solugao y(x) dessa EDO consiste em converté-la na equagao de Bessel (cuja
solucdo ja nos é conhecida). Isso é feito mediante a trasformagao de variavel ¢ = iz [v. Nota (1)
abaixo|:

2,1 t=ix 2,1

2y +ay — (® +v7)y(x) =0 2y () + ty' (t) + (2 — v*)y(t) = 0
y(z) = y(z(¢)) = y(t)

logo,
y = a1 y(t) + caN,(t) = 1, (ix) + o N, (ix) ,
mostrando que a solugdo da equacdo de Bessel modificada é formada pelas fungoes J, e N, com

argumento imaginario puro [v. Nota (2) abaixo]. Mas nao sdo essas fungdes que sao usadas, e sim as
que sao definidas a seguir:

TV X)) S L (X) oo funcao de Bessel modificada de 1* espécie de ordem v

(m/2) i T[], (iz) + iN, (iz)] = K, () ......... fungao de Bessel modificada de 22 espécie de ordem v

Vemos que as fungoes I,,(z) e K, (x) definidas acima: (a) sdo combinagdes lineares das solugoes
Jy(ix) e N,(ix) da equagao de Bessel modificada e, portanto, também sao solugoes dessa equacgao, e
(b) sao linearmente independentes; logo, elas formam a solugdo geral da equagdo de Bessel modificadas:

\y = aily(z) + o K, (x) \ : (4.52)
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Nota 1 — Conversao de uma equagdo de Bessel modificada numa equagio de Bessel:

Hx) =ix ‘ ) y=y()=y(x) ¥(t) denota a funcdo que leva  em y
_ tH(x) " xem¢
y(x) = y(1(x)) / (%) " xemy

A EDO (4.43), se tiver sua varidvel z mudada para t = iz, passa a exibir, na variavel ¢, a forma da EDO
(4.51). A seguir mostramos isso, denotando as funcdes envolvidas nessa conversdo como mostra a figura
acima. Uma vez que y(z) ¢ a fungdo composta y(t(z)), usamos a regra da cadeia para calcular a sua
derivada y'(x).

; _dy  dy dt T
y(m)—a—a I =y'(t)i],
b
V@) = LY@ = L] = 0] =Py =0
~
Ly @)+ oy (@) = @+ P)@) = Py O+ 0l (0] - (-2 + )y(0)

= 20+t (1) + (2 = vP)y(t) m

Nota 2 — Compare o que se fez acima para se obter a solugdo da equagao de Bessel modificada a partir da
solugdo da equagao de Bessel com o que se faz abaixo para se obter a solugdo da equagao y” —y(z) =0 a
partir da solugdo da equagao y"’ + y(z) = 0 (sdo usados os resultados quadriculados deduzidos na Nota 1,
pois a mesma mudanga de variaveis t = iz é efetuada):

t=1
— [~y (®)] —y(t) =0 = y"(t) +y(t)=0

—_
y(z) = y(t(2))

= y = cpcost+casent = c1cosix + c2senix .

y' (@) —y(x) =0

Mas sdo definidas as fungdes [v. item (2) da secdo 1.13]
cosiz = coshzx e —isenix = senhx ,

em termo das quais
y = dj coshz + dg senhx .

Essa semelhanga entre a construgdo das fungoes I, e K, a partir das fungdes J, e N, e a construgao de
cosh e senh a partir de cos e sen enseja chamar I, e K,, de func¢des de Bessel hiperbdlicas.

4.3.4 Propriedades das Funcoes de Bessel
4.3.4.1 Graficos

Em sentido amplo, as fungoes J,, N,, H,Sl), Hy), I, e K, sao todas chamadas funcoes de Bessel
(de ordem v). Na pagina seguinte sdo mostrados seus graficos para alguns valores de v (exceto as de
Hankel). Convém que o aluno sempre se lembre destas propriedades, haja vista sua importancia na
resolucao de EDPs:

Quanto & variagao :

As fungoes de Bessel oscilam (sem serem periodicas, exceto para x — 00), e as fung¢oes de Bessel
modificadas sao mondtonas.

Na origem (z =0) :

~ a L . ~ . . J()(O):Io(O):l (V—O)
As funcgoes de 12 espécie sao finitas: { J,(0) = 1,(0) =0 (v > 0)
- a oo [ Ny(x—=0) > —o0
As fungoes de 22 espécie sao infinitas: {KV( S0) = oo

Assintoticamente (x

Quanto a apresentacao de zeros :

As solugoes da equagao de Bessel J, e N, oscilatérias, apresentam uma infinidade de zeros positivos.
O mesmo acontece com as suas derivadas J), e N/, (cujos zeros localizam-se nas abscissas de méaximo e
minimo de J, e N,). Ja as solugoes da equacao de Bessel modificada I, e K,,, mondtonas, ndo exibem
ZEros.
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Nota: Observamos algo similar quando comparamos as solugoes
e cosz e senz da equagdo y” + y(x) =0 — oscilatérias e apresentando uma infinidade de zeros
com as solugdes

e ¢” e e~® (ou coshz e senhz) da equagao modificada y”’ — y(z) =0 — mondtonas e sem zeros.

Na figura abaixo sao apresentados alguns graficos dessas fungoes para ajudar a visualizar as citadas
propriedades.

J(x)
L %, K, I, I,
[ 7,0 s Y 244
Jn(x)—> fCOS(JX*ﬂ”)
B -Iz(x) X
L 2.0
T 2 N3 N 5% 6 7 7N
i 1.6
B, =(n+1/2)(n/2)
1.2F
o )
04k Ny M N, (x) —=> 7 sen (x-pB,) 08f
) N,(x) X
i 0.4}
x

4.3.4.2 Formulas de Recorréncia
Uma vez que, de acordo com (4.44),

> (—l)kx%'“’

Jy = >0),
(@) ];) i rasksr) V20
temos que
i e ( ) B i . i (71)]“(0[:1:)2]“”’ B i i (fl)ka%“’xzk
do |© Y T an [T AR T (Ut k)] de [ & TR T+ kot )
_ i (_1)ka2k+u2k, $2k_1 B i (—l)ka2k+”£2k_1
R R T (Lt k+y) vl (k- DIT(1 4k +v)
B 00 (—1)k+1a2(k+1)+yl‘2(k+1)_1 I i (_1)k(a$)2k+u+1
SRR T (L kL4 w) e I DL+ k+v+1) 7
donde J
e {x”Jy(ax)] =—ax VI (ax) . (4.53)
De modo anélogo, deduz-se que
d
. ' Jy(ax)| = ax”J,_1(ax) . (4.54)



Efetuando as derivadas no primeiro membro desses dois resultados, obtemos respectivamente os
dois seguinte:

d v
%Jl,(ozx) = —aJ,1(ax) + EJV(OM) (4.55)
e
L Jy(02) = adys () — L, (o) (4.56)
7 Jvlex) = ady_i(az) — —Jy(ax) . )
Adicionando e subtraindo essas duas tltimas equagbes, também obtemos
24 ) (02) = adyor(02) — Ty (o) (457)
——J(az) = aJ,_1(ax) — J, x .
adx ! +
e
2v
Jy—1(az) + Jyp1(azx) = @Jy(owj) . (4.58)

As equagdes enumeradas acima constituem as formulas de recorréncia mais usadas (frequentemente

com « = 1). Elas também sao validas para as fungoes N, , Hl(,l) e H,El). As fungoes I, e K, satisfazem

essas formulas com poucas modificagdes (um sinal ou outro), para as quais pode ser consultada a se¢ao
4.9 da Ref. [3].
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Capitulo 5

A Série de Fourier-Bessel e sua
Aplicacao na Resolucao de EDPs

- Ref. [4, sec. 5.8] e [5, se¢. 12.9]
- Ref. [8], se¢.11.5.1 e 13.2
- Ref. [6], cap.6

5.1 Funcoes de Bessel como Autofungoes
Nosso objetivo nesta se¢do ¢é resolver problemas de autovalor formados com a EDO
p*R" + pR' + (M\p* = v*)R(p) =0, (5.1)

que surge na separagao de variaveis das EDPs do calor, da onda e de Laplace nas coordenadas cilindricas
(p, p e z) sob as condigoes de fronteira mais corriqueiras.() Uma vez que, na busca dos autovalores,
ha a necessidade de resolver a EDO (5.1) com A = 0, A = —k? (negativo) e A = k? (positivo), nosso
primeiro passo é escrever a solugao dessa EDO nesses trés casos.

a) Com A =0, (5.1) é a equagdo de Euler p?R” + pR’' — v2R(p) = 0, com a conhecida solucio (v.
segao 6.7.4 da Apostila de Calculo 4):

_Je+calnp
R(p)_ {C1py+62/p".

b) Com X = k? (k > 0), (5.1) torna-se
PR+ pR + (K*p* — v*)R(p) = 0. (5.2)

Mudando da variavel p para a nova variavel = kp, essa EDO toma a forma (v. a Nota 1 abaixo para
os detalhes dessa transformagao)

2*R" + zR' + (2* —v*)R(z) =0,

que, de acordo com (4.43), é a equagao de Bessel de ordem v, cuja solugao geral, segundo (4.48), é
R = c1J,(x) + 2N, (), a qual, voltando para a variavel p original, se torna na solugdo geral de (5.2):

R = clJl,(k‘p) + CQNV(]C[)) . (53)

Nota 1 — Transformagao da EDO (5.2) na forma da EDO (4.43):

p x(p) =kp x R(x) R=R(x)=R(p) R(x) denota a fungdo que levax em R
o R x(p) " pemx
0=R(x(p) 7 o ! P

() Esta se¢do tem uma exposigao analoga a segdo 2.3, onde resolvemos problemas de autovalor com a EDO ¢/ + A (z) =
0, que surge na separagao de variaveis dessas mesmas EDPs, s6 que nas coordenadas cartesianas.
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Nessa transformacdo, usamos a notagao descrita na figura acima. Uma vez que R(p) é a fun¢do composta
R(z(p)), usamos a regra da cadeia para calcular a sua derivada R’(p).

oy = M _ AR dr T
R'(p) = dp ~ dr dp =R'(z)k |,
X
d ., d / d ’ dz d ., "
R"(p) = d—pR (p) = d—p[R () k] = @[R (z) k] = k2aR (z)=Kk’R"(z) |.

dp
~—~
k

() 2R @]+ IR @) K + 2 = 1) R(a)

= 2’R"(2) + 2R (z) + (2> — V> )R(z) m

. P*R"(p) + pR'(p) + (k*p* — v*)R(p)

c) Com A = —k? (k > 0), (5.1) torna-se
p’R"(p) + pR'(p) — (k*p* + V)R =0. (5.4)

Para resolver essa EDO, novamente fazemos a mudanga de variavel z = kp, substituimos nela os
resultados R”(p) = k?R"(z) e R'(p) = kR'(x) ja deduzidos na Nota 1 acima, e a obtemos na forma

(E) R @) + (DR (@) ~ (2 +2)R@) = 2R+ R — (@ + ") Ra) =0,

que é a equagdo de Bessel modificada de ordem v (4.51), cuja solugdo, de acordo com (4.52), é dada
por R = c11,(x) + co K, (x); logo, voltando para a variavel p, obtemos a solucdo geral de (5.4):

R= Clju(kp) + CQKV(kp) : (55>

Escrevamos, entao, essas solugoes num tnico quadro:

p*R" + pR' + (A\p® — v*)R(p) = 0

U
Se A=0:
2 pl / 2 c1+calnp (1/20)
p°R"+pR —v*R(p) =0 = R(p) = 5.6a
) (0) ap’ +cea/p” (v>0) ( )
Se A= —k? (k> 0):
P’R" + pR — (K*p* + V*)R(p) =0 = R(p) = c11,(kp) + 2K, (kp) (5.6b)

Se A=k%(k>0):

a1y (kp) + caNy (kp)
P’R’ + pR' + (K*p* —v?)R(p) =0 = R(p) = ou (5.6¢)
e (kp) + e B (kp)

Agora que ja temos essas solugoes da EDO (5.1), ja4 podemos resolver problemas de autovalores
formado com essa EDO. Mas, antes, vejamos como é a relagao de ortogonalidade entre as autofungoes
originadas de tais problemas:

A EDO (5.1) escrita na forma da equagao de Sturm-Liouville (2.24) é dada por

d ( dR v?

7p7>+<)\p_7)]{:07 5.7

dp\" dp p (5.7)
mostrando que as fungdes u, v e w em (2.24) sdo, no caso, dadas por u(p) = 1, v(p) = —v?/pew(p) = p.

Assim, as autofungdes Ry (p) do problema de autovalor formado pela EDO (5.1), com p € I C R, e por
uma condi¢do CF-n (v. pag. 37) nos extremos de I sdo ortogonais com respeito ao produto escalar de
funca@o peso w(p) = p, isto &, se m e n sdo dois valores quaisquer do indice k em Ry(p), entéo

/IRm(p)Rn(p)pdp =0se m#n. (5.8)
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Neste texto, apenas dois problemas de autovalor baseados na EDO (5.1) sdo considerados, em que
essa EDO é resolvida para p € (0,b) em ambos. Eles diferem apenas no tipo da condigdo no extremo
p = b desse intervalo: CF-1 (Dirichlet) no primeiro e CF-2 (Neumann) no segundo. Nenhuma condi¢ao
de fronteira é imposta no extremo p = 0 de (0, ) porque, em (5.7), a fungdo u(p) = p se anula nesse
extremo, indicando a ocorréncia da condigdo CF-4, que suprime a necessidade de qualquer condigao
na fronteira p = 0. No que segue, primeiramente resumimos os principais resultados — autovalores,
autofungoes, normas quadraticas, e série de Fourier generalizada — dos dois problemas de autovalor;
depois apresentamos a resolucao deles.

Problema de autovalor (i)

2 =
{pQR"+pR'+<Ap2—u2)R<p>=0 _ =) s R =g (20)

b b
p€(0,0), R(b) =0 (Dirichlet) Cun @ n-€simo zero positivo de J,, , i.e., J, () =0.
(5.9)
b
e Relacao de ortogonalidade: / Jy (Cump)J,, (Cunp)pd,o =0se m#n.
0 b b
b () b2
e Normas quadraticas: HJ,,(CVgp) 12 = / JE(Cygp)pdp =5 21 (Con) - (5.10)
0

) Esse resultado ¢ deduzido no final desta secao 5.1
e Série de Fourier generalizada (dita série de Fourier-Bessel) de f(p):

<Ju<<”gp),f> - /Obf(p)Ju(C”;p>pdp

f(p):ZAnJl, Gonp , com A, = = . (5.11)
2 () (S22 /Objg(@gp)pdp

Problema de autovalor (ii)

A =0 < Ro(p) =1 se v=0 (resultado extra)

= () = (&)

Cun : n-ésimo zero positivo de J/, | i.e., J!((n)=0.

p*R" + pR + (\p*> = v*)R(p) = 0
p€(0,b), R'(b) =0 (Neumann)

(5.12)

e Relagao de ortogonalidade (abaixo, m e n podem ter qualquer valor natural nao nulo):

Para todo v > 0: /Obe(Cygp)Jy(Cygp)pdsz se m#n.

Mas, se v = 0, h& de se considerar o resultado extra, acrescentando a relagao de ortogonalidade
entre a autofuncdo constante Ry(p) = 1 e as demais autofungdes Jo(Conp/b) :

b
/ Jg(cogp)pdp =0 (n=1,2,3---), onde (o, ¢ o n-ésimo zero de J; , i.e., J;(Con) =0.
0

e Normas quadraticas:

2

()= [ (2o @ G 1= G ] 2 (513)

) Esse resultado ¢ deduzido no final desta secao 5.1.

b 2
b
| Ro(p) ||? = / 1%pdp = 5 (resultado extra a se considerar quando v = 0) .
S~—~— 0
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o Série de Fourier generalizada (dita série de Fourier-Bessel) de f(p):

f(p) = Ao+ i AnJu(Cygp) ;

n=1

) o)
Al sy = ,
- ||JV<CV7£,0)||2 /OJS(CV;p)pdp

e Ap so esté presente (i.e., difere de zero) se v = 0, quando entéo é dado por

onde

f(p)pdp
g%zo~ */f
0

Resolugao do problema de autovalor (i) ‘ :

A solugdo da EDO deste problema de autovalor é dada por (5.6), onde notamos que todas as fungoes
que se encontram multiplicadas pela constante ¢, tornam-se infinitas quando p — 0, o que nos leva a
fazer co = 0 para descartar tais funcoes, assim satisfazendo a condigao de finitude das solugoes. Logo,

{01 (v=0) > se A=0
c1p? (v >0)

o) = e, (kp) se A=—k%(k>0) (5:14)

R =c1J,(kp) se A=k?(k>0).

Agora buscamos autofungoes conforme o sinal de A.

¢t (v=0)

P A=0: R(p) =
Para A =0: R(p) {clpy (v > 0)

c1 = 0 = C1 = 0 (Z/ = O) - .. ~
. R(b) = = R(p) =0 (solucao trivial): ndo ha o autovalor nulo.
ab’ =0 = =0 (v>0)

Para A = —k% (k> 0) : R(p) = c11,(kp)

" Rb)=c1 I,(kb) =0 = ¢1=0 = R(p)=0 (solugdo trivial): ndo ha autovalores negativos.

nunca
se anula

Para A = k% (k> 0) : R(p) = c1J,(kp)

admite-se ¢1 # 0
. R(b) =c1J,(kb) =0 — J (kb)) =0 = kb=Cm = k=k,=C(n/b,
para evitar a
solugao trivial

onde (,,, é o n-ésimo zero positivo de J,,.
Logo, A = A\, = (Cun/b) (n=1,2,3---) sdo os autovalores, e R, (p) = J,((,n/b) sdo as autofungoes
correspondentes W

Resolugao do problema de autovalor (ii) ‘ :

Como tnica diferenca entre este problema de autovalor e o anterior é a condigao de Neumann em
p = b, devemos buscar solu¢oes da mesma forma exibida em (5.14):

90



a (=0

ParaA=0: R =
Para A =0: R(p) ep” (v > 0)

. R'(b) = 0 = R’'(b) =0 & possivel para qualquer valor de ¢; se v =0
. v’ 1=0 = ¢ =0 = R(p)=0: solugdo trivial se v > 0

Para A = —k% (k > 0) : R(p) = c11,(kp)

“R'bW)=c1_k I(kb)=0 = c;=0 = R(p)=0 (solugao trivial): nao ha autovalores negativos.
~ ——

#0 nunca
se anula

Para A = k% (k> 0) : R(p) = c1J,(kp)

, admite-se ¢1 # 0 ,
“Rb)=c1 k JL(kb)=0 ———— J(kb)=0 = kb=(pn = k=k,=Cn/b,
~~~ para evitar a
k #0 solugao trivial
onde (., é 0 n-ésimo zero positivo de J/,.
Logo, A = A, = (Gun/b) (n =1,2,3---) sdo os autovalores, e R, (p) = J.((,n/b) sd0 as autofungoes
correspondentes, havendo de se acrescentar, no caso em que v = 0, o autovalor A\g = 0 e a respectiva
autofungdo Rp(p) =1 m

Vamos agora deduzir as normas quadraticas em (5.10) e (5.13) das autofungdes Ry (p) = Ju ({unp/b) (n =1,2,3--+)
dos problemas de autovalor (i) e (ii) definidos em (5.9) e (5.12). As autofungdes do prob. (i) diferem das do prob. (ii)
apenas por serem (y, 0s zeros de J,, no primeiro e os de J;, no segundo. Por causa disso podemos provar (5.10) e (5.13)
num unico calculo, apresentado a seguir.

Essas autofuncdes sdo solugdes da EDO exibidas em (5.9) e (5.12). Logo, tomando essa EDO na forma de Sturm-
Liouville, dada por (5.7), podemos escrever

(PRy) + (Anp — 1 /p)Ra(p) =0 .
Multiplicando essa equagao por 2pR,,, obtemos
2Ry, (pRy)" + (Anp® —v?)2Ru(p)R;, =0,
que, usando a férmula 2F(p)F’ = dF?/dp com F = pR/, no primeiro termo e F' = R,, no segundo, toma a forma
p o s
d d
(PR + Qnp? — 1) =R =0
P dp

Integremos essa equagdo uma vez por partes no intervalo [0, p]:

[(0R)?]. + [ =) B2]] 220 /O " pR2dp =0,

donde
(bR, (0)]* + (Anb® — V3)R2(b) + [VRn(0)]* — 220 ||Rn(p)|> = 0
Mas

VB 0) = v (Conp /)],y = v 0) = { NG 20 2 020 = 0

logo, substituindo A, = (¢un/b?)2, obtemos
1Rn (o[> = 242 PR, + (G — D[R]

Uma vez que Ry, (b) = 0 no prob. (i) e R}, (b) =0 no prob. (ii), temos que

b R (b)]2 b
) ﬁ[ n( )] ------------------ prob. (i)
[[Rn(p)lI” = 2 2 2 (1]
5( - CT) [Rn(®)]” .. .. prob. (ii)

e Para o prob. (1) a norma quadréatica em (5.13) é imediatamente obtida com a substitui¢do em [I]| de [Rn(b)]2 =
[Rn(b)Ju(Cunp/b)J ‘ = J2(Cun)

e Para o prob. (i), ainda temos de calcular R/, (b), o que realizamos usando a férmula de recorréncia (4.55) com
r=p e a=_Cun/b:

iJU<Cunp) — R.(p) = _CUJJV (Cmp>+ JV(Cmp)

dp b b b p b
Ry (p)
” R/ (b) = _CVJ u+1(<vn)+ Ju(Cun) —CDJ u+1(4un)~
H,_/

0

A substitui¢do desse resultado em [I] fornece a norma quadrética em (5.10) v/
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5.2 Aplicacao da Série de Fourier-Bessel na Resolucao de EDPs

Exemplo 5.2.1. Calculo da temperatura T'(r,6,t) (coordenadas polares) na placa circular
mostrada na figura, de bordas submetidas a 0° e inicialmente a temperatura T' = Tp(p).

y4e T —0° Note que a temperatura inicial na placa nao depende do dngulo 60:
h& uma simetria angular. Como nao ha razao para que essa sime-

b(?r?ia tria se desfaga com o decorrer do tempo, a temperatura mantém-se
= independente de §: T = T'(r,t). Assim, devemos resolver a equagio
0 do calor sob a condigdo de fronteira T'(b,t) = 0 e a condi¢do inicial
p »  T(r,0) =Ty(r), com r € (0,b), isto &,
b
10T
V2T (r,0,t) = ——, 1€ (0,b), 6€[0,2r), t>0
(r0,) ===, re(0b), 0€[0,2n) 6515

T(b,t) =0, T(r,0)=To(r).

Com a separagao espago-temporal T'(r,t) = ¥(r)7(t), e lembrando que ¢ herda a condigdo de
fronteira imposta a T'; logo,

Vi 17 N V2 + Mp =0 (eq. de Helmholtz), sob a condigao (b) =0 .
v a1 7 4+ Xat(t) =0 (EDO temporal) .

No caso, uma vez que 9¢/00 = 0 por causa da simetria angular, a equagdo Helmholtz toma a forma

0% 1oy 1 0% o« 2
2 _ _ r 2 2 _
VN = Gt L T g T =0 Ty Ar(n) =0,
~—~—
0
que é a EDO de Bessel de ordem zero. Ou seja, o problema de autovalor que se obtém é aquele em
(5.9) com v =0:

{pQR” +pR' + ApR(p) = 0 An = (Gou/0)? | =225 Rap) = JO(CW)
=

b
p€(0,b), R(b)=0 ‘ Con : n-ésimo zero positivo de Jy ‘ .

A solucio da EDO temporal nio apresenta novidade: 7/, + \,a7,(t) =0 = 7,(t) = A, e et

Podemos agora escrever a expressao para a solugdo geral:

T, t) = 3 Ape ety (927)
n=1

Impondo a condigao inicial, temos a série de Fourier-Bessel

cujos coeficientes sao calculados usando (5.11):

) :/ObT:(r)Jo(Cogp)rdr
/OJ(?(CO;T)TCZT

A solugéo T'(r,t) do problema consiste no que, acima, se encontra delimitado por retangulos.

Exemplo 5.2.2. Resolvemos agora a equagao do calor em co- AY T=0°
ordenadas polares sem a simetria angular do Exemplo 1. O intuito é T=0° )
perceber quais mudancgas nos célculos a quebra dessa simetria acarreta. \

A placa onde se deseja calcular a temperatura T'(r,6,t) tem a forma de
um setor circular, como mostra a figura a direita, cujas bordas sao todas
mantidas em 0°, sendo a temperatura inicialmente nela agora dependente Y
da variavel angular, dada por Ty(r, 6).

y

A_T=0° b T
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No que segue, a numeragao 1], 2], - - - refere-se as etapas em que foram divididas a resolugao deste
problema.

1] O problema de calor a ser resolvido ¢ assim formulado:

10T
2T(r,0,1) = —— b), 0 t
VT(r,0,t) aat,re(o,), €(0,9), t>0 (5.16)

T(T, 07 t) = T(Ta Y t) = T(ba 05 t) =0 ) T(T, 07 0) = T()(T, 9) .
2] Realizemos a separagao espago-temporal:

V2 17

T(r6,0) = b0 = L= 2T~

N V2 4+ A\p =0 (eq. de Helmholtz), sob as mesmas condi¢oes de fronteira que 7 .
7'+ Aar(t) =0 (EDO temporal) .

3] A parte espacial 9 é solugao do seguinte problema de autovalor (em duas variaveis, r e 6):

0%y 1oy 1 0%
2 pr— p— —_— =
v ¢ + M/)(Tv 0) - 87'2 + r 87’ + 7"2 892 + )\7#(7"7 0) 0

re(0,b), 0€(0,7), t>0
¢(T’ 0) = %[}(Tvﬁ)/) = ¢(b’ 0) =0.

Agora, em vez de uma EDO, temos uma EDP, a qual, para resolvé-la, usamos uma nova separagao
de variaveis: ¥(r,0) = R(r)©(0). Substituindo essa expressao na equacdo de Helmholtz em (5.17),
obtemos

(5.17)

2 10 1 02 S 1,
(52 + 75 ) (RO)+ 55 (RO) + A(RO) = (R"+ ~R')6+ RO" +\R6 = 0.
A divisao dessa EDO por RO fornece
R'+ (/)R 1 0"
—r 28t
~~

=—u

=0.

A forma dessa equagdo nos permite concluir que o termo ©”/6 é constante [dai o igualarmos &
constante de separagao (—pu)], pois esse termo dependente apenas de 6 pode ser isolado num dos lados
da equagao, passando o outro lado a conter termos que s6 dependem de r. Conseguimos assim separar

as duas EDOs
{ 0" +10(0) =0 (EDO angular)

TQR// + 7.-R/ + (sz _ /‘L)R(T‘) = 0 (EDO radial) .

A EDO angular e as condigoes de fronteira homogéneas para © que se deduzem a partir das
condigoes ¥(r,0) = 9(r,7) = 0 do problema (5.17) formam o seguinte problema de autovalor, de
solugao conhecida [v. (2.30)]:

{ 0" +1u0B) =0, 6¢(0,7) N {ﬂm = (mm/7)? (m=1,2,3,---)
0(0)=06(7)=0 O (0) = sen(mmf/7) .

J& a EDO radial com p = p,, = (mm/v)? e a condigao de fronteira R(b) = 0 que se deduz da outra
condicao, ¥ (b,8) = 0, do problema (5.17), isto &,

R+ rR o+ [Ar® = (mr/7)?]R(r) =0, 7 €(0,6), R(b) =0,

formam, para cada m = 1,2, -- -, um problema de autovalor do tipo definido em (5.9) com v = mm /7.
No m-ésimo desses problemas, buscam-se os autovalores A,,,, e as correspondentes autofungées Ry, (r)
(nessa notagdo com dois indices, n enumera os autovalores e autofungdes do m-ésimo problema de
autovalor). No caso, sendo v = v, = mm/v a ordem da equagao de Bessel no problema de autovalor
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acima, temos que os autovalores e as autofuncdes sao Apn = (Cu,.n/b)? € Ry = Ju,, (Co,.np/b). No
que segue, preferimos usar a notacao (,y, € Jmn mz em vez de Cy,,n € Ju,,

m°

2 = T
A = (CmT”> b2, Ry (r) = J% (Cn;)n ) , onde |(mp é 0 n-ésimo zero positivo de J%

Estdo assim determinados os autovalores A, e as autofungoes ¥, (7,0) = Ry (1) O, (0) do pro-
blema de autovalor (5.17):

N (Can)Q ISEE e (r,0) = g (C”;)”T) sean”g . (5.18)

4] A solugao da EDO temporal 7/, + AnnQTmn(t) = 0 é dada por 7, (t) = Ay, e Ameet,

5] Uma vez obtidas as solugoes ¥, (1, 0) € Timn(t) das EDOs espacial e temporal, podemos formar
a solucao geral deste problema de calor:

T(r,0,t) Z ZAmne ’"“O‘tme (C";)"T)senm—mg .

’Y

6] Impondo a condi¢ao inicial, obtemos a série dupla de Fourier generalizada

T(r,6,t) ZZAWJW(C’”"T) an”ezTo(r,e).

m=1n=1

Finalmente, usando (2.38) e (2.39), obtemos a formula que fornece os coeficientes A,,,,, assim finali-

zando a solugao:
/ / To ’I‘ 9 Jmﬂ' (Cmnr) Ilmﬂ.e
A, v

v

/J (Cmnr)rdr/ senzmﬂedﬁ

0 A b 0 Y
~—_—————

v/2

rdrdf

A solugao T'(r,0,t) do problema consiste no que, acima, se encontra delimitado por retangulos.

z
Exemplo 5.2.3. Considere o problema ondulatério que consiste
em calcular, no sistema de coordenadas polares, a deflexdo z(r,6,t) de uma
membrana que tem a forma de um setor circular, como mostra a figura a
direita. As bordas encontram-se presas no plano z = 0, e as condig¢des iniciais " ¥
0
da membrana sdo dadas por z(r,6,0) = z(r,0) e 8—?(7", 0,0) = vo(r,0).
z
1] A formulac@o desse problema é como segue:
9 1 0%z
2(r,0,t) = —=—, r€(0,b), 0 €(0,v), t>0
c? ot?
5 (5.19)
z(r,0,t) = z(r,v,t) = 2(b,0,t) =0, z(r,0,0) = zo(r,0) , 8—;(7“,9,0) = wvg(r,0) .
2] A separagao espago-temporal fornece
V2 1 "
2(r,0,t) = ¢(r,0)T(t) = q/} =2 7—7 =-A
N V2 + A =0 (eq. de Helmholtz), sob as mesmas condigdes de fronteira que z .
7 + A7 (t) = 0 (EDO temporal) .

3] Esta terceira etapa da resolugdo deste problema de onda é idéntica a terceira etapa da resolugao
do problema de calor no Exemplo 5.2.2, pois, nesses dois problemas, o dominio espacial é o mesmo
(o setor circular nas Figuras 5.2 e 5.2), e as condigoes de fronteira sdo do mesmo tipo (condigbes de
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Dirichlet), o que leva a parte espacial ¢(r, #) da solugdo daquele problema de calor e a deste problema
de onda resultarem de um mesmo problema de autovalor: aquele definido em (5.17). Logo, podemos
aproveitar os autovalores e as autofuncoes desse problema de autovalor ja calculados no Exemplo 5.2.2,
listados em (5.18):

m,n=1,2,3---

Yran(r,0) =

M = (G /0 e (S e 0

Cmn € 0 n-ésimo zero positivo de J my

4] Solugdo da EDO temporal 7% + \yunc®Timn(t) = 0 (obtida no passo 2) :
Tn(t) = Apn cOSwmnt + Bon senwyt ,  onde  wpn = VA -

5] De posse das soluc¢oes ¥,y (1, 0 € Ty (t) das EDOs espacial e temporal, podemos formar a solugao
geral deste problema de onda:

Cmn T) mm6
se
Y

0o oo
T 0, t E E (Amn COSWmn + Bmn Senwmn)J% (
m=1n=1

6] Para calcular os coeficientes na solugdo geral, impomos as condigbes iniciais:

2.0.0) = 323 AT (e sen ™ — 2o(0.0)

m=1n=1 v
8 (r,0,0) i iwmannme (Cmgﬂ") sen m;r& vo(r,0) .

Temos ai duas séries duplas de Fourier generalizadas em senos e fungoes de Bessel dos dados iniciais
zo(r, 0) e vo(r, ). Finalizamos o problema calculando os coeficientes A, € B,y usando (2.38) e (2.39):

[ [
/OJn%ﬂ(C";)"r) dr /0V beHZm;Ta db

L g () e
/o ‘]7 (sz)nr)rdr /07 senzm;ngd@

A solugao z(r,0,t) do problema consiste no que, acima, se encontra delimitado por retangulos.

0 rdrdf

i rdrdf

wmn 7

Exemplo 5.2.4. Calculo da solucao da equagao de
Laplace V2u(p,¢,2) = 0 (coordenadas cilindricas) no setor
de tronco cilindrico ilustrado a direita, de raio b, A&ngulo cen-
tral v e altura h, sob as condig¢bes de fronteira indicadas. A
formulacao desse problema é a seguinte: raio b

0 (laterais)
z

u=0
(topo)

0%y  10u 1 0%u  Q%u
2 _ — — p—
Viu(p, p,2) = s + >0 + ERTE + 5.2 (p,,2) =0

pe(0,0), p€(0,7), z€(0,h)

¥ Tu=f(¢,2)

d Ay
A S
-~ dngulo

altura h (face curva)
(pao Z) - U(P/Yv ) 0 ,k\ —————— —Z
u(p; ,0) =u(p, o, h) =0 <~
) =

fp,2)
Substituindo u(p, ¢, z) = R(p) P(p)Z(z) na EDP acima, obtemos

u(b, @, z

/ centralY
A \_/(u =0 (base)
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(iz+18+182 82>(
op*  pdp 2002 022
~rez R'+Q/pR 1 " Z”

R®Z) = (R”—i-%R’) ¢Z+%R(P”Z+R¢Z” =0

R -3 F + 7 =0. (5.20)
LNGAINGS
—p -8

As condi¢oes de fronteira homogéneas na faces horizontais [em (z = 0) e (¢ = h)| bem como nas
faces verticais [em (¢ = 0) e (¢ = )] evidenciam que as partes Z(z) e @(p) resultam de problemas
de autovalor independentes [que devem ser resolvidos antes de determinar a parte R(r), cujo calculo
depende dos autovalores provenientes daqueles dois problemas de autovalor|. Essa é a razao de, na
equagao (5.20), termos separado EDOs para ¢(y) e Z(z) igualando os termos sabidamente constantes
&/ e Z"/Z as constantes (—u) e (—fB) |os sinais negativos seguem o estipulado na Nota emitida
apos a equagio (3.32)]. Apos essas duas separagoes, resta a EDO para R(p). As trés EDOs separadas
s&o

7"+ BZ(2) =0, " +ud(p)=0 e p’R"+pR —(Bp*+p)R(p)=0. (5.21)

A EDOs para as partes Z(z) e ¢(y) sob as condigdes de fronteira que essas partes devem satisfazer
[deduzidas das condigbes de fronteira para u(p, ¢, z)] formam os seguintes problemas de autovalor, de
solugbes conhecidas [v. (2.30)]:

{Z"ﬂmz)o, 2 € (0,h) {5z:<zw/h>2 (1=1,23)
=
Z(0)=2Z(h)=0 Z1(z) = sen(lrz/h) .

{¢”+u¢(s@)=0, O {um:(mﬂ/v)2 (m=1,2,3,-") 5o

®(0) = &(y) =0 P (p) = sen(mmp/v) .

Substituindo os autovalores de 8 e p ja calculados na EDO para R(p) em (5.21), obtemos

Iy 2 2
P*R" +pR' —( B p*+ pm )R(p) =0, isto 6, p°R"+pR — [(U P+ () ]R(p) =0
—~ —~ h v

() ()
uma equagao de Bessel modificada de ordem mm /7, cuja solugao geral, de acordo com (5.6b), é

Rim(p) = Aum Irp (l%p) + Bim Koz (l%p) :
0
onde deixamos indicado que devemos fazer Bj,, = 0 para evitar infinitude quando p — 0, pois as
fungées K, sdo singulares na origem.
Logo, ja tendo determinado as trés partes Rim(p), @m(p) € Zi(2) que compdem a infinidade de
solugdes wm (p, ¢, 2) = Rim(p) Pm(¢)Z1(2) que o problema, até este ponto (ainda sem impor a condi¢ao
de fronteira ndo homogénea) apresenta, podemos formar sua solugao geral:

u(p, ¢, 2 Z Z Aim Imﬂ' (Lﬂ) m;rgo senl%z

=1 m=1

Agora impomos a condi¢ao de fronteira ndo homogénea:

u(b, @, z) ZZ lmlmw(ﬂ-b) sen@senl%z:f(np,z),
—_——

=1 m=1
M

onde percebemos que o termo marcado com * sao os coeficientes de uma série de Fourier dupla em

senos que sao dados por
lﬂ'b / / flo, 2z Sen

Ty ‘e
/Osen d/senhd

96

l
? sen % dpdz




Exemplo 5.2.5. Resolva o seguinte problema: u=0 (laterais)

U pﬂpaz - 8p2 p ap p2 8@2 822 Pa%z - u:f(p,so)
€(0,b), p€(0,v), z€(0,h) raio b (topo)
u(b, ¢,

/\\’U,IO

z) =
(rOz)—u(r'y, z)=0
0) =

u(r, ¢,  ulryp,h) = f(r,e) . altura h (face curva)
Trata-se de resolver a equagao de Laplace para u(p, ¢, z) T y'

no solido mostrado na figura, sob a condi¢ao de u se anular 2N AN
o1 . .* angulo <
em todas as faces desse sélido, exceto no topo (a Gnica ha- <" centralY
churada). Esse problema difere daquele no exemplo anterior \_/{
C s . T ©=0 (base)
apenas quanto a tnica face em que u # 0, ocorrendo isso, no
anterior, apenas na face 14 hachurada (na face curva). Por-
tanto, apos a separagao de variaveis u(p, ¢, z) = R(p) ®(¢)Z(z), aqui devemos resolver primeiramente
os problemas de autovalor que surgem para @(p) e R(p) e s6 ent@o proceder ao calculo de Z(z).
Podemos aproveitar, na resolu¢do do problema anterior, a equagdo (5.20), na qual havemos de
separar primeiramente a EDO para () usando a constante (—pu) e, depois, a EDO para R(p) usando
a constante (—\), assim resultando, ao final dessas duas separagoes, a EDO para Z(2):

R// + (1/p)R/ 1 @// Z// R// + (1/p)R/ //(/ Z//
e S e S | N o o7 Y
R TRty ~ R 2tz =0

=—u

=-A
e assim obtemos as trés EDOs separadas:
"+ ud(p) =0, p’R"+pR + (N> —)R(p) =0 e Z"+2Z(z)=0. (5.23)
E claro que para a parte @ valem os mesmos resultados em (5.22), isto é,

{é”+u@(<p)=0, @ € (0,7) ~ {um(Wr/“V)2 (n=1,2,3,---)

(5.24)
®(0) = &(7) =0

QHL(SO) = sen (mﬂ'(ﬁ/’Y) .

J& a EDO para R em (5.23) com g substituido por p,, = (mm/y)? produz uma EDO diferente
para cada valor de m, devendo todas satisfazer a condi¢ao de fronteira R(b) = 0 herdada do problema
original:

2
p%w+pH+[Mf(Tf)]R@)o,peme R(b)=0 (m=1,2,3-).  (525)
Este ¢ um problema de autovalor do tipo em (5.9) com v = mnr /v para cada m = 1,2,---, em que,

no m-ésimo problema, buscam-se os autovalores A, e as correspondentes autofungdes R, (p) (nessa
notagao com dois indices, n enumera os autovalores e autofungdes do m-ésimo problema de autovalor);
logo,

_ Cmn 2 n=1,2,3-- _ C’rrmp A L . ..
Amn = 5 +— Run(p) = J% 5 , onde | (pn € 0 n-ésimo zero positivo de J%

Agora revolvemos a EDO para Z(z) em (5.23) com \ substituido pelo resultado A = A\ = ((mn/b)?
acima e sob a condicdo Z(0) = 0 que se deduz da condigao de fronteira u(p, ¢, 0) = 0:

2" (Y 2(:) =0, zeO.h), 2(0) =
Z(z) = ¢1 cosh(Cmnz/b) + o senh (¢mnz/b)
Z(0)=0 = a=0 = Z=/2Zu(z)=senh({mnnz/b).
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Podemos agora formar a solugdo geral u(p, p,2) = 3_,. . Binn L (p) P (9) Zimn(2), ou

.55 323 B 1 () ("5 s ()| o

m=1n=1

Usando a condig¢ao de fronteira ndo homogénea, temos que

— Cmnh Comnp mmp
u(p, o, h Z: Z_‘: Bin senh( mb" )J%( W;)” )sen (—) )

y

*

Calculando os coeficientes (indicados pelo asterisco) dessa série dupla de Fourier generalizada usando
(2.38) e (2.39), concluimos a solucdo do problema:

C’H’an mﬂ(p
Cmn //fp, 7( b )Sfmi7 pdpdyp

Gmnp mmy
1723z (P52 )P lsen =2

e (521 = [ e (52 oy

v 0
||senw||2:/ sen2 7 gg = 1.
Y 0 gl 2

B senh

onde

Exemplo 5.2.6. Resolva a equacao do calor no setor de tronco
2 cilindrico mostrado & esquerda, inicialmente & temperatura Ty (p, ¢, z) (co-
ordenadas cilindricas), sabendo que a base ¢ isolada termicamente e as

b ' demais faces sao mantidas em 0°.
: A formulagao desse problema é a seguinte:
| 10T
h ! r=—— t
: V o at (p7 @7 27 )
ST pe(0,0), pe(0,7), z€(0,h), t>0
O T(b,p,21) =0

(5.27)
T(pa 0,z, t) = T(p”% Zy t) =0 cond. front.

or
E(p7¢705t) - T(pa@7h7t) =0

T(pa(pvzao) = TO(p7(10aZ) .

Apos a separagao espago-temporal T'(p, , z,t) = ¥(p, v, z) 7(t), o primeiro passo é resolver o se-
guinte problema de autovalor tridimensional formado pela equacao de Helmholtz sob condigoes de
fronteira semelhantes ao do problema de calor:

0% 10y 10% 0%

2 _ —__r T —_ =
V5 + Np(p, p, 2) = 72 erap + 0,2 + gz T A e, 2) =0

€(0,b), p€(0,7), z€(0,h)

1/1(17»%0,2) =0 (5.28)
1/J(Py 0, Z) = w(P»% Z) =0
N
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Fazendo ¢ (p, v, 2) = R(p) ?(p)Z(z) para separar as EDOs como de praxe, tendo em conta que havera
um problema de autovalor unidimensional para todas as partes R, ® e Z,

R// _|_ (1/p)R/ 1 45// Z//

R ??‘F?-‘FA—O
— S~
—p -8

obtemos as seguintes EDOs separadas:
7"+ BZ(z) =0, " +pd(p)=0, p’R"+pR +[(A=p)p’ —p]R(p)=0.

Logo, considerando as condigoes de fronteira que as partes R, ¢ e Z herdam das condigoes de
fronteira para ¥ (p, ¢, z), formamos os trés problemas de autovalor unidimensionais seguintes, cujas
solugoes podem ser prontamente escritas, pois ja sao conhecidas:

e Problema de autovalor na variavel z:
Z”“rﬁZ(Z)ZO Bl:(lﬂ-/h)2 (l:1a3557)
=
0e(0,h), Z(0)=2Z(h)=0 Z)(z) = cos(lrz/2h) .

e Problema de autovalor na variavel ¢:

{@"wab(so):o, peOr) {“m=<mﬂ/v>2 (n=1,2,3,--")

P(0) = @() =0 D (p) = sen(mmp/v) .

e Problema de autovalor na variavel p:

Para formular esse problema, é necesséario substituir na EDO para R(p) os autovalores f; e fun,
obtidos nos dois problemas de autovalor anteriores; ei-lo:

I\ 2 ma 2
2 DI / _ 2 — —
p°R" + pR +{[)\ (—h>}p (/y)}R(p) 0, pe(0,b), R(b)=0.
Esse é um problema de autovalor para cada par (I,m) (com ! =1,3,5,--- e m =1,2,3,---) do tipo

m (5.9), s6 tendo, portanto, solugao R(p) # 0 se X — (Ir/h)? = ({mn/b)?, onde Gy (n=1,2,-+-) é0
n-ésimo zero nao nulo de J%. Entao os autovalores de \ e as respectivas autofungoes sao

A= (%) +<CT) Sl R(r) = J% (C b T) , onde (p,y € 0 n-ésimo zero positivo de J% .

Enfim podemos apresentar os autovalores de A\ e as autofungoes do problema de autovalor tridi-
mensional em (5.28):

lmy2 Cmn )2 1=1,3,5--- CmnT mmp lmz
= = = m —_— —_— _—
Almn ( h) ( b ) <—>m7n=17273m Vx = Yimn(psp,2) = J y ( b )Sen 5 cos W

onde | (nn € 0 n-ésimo zero positivo de J m

Segundo (3.23), a solugao geral é T'(p, p, z,t) = Zl,m,n Ay e Nmn by (p, @, 2), isto &,

oo

N mn z
Tt = 3 50 3 A g (S50 sen " cos 77,

1=1,3,5-- m=1 n=1

Impondo a condigao inicial, obtemos

T(p,p, z,0) Z i i Alan% (Cﬂ;)nr) sen@ COSlﬂ—TZ =To(p,p,2),
1,3,5

m=1 n=1

donde, de acordo com (2.40) e (2.41), temos que
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mme

///TOP% me(g”znp) sen

Almn -

l
cos % pdpdpdz

CmnT
17z (S5 )11 1 sen =27 o

b
e ()1 = [ e

Y
mﬂ(pHZ / Sen2m7r<)0
0

/

onde

Cmnp
b

)pdp

|| sen

dp =

N2

Iz h
27 = —
cos N dz 5 -

l
[lcos 222 =

lﬂ'Z

Exemplo 5.2.7. Resolva o seguinte problema:

1 0%u
Viu = Cﬁﬁ(m ®,z,t)

pe(0,b), pe(0,7),
u(b,p,2,t) =0
u(p, 0, z,1)

z€(0,h), t>0

=u(p,v,2,t) =0

ou

—_— 0,t) = h,t) =0
5, (P9, 0,t) = ulp, @, h,t)
U(P7<P7Za0> = Uo(p,(p,Z)

ou
a(p7 2 Z,O) -

UO(p7 2 Z) .

cond. front.

(5.29)

Esse é um problema de onda no mesmo dominio espacial do problema de calor do Exemplo 5.2.6

e sob condigdes de fronteira semelhantes. Logo, de acordo com (3.24), a
Zl,m,n (Almn COS Wlmnt + Blmn Senwlmn) wlmn(pu ©, Z) [Wlmn =CV )\lmn ]7

solucdo geral é u(p, p, z,t) =
isto é,

(o] (o)
CmnT mm Iz
u(pa 252 t) = Z Z Z Almn COS Wimnt + Blmn Senwlmn)JmT (%) sen J T
1=1,3,5--- m=1 n=1
Impondo as condigoes iniciais, obtemos
a CmnT mmy Imz
“(P7<Paza0) = Z Alan"}Yﬂ' ( 77;71 )Se - T (,(),(p72’)
1=1,3,5-- m=1 n=1
€ oo oo
ou CmnT mmp Irz
E(pﬂpwzao) = Z Z O~}l1ﬂnBl7nnJm7" ( W;)n ) s€e h (pa<P7 )
1=1,3,5 m=1 n—=1 v
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Logo,

lrz

mry cos 5 pdpdpdz

) sen

mnﬂ)
7[) sen

trz

2
)

l
TP cos 22 pdpdodz
y h

h ¥ b
///uo(p7w,Z)Jm(<”Z”p
Apn = 00 20 C !
172y (27525 ) 1Pl sem =2  cos
e
h ¥ b g
///’Uo(p,QO,Z) J%(
Wirn Bimn = 200 Jo0
[ (225 ) 2
onde
CmnT 2 b 2 Cmnp
”J%( b )H =~/ J%( b )pdp
Y
||Senw||z:/ sen2™TP g, = )
0 Y 2
l h l h
||cos%||2:/O cos? == g =3

l
sen 7m7rg0||2 || cos 77rz|‘2
¥ h

5.3 Exercicios

5.3.1 Enunciados

1] Resolva o seguinte problema em coordenadas polares:

10T
2 [ —
VT (r,0,t) = v re(0,b), 0 (0,m), t>0
oT
T(®,6,t)=0, —5(r0t)=T(rm1)=0, T(r,0,0) =To(r,6)
2] Resolva o seguinte problema em coordenadas cilindricas:
Pu 1ou 1 0%u 0%u
2 e T B e T S R h
Vau(p, ¢, 2) 07 T oop T o T o 0, pe(0,b), peR, 2€(0,h)
ou
u(d, ¢, 2) = fg,2) . ulp,,0)=——(p,0,h) =0

0z

3] Resolva o seguinte problema em coordenadas cilindricas:

{

V2u(p,0,2) =0, pe(0,b), p€R, z€(0,h)

u(b790az) =0, U(P»%O) =0, u(pv<pvh) = f(ﬂ,tp)

4] Resolva o seguinte problema em coordenadas cilindricas:

V2u(p,¢,2) =0, pe(0,b), ¢<€(0,7),
ou

dp

du

(b,p,2) =0, 9

z € (0,00)

(p,0,2) =u(p,7,2) =0, ulp,p,0)= f(p,p) .

5] Resolva o seguinte problema em coordenadas cilindricas:

{

u(a7§0"z) = f(QO,Z) ’ u(p,O,z) = u(p,ﬂ'/Q,Z) =

6] Calcule a solugdo T (temperatura) do seguinte problema de calor formulado nas coordenadas

cilindricas:

10T
QT:77
v a ot PEe
oT
T = — = =0
p=b Ozlz=o0 2=h
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Vzu(p,gp,z):o, pe(a,oo), 906(0371—/2)7 ZG(Oah)

0, ulp,,0) =ulp,p,h)=0.

(0,0), ¢€(0,2m), z€ (0,h), t>0

T
t=0

TO(pv Z) :




7] Calcule a solugao

T (temperatura) do seguinte problema de calor formulado nas coordenadas

polares:
10T
== 2 >
\Y4 aat,re(a,b),ﬁe(o, m), t>0
T =7 =0 e T‘ = Ty(r).
r=a r==b t=0
5.3.2 Solucgoes
1
_ A V2 + A =0
T(Taeat) = 1/’(7“7 Q)T(t) 1}[} - E? =-A = {7_/ + )\O[T(t) =0.
0
V24 M 6) =0, T € (0.5), B (0.m), F0(0) =(rm) =0
0% 10y 1 0% p(ro)=rroew R'+(1/r)R 1 6"
2 oy 1oy 1oy _ : -7 —
V¢+)\¢—ar2+rar+r2892+/\d) 0 7 +7"2 9+/\ 0.
——
—n
, mas 2 2
{9 +p0(0) =0 um:(§> 9(2) (m=1,3,5---)
0'(0) = O(r) =0 O (6) = cos %
PR’ +rR + (M2 — iy )R(r)=0, r€(0,b), R(b)=0.
~
(m/2)?
Amn = (Cm—n)z L=LE R (r)=Jm (CmnT) [ (mn : n-ésimo zero positivo de Jm |
mn b mn - 7 b mn - p ? *
T(r,0,t) = i Ay €At ] (CmnT) col mé | AY
m=1,3,5--- n=1 z b 2 T=0
T(r,6,0) iA J (CW”“)C mi_T(re)
s Uy - mn % b 2 — Lo\’
m=1,3,5--- n=1 r
T b C 0 0
/ / T()(T,G)Jm( mm) cos 2 drr df C N o
0o Jo 2\ b 2 ~ v z
Amn = b (: , p m T=0 6T/80 =0
2 (GSmn 2 MU
/OJ%( 5 )rdr/o cos do
/2
2
z Z—UZO
2 2 2 2
V2u(p,p,z) = 20 100 L O O b (topo)
dp?  pdp  p?0p* 022 :
wlpp ) =R (@) Z(z)  R'+(1/p)R 1 " 7" 0 i
R 2o "7 h | u=flp,2)
\_7 \—/ﬂ : % (lateral)
9 ;
@//4_”@(@):0 M?nz(m) :mz(m207172a3"') i
eR = m
¥ D () = am, cos mep + by, sSENMP
P(p) = D(p + 2m) (bo = 0) .
Z"+pBZ(z)=0, z€(0,h) N By = (Ir/2h)? (1=1,3,5--) (base)
Z0)=2'(h)=0 Z(z) = cos(lmz/2h) .
lmp lmp
2 p!! / 2 — — — _r _r
(ll)Q m? 0 (%)
2h
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) Ay =0 para evitar infinitude quando p — 0, uma vez que xli_r)n@ Ky (z) =00

l l
Lp) (am cosme + by, senme) cos e

i (,,2) = Bim(p) () 21(2) = eim I (5 =

Denotando ¢;mam = A € Cimbm = Bl -

lmp lmz
u(p, ¢,z Z Z I, ( ) (A cosmep + By, senmep) co8 - (Bo=0) m
1=1,3,5--- m=0
lmh Imz
Z Z I, ( ) (A cosme + By, senm) CO8 - = I, 2)
1=1,3,5--- m=0

h 27
Imz
// fle, 2 cosmgocos—dg@dz
(lwb)A _Jo Jo 2h .

9h 2m 9 h 2[
d T2
/0 cos” meyp go/o cos 5% z

2h
7 se m#0 h/2

21 se m=0

h 27
/ / fle,2) Senm@coslﬂ—zdgadz
0 Jo 2h .

Imb
(2h> s I b Inz
/ sen“my dp / cos? 22 4z
T h/2
3
z_u=f(p,p)
topo)
Pu 10u 1 0% 0O%u w(pyp,2)=R(r) ®(¢)Z(=) (topo

Viu(p,p,2) = 55+ -+ 555 + 795 = — b

ule:%) 0p2+p@p+p28¢2+8z2 !
R'+(pR 1@ 2 RAWpR p 20 b | uso

R P P, Z R 2 Z i /| (lateral)
- ~ :
2 S
D" + ud(p) =0 Mm:(@ =m? (m=0,1,2,3---) o | ~_>
T LEmmmm
pER = D(p) = ay, cosmp + by, senmep -l y
P(p) = O(p +2m) (bo = 0) . T R_u=0
(base)
- , ) Cmn (n=1,2,3--+): n-ésimo zero positivo de J,,
p°R" + pR' — (Ap® — pm )R(p) =0 Conm\ 2
\m/; - autovalores de A : A\, = (T)
Z" — Apn Z(2)=0 = Z=Zpnn(2) = cmn cosh Cmbn + dypn sSenh =—— Cng
2
()

Zon©0) =0 = com=0 = Zun() = dun senh 7

Cmn P
b

CmnZ

Umn (07 2 Z) = Run (P) @m(@)zmn(z) =Jm ( ) (Clm cos my + by, senmgo)dmn senh

Denotando apdimp = Amn € bmndmn = Bmn -

oo

u(p7 2 Z) =
m

Cn;)nz (B()n _ 0) -

Z I (C";)np) (Apn cosmp + By, senmep) senh

Il
=)
—

n=

o0

mn mnh
Im (C p) mn COS MY + By, senmep) senh ¢ b

u(p,ph) = >

m=0 n=

[
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o C np
Cmn / /fp7 )cosmwdpdcp _

Amn se 2m
/ J2 (Cmnﬂ) dp / cos® my dyp
0 b 0
—_—
7 se m#0
21 se m=0
2m b C p
mn
Conh / / f(p w)JnL(T) senmp pdp dp
an Senh%‘ S =20 o | |
m>1
- / J2 (Cn;;'p) pdp / sen?me dip
0 0
—_—
4
(X> .
meio
21 semi-infinito
dufdp = 07 N “Nu =0
(esquerda) (direita)
Aufdp =0
(face curva)\ y'
A\—Au: (p,¢) (base)
0%u 10u 1 0%u 0%u u(p,p,z) = R(r)P(p)Z(z)
v? _ 2 I et o i)
u(p, p,2) 02 ooy T o T o
R// _"_ 1 R/ 1 @// Z// R// 1 R/ Z//
R o 197, 27 TR k27
R N A R p>  Z
—
- ~
{ "+ ud(p) =0, ¢ € (0,7) {um = (mm/2y)? (m=1,3,5--")
=
P'(0) = &(v) = D, () = cos(mmp/27) .

2
PR + pR' + [ApQ— (%) ]R<p>=o7 pe(0,b), R(b)=

_ (Cmn\? | n=123- _ Cmnp
Amn = ) Ryn(p) = J g = ) onde | Gy é 0 n-ésimo zero positivo de Ji, m |-
2 2l

2
Z" - (Can) Z(Z) =0, z¢ (0» OO) = Z= Zmn(z) = Amn e—Cmn,Z/b + Bmn eCng/b .

Zmn(z = 00) finito = Bppn =0 = Z = Zpn(2) = App e =/t

= — z Cmnp mme
U(p7@7z) = Z Z Amne Cmnz/b J% (T) COS 27 |

m=1,3,5--- n=1

S Cmnp mmy
U(P»%O) = Z Z Amnj%%"( b )COS 2y :f(P7<P)

m=1,3,5-- n=1

mn mm
g ()
o G
mnp mmy
/OJm;r< b )pdp/ cos? o dy
| S S ——

w/2
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=0
______ | F_ (itras)

U= f((P,Z)

(face curva)

—— (X

u=0 P
(base) oo
R// + (1/p)R/ 1 @// Z// R// + (1/p)R/ /1/
e = R B _g=0.
R +p2 45+ Z - R p? b
—p -8

Z(0) = Z(h) =0

{Z/,—i_ﬂZ(Z)_Ov ZG(Ovh) {5l:(lﬂ—/h)2 (1:17273;"')
=
Zi(2)
{¢”+u¢(s0) 0, pe(0,7/2)

z) = sen(lmz/h) .
fim = [(mm)/(x/2)]* = 2m)? (m =1,2,3,-

o )
?(0) = &(y) =0 D (@) = sen(2my) .
lmp lmp
2 p!! o 2 — = =
P R +pR ( ﬂl po+ pm )R(p> 0 = R le(P) Alm IQm( h )+ Bl'rrLKQm( h )
(l}l)z (2m)2

0 (%)

Apn = 0 para evitar infinitude quando p — oo

l
u(p, p, 2 Z Z BlmK2m< )sen2m<p sen%z [ ]

=1 m=1

, uma vez que lim Iy, (z) = oo .
x— 0
Iz
E g BlmK2m< )sen?mcpsenT = f(p, 2) .
=1 m=1

h
lm
2m sen—d dz
Ira // f(p, 2) sen2mep e
BlmK2m( )

h 71'/2 h l
/ sen?2mep dy / sen? 2 4
0 0 h

w/4

h)2
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6

Este problema esta ilustrado a direita. O fato de a temperatura

inicial Ty(p, z) ndo depender da coordenada angular ¢ e a existéncia z T=0
de simetria na geometria do problema em relacao a essa coordenada (’m)
acarretam uma solucdo que também nao dependente de ¢: T(p, z,t). b
Note que este problema é o do Exemplo 5.2.6, mas com a tempera- .
tura inicial mais simples, To(p, z), e a geometria mais simétrica do T‘ N T (p,2)
presente problema. O calculo da solugao T'(p, z,t) deste problema &, t=0 1 T0\Ps -
portanto, mais simples por causa da auséncia do termo (9%T/0¢?) /p? f | T=0
no laplaciano em coordenadas cilindricas; observe: i (lateral)
2 ’ ’ ! N

T(o,20) = 0o ) 7t) = P =T = x A g

" v —/\ata ! z k./aT/az:()
"+ Xdat(t) =0 = T(t)=cre (base)

2 2
VA X, 2) = S 4 290 T () =0

0p2  pdp 022
¥(p, e, z) sob as mesmas condic¢oes de fronteira que T'(p, z,1) .

W) =Rp2G) = SRR gyziace o (DTG0 e -
-
{Z//+5Z(z) =0, z€(0,h) {Bz = (In/h)* (1=1,3,5,---)
=
Z'0)=2Zh)=0 Z1(z) = cos(lwz/2h) .
— @Y = G/

Cmn : n-€simo zero positivo de Jn%w .
I
Tin(t) = Ap et | onde  N\p, = (—)

I 2'*(§%2)2

T(p,z,t) = Z i “Amnat g (@;ﬂ)cosl%z
1,3,5---n=1

=

lm\2

p*R" + pR' + [)\ - ﬁ) ]pQR(p) =0
€(0,b) : R(b)=0.

> mn l
T(p,z,0) = Z ZAlanmﬂ'<< r) H@COS%:T()(,O,Z).

1=1,3,5--- n=1

hoopb
Cmnp Iz
/O/OTO 0,2 me( ) os — pdpdz
b R :
Cmnp / 2l7T
/OJ%W< b ) dp ; cos ” dz
7

Este problema consiste no calculo da temperatura 7" em coordena-
das polares na placa em forma de arruela ilustrada a direita. Como no
Exercicio 6, a independéncia da temperatura inicial Ty(r) da coorde-
nada angular 6 e a simetria geométrica implicam uma solugao T'(r,t)
(independente de 6). Logo,

9*r 10T  19°T 19T T(rt) = R(r)7(t)
2T: - i - — _ 5
Vv or? +r8r+r2 202 a ot A
=0
R//+(1/T)R/_L”__>\ N T+ dar(t) =0 = 7(t)=cre
R o rR" +rR + M\r?R(r) =0
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Essa EDO radial e as condigbes de fronteira para R(r) que decorrem das condigoes de fronteira
originais, T'(a,t) = T'(b,t) = 0, formam o problema de Sturm-Liouville

R’ +rR + M?R(r) =0, 7€ (a,b)
R(a) = R(b) =0 (condigoes de Dirichlet) ,

cuja solugao é como segue:

Para A=0: R(r) =c1 +calnr

R(a)=c1 +c2lna=0

R(b) =1+ ealnb =0 > = ¢ =c¢=0 = R(r)=0: nao ha o autovalor nulo.

Para A < 0: A= —k% (k> 0): R(r) = c1lo(kr) + caKo(kr)

R(a) = c1Ip(ka) + coKo(ka) =0

R(b) = e1Io(kb) + co Ko (kb) = 0 > = c¢1=c2=0 = R(r)=0: nao ha autovalor negativo,

Io(ka) Ko(k(l)
Io(kb)  Ko(kb)

Para A > 0: A =k2 (k> 0): R(r) = c1Jo(kr) + caNo(kr)

pois demonstra-se que

#0Vk>0.

Neste caso, o sistema algébrico formado pelas equacoes provenientes da imposicao das condigoes de
fronteira R(a) = R(b) =0,

= c1Jo(ka) + caNo(ka)
= ClJo(kib) + CQNo(k'b)

0
0,

*
—
X
==
(.

admite valores de ¢; e ¢y nao simultaneamente nulos, porque o determinante dos coeficientes se anula
para uma infinidade de valores k, (n =1,2,3---) de k:

‘JO(’“‘) No(ka) | _ Jo(ka)No(kb) — Jo(kb)No(ka) = 0 = k=k,.

Jo(kb)  No(kb)

Portanto, ao autovalor \,, = k2 corresponde a autofungio R, (1) = c1,Jo(kn7) + c2,, No(kn7). Nesta
expressao, ci, € Co, Nao sao constantes independentes, pois estao relacionadas pelas duas equagoes
do sistema algébrico * com k = k,. Como essas duas equagoes sao equivalentes (uma ¢ multipla da
outra pelo fato de o determinante dos coeficientes se anular), podemos usar qualquer das duas para
expressar uma delas em termo da outra: Da primeira equagao, c1,Jo(kna) + conNo(kna) = 0, tiramos

Can = —C1nJo(kna)/No(k,a) para eliminar ca,,, obtendo a seguinte expressdo para R, (r):
Jo(kna
R, (r) = cindo(knr) + conNo(knr) = cindo(knr) — Cln]\;;((krﬂ))No(knr)
- [ G B
- |:N0(k.na>:| [Jo(knr)NO(kna) Jo(kna)No(knr)] A
constante

Em resumo, os autovalores de \ e as respectivas autofungoes séo

Ap = k2 22223 Rr) = Jo(knr)No(kna) — Jo(kna)No(knr)

[ kn ¢ a enésima raiz positiva da equagao Jo(ka)No(kb) — Jo(kb)No(ka) = 0]

Agora concluimos rapidamente a solugdo do problema:
oo
T(r,t) =Y ApRp(r)e " m
n=1

_ fng(r)Rn(r)rdr u
ij%(’/‘)TdT

T(r,0) = ZAan(r) =To(r) = A,
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Capitulo 6

A Série de Legendre e sua Aplicacao
na Resolucao de EDPs

- Ref. [5], se¢. 12.10
- Ref. [8], se¢.11.5.2 € 13.3
- Ref. [6], cap.7
6.1 Polinémios de Legendre como Autofuncgoes

Nosso objetivo aqui é resolver problemas de autovalor formados com a EDO

1
Sened%(sene%) 1AO(0) =0, 6.1)
que surge na separacao de varidveis das equagoes do calor, da onda e de Laplace nas coordenadas
esféricas (r, 6 e ) sob as condigbes de fronteira mais corriqueiras [neste momento, é instrutivo ler, na
pagina 112, o inicio da solugdo do Exemplo 6.2.1, até a equagdo (6.30)]. Para reconhecer que EDO
é essa, vamos transforméa-la efetuando a mudanca de variavel p = cosf. Denotaremos as fungoes
envolvidas nessa transformacao como mostra o esquema da composicao de fungdes que ocorre nela:

0 u(0) i () 6= 6(u)=6(0) g((i)) denota a fuTc;ﬁo que leva i e;ln ,2
ow=6(e) e(0) " 0 em &

Eis os célculos (basicamente o emprego da regra da cadeia):

o _ 46 dp = sen@ﬁ =— sen%‘ﬁ
a9 dp _db A  ~—~— du
~~ 1—p2
—senf
d doy  d 2 dO7 du
= plng) =gl %
<~
—senf
1 d de d de
— = =) = 1—p2)—1 .
7 send de(seng d0) i [ )du}

Assim se transforma o primeiro termo da equacdo (6.1), a qual, coma substitui¢ao desse resultado,
toma a nova forma desejada:

d doe
1 — 2 == = 2
du{( u)du}JrA@(u) 0, (6.2)
ou, efetuando a derivada do produto,
(1—-p?)0" —2u0" +10(u) =0. (6.3)

Ora, essa EDO, de acordo com (4.15), é a equagao de Legendre, cuja solugao ja foi calculada na
segdo 4.2.1. A forma da equagao (6.2) é a de Sturm-Liouville, (2.24), com as fungdes u, v e w dadas
por

W) =1— >, o(p)=0 e wp)=1. (6.4)



Multiplicando a equagéo (6.1) por senf, obtemos

dil@(seneﬁ) + (Asen0)O(0) =0, (6.5)

que é a forma de Sturm-Liouville da equagdo de Legendre na variavel 8; comparando-a com (2.24),

vemos que

u(@) = senf, v(@)=0 e w(l)=1. (6.6)

Uma vez identificada a equagdo (6.1) como uma EDO que ja sabemos resolver, passamos a discu-
tir os problemas de autovalor formados com ela, buscando os autovalores do paradmetro A\ aos quais
correspondam solugbes nao nulas que satisfagam a condigao de finitude ou alguma outra porventura
especificada. Tendo em conta que usaremos as coordenadas esféricas para resolver problemas defini-
dos tanto em esferas quanto semiesferas, sera necessario buscar as solugdes da EDO (6.1) tanto para
0 € (0,7) quanto 6 € (0,7/2). Consideramos a seguir um problema de autovalor que ocorre numa
esfera e dois que ocorrem numa semiesfera.

Problema de autovalor (i)

%(sen@%) + (Asenf)O(0) =0, 6 < (0,m). (6.7)

Este problema ocorre quando o dominio espacial da EDP é uma esfera. Trata-se de um problema
de Sturm-Liouville com condigao de fronteira do tipo CF-4 em (2.27), pois, nos pontos extremos do
intervalo (0,7) considerado neste problema de autovalor, temos, de acordo com (6.6), que u(f) =
senf) — 0 quando § — 0" e 6 — 7.

Vamos escrever o problema (6.7) na variavel p. Nessa variavel, a EDO é dada por (6.2) ou (6.3), e
o problema (6.7) toma a forma

[(1- 126" — 246" +26(1) =0, pe(-1,1)] . (6.8)

Obviamente, este ¢ um problema de Sturm-Liouville equivalente aquele em (6.7). Note que, em vista
de (6.4), a condicio CF-4 continua sendo satisfeita: u(u) = 1 — u? — 0 pelas laterais dos pontos
extremos p = %1 do intervalo (—1,1).

Vejamos os principais resultados deste problema de autovalor (i):

a) Autovalores e Autofungoes

Foi exatamente o problema de autovalor em (6.8) que estudamos na segao 4.2.1; veja-o em (4.15).
No resumo ao final dessa se¢ao, vemos 14 listados os autovalores e as autofungoes, que repetimos aqui:

autovalores \; = I(l + 1) =L, autofungoes O;(u) = Py(u)

6.9
ou 6;(0) = Py(cosb) , (69)

onde Pj(u) s@o os polindémios de Legendre (ou fungoes de Legendre de 1% espécie) descritos na segao
4.2.2. Podemos dizer que 0;(p) = P,(p) sdo as autofungdes do problema (6.8) e ©;(0) = P;(cos ) sao
as do problema (6.7).

b) Relagao de Ortogonalidade

Como em (6.2) w(p) = 1, temos que os polinomios de Legendre P;(u) s@o ortogonais com respeito
a uma funcdo peso unitaria:

1
[ RPdn =0 se 1 #m (6.10)

Por sua vez, os polinomos de Legendre com argumento cos#@, isto é, P;(cosf), sdo ortogonais com
respeito a fungéo peso w(f) = senf dada em (6.6):

/ P;(cos0) Py, (cosf) senfdf =0 se [ #m, (6.11)
0
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resultado que também se obtém efetuando-se a mudanga de variavel p = cos 6 na integral em (6.10).

Na verdade, os resultados expressos na variavel # podem ser todos obtidos sem considera-los como
consequéncias do problema de Sturm-Liouville em (6.7), bastando deduzir os resultados na variavel
u resolvendo o problema de Sturm-Liouville em (6.8) e entdo expressa-los na variavel 6 por meio da
mudanca de variavel p = cos . Mas é instrutivo continuar considerando simultaneamente os problemas
de Sturm-Liouville em (6.7) e (6.8). Por outro lado, sdo especificamente os resultados na variavel
que nos interessarao quando resolvermos EDPs mais adiante, o que justificaria obté-los considerando
tao somente o problema (6.7). Mas, como os resultados na variavel pu sdo amplamente divulgados por
serem importantes em muitas aplicagoes, prosseguiremos nesse caminho duplo.

¢) Normas Quadraticas

De acordo com (4.27),
1
1GNP = [ PG = 5 (612)

logo,
T 2
|| P, (cos 6)]|? :/0 P?(cos 0) senfdf = TS (6.13)

d) Série de Fourier Generalizada

Associada as autofungoes do problema (6.8) temos a seguinte série de Fourier generalizada de uma
funcao f(u), obtida usando-se a formula na equagao (2.17):

F) = AP(p), (6.14)
=0

com

[jwmwm

1
(P f) /1 :”f/fwmwm (6.15)

A = =
ERAMIE

P} (p)dp -
-1

2/(20+1)

Esta é a chamada série de Fourier-Legendre, ou, simplesmente, série de Legendre.
Similarmente, considerando o problema (6.8), temos

FO) =) AiP(cost) (6.16)
=0
com
(Pi(cos0), ) (0) /Wf(G)Pl(cosﬁ)senﬁdG o+l [
A=t L = L0 = / f(0)Pi(cosf)senfdf .  (6.17)
[[Pi(cos B)]] /P2(cose)sen¢9d9 2 Jo
0 l
2/(21+1)

Problema de autovalor (ii)

O(n/2) =0 — prob. (ii-1)
%(SQHG%) + (Asenf)O(09) =0, 0 € (O, g) , com { ou (6.18)
©'(r/2) =0 — prob. (ii-2)

[Note que agora estamos agindo em conformidade com o primeiro paragrafo apés (2.27): nao expli-
citamos os limites laterais nas condigdes de fronteira acima, isto é, nao escrevemos @(n/27) =0 e

0'(r/27) = 0).

110



Em (6.18) temos dois problemas de autovalor — a que faremos referéncia por (ii-1) e (ii-2) — que
ocorrem quando o dominio espacial da EDP é uma semiesfera, que diferem quanto & condigao imposta
no ponto 6 = /2 (correspondente & base da semiesfera): no prob. (ii-1), temos a condi¢ao de Dirichlet
O(m/2) = 0 e, no prob. (ii-2), a de Neumann 6’(7/2) = 0. No outro ponto extremo desse intervalo,
6 = 0, ambos os problemas apresentam uma condi¢do CF-4 (supressiva). Sdo, portanto, dois problemas
com condi¢do de fronteira mista (i.e., do tipo CF-5).

Na variavel p, (6.18) toma a forma

6(0) =0 — prob. (ii-1)
(1—p?)0" —2u60" +X0(u) =0, pe(0,1), com { ou (6.19)
©'(0) =0 — prob. (ii-2)

Estes também sao, obviamente, problemas de condi¢ao de fronteira mista: uma condi¢ao de Dirichlet
[prob. (ii-1)] ou Neumann [prob. (ii-2)] no extremo p = 0 do intervalo (0,1) e uma condi¢do supressiva
no extremo em p = 1 (ponto em que 1 — p? se anula).

a) Autovalores e Autofungoes

Naturalmente, as autofungdes @;(u) ainda sao polinomios de Legendre P;(1), mas nem todos esses
s@o autofungoes. No caso do prob. (ii-1), sdo autofungbes apenas os polindémios de Legendre fmpares,
porque satisfazem a condigdo ©(0) = 0 (a de o grafico passar pela origem, algo que acontece com
as fungdes impares continuas). Ja no caso do prob. (ii-2), sdo autofungbes apenas os polinémios de
Legendre pares, que satisfazem a condigdo ©'(0) = 0 (derivada nula na origem, algo caracteristico das
fungoes pares diferenciaveis). Resumindo:

autovalores \; =[(l +1) <—— autofungdes ©;(u) = Pi(p) ou 6;(0) = Py(cosb) ,

1=1,3,5,--- mno prob. (ii-1) (6.20)
onde { 1=0,2,4,--- no prob. (ii-2) .

b) Relagdo de Ortogonalidade

Tal relacdo é aquela em (6.10) ou (6.11), mas, agora, com o intervalo de integragdo restrito a
w € [0,1] ou 0 € [0,7/2] em ambos os problemas (ii-1) e (ii-2):

1
/ P(p) P (p)dp =0 se 1 #m, (6.21)
0
w/2
/ P;(cos0) Py, (cosf)senfdfd =0 se 1 #m . (6.22)
0
¢) Normas Quadraticas
Usando (6.12), temos que
2 2 R Lt 1
IPcosP = PGP = [ PRGodu =5 [ PR = 5 (6:23
—_————
2/(20+1)

d) Série de Fourier Generalizada

Na variavel p, a série de Fourier generalizada de uma fungdo f(u), de acordo com (2.17), é
fw) = Z AP (p)  ou Z A P(p) (6.24)
1=1,3,5 1=0,2,4+

prob. (ii-1) prob. (ii-2)

nas quais, em ambos os problemas, os coeficientes sao dados por

(Br(p), f (1))

VAR

=@+ 1) [ PG (6.25)
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Em (6.24) temos as chamadas série de Legendre impar e série de Legendre par.
Na variavel 6, temos

fO)= > AP(cost) ou > A Pfcost) (6.26)
1=1,3,5--- 1=0,2,4--
prob. (ii-1) prob. (ii-2)

onde, para ambas as séries, os coeficientes sao dados por

{Pr(cos0), f(6))

A =
" T [Pi(cos )2

w/2
= (20 + 1)/ f(0)P,(cos6)d6b . (6.27)
0

Enfim, ressalte-se que as fungoes de Legendre de 22 espécie Q);(p) sao singulares nos pontos p = +1,
i.e., em 0 = 0 e & = 7, que sdo respectivamente as colatitudes dos polos norte e sul de uma esfera.
Como um ou ambos os polos sempre estarao nos dominios espaciais das EDPs que resolveremos usando
as coordenadas esféricas, sempre descartaremos essas funcgoes para evitar solucoes infinitas.

6.2 Aplicacao da Série de Legendre na Resolucao da Equacao
de Laplace

Exemplo 6.2.1. Calculo da solucio da equacdo de Laplace V2u(r,0,¢) = 0 (coordenadas
esféricas) numa esfera de raio b centrada na origem sob a condigdo de fronteira u(b, 0, ¢) = f(6).

U — 1(0) Note que a condi¢ao de fronteira u(b, 8, ¢) = f(#) [menos genérica que a
r=b . ¢ condigao u(b, 8, ) = f(6, ¢)] ndo depende do angulo longitudinal ¢; a solugao,
\ portanto, também deve independer desse angulo: u = u(r,6). Ja desprezando,
no laplaciano, o termo contendo a derivada parcial em relacao a ¢, podemos
_____ _ b\ escrevera formulacao do problema como segue:
0 > ) u  20u 1 9 ou
)=—+-———+——— 06— ) =0
Viu(r,6) or? * r or + r2 sen6 00 (sen 80) (6.28)
ref0,b], 0€[0,x], u(b,6)=[(0).
Com a substituigao de u(r,8) = R(r) ©(0) na equagao de Laplace, separamos duas EDOs:
d’R 2dR R d de
( dr2 7 dr ) r2sen6 df (sen dé )
MZR@ r?R" + 2rR’ N 1 d (Se ade) 0
2 (seng2) =
R O send db do
-2
d de
_ @(senew) + (Asenf)O(0) =0, 0c[0,7]......... EDO angular (6.29)
PR+ 2rR —AR(r) =0, 7 €[0,b]..cccvveiii. .. EDO radial (6.30)

Separamos a EDO angular usando a constante (—\) em conformidade com a nota emitida apds a equa-
¢ao (3.32), pois a sua resolugao com 6 € [0, 7] constitui um problema de Sturm-Liouville: exatamente
aquele na equagdo (6.7), cujos autovalores e autofungoes, como vimos, sao

1=0,1,2

A= =1(+1) 6,(0) = Py(cosb) . (6.31)

Substituindo A = A\; = I(I + 1) na EDO radial (uma equagao de Euler-Cauchy) e resolvendo-a,
obtemos
R+ 2rR =1+ 1)R(r) =0 = R=Ry(r)= Ayr' + By/r*". (6.32)

Podemos agora formar a solugao geral u(r,0) = ", Ri(r)6;(0), resultado que realcamos abaixo:
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Eis a solugao da equagao de Laplace em coordenadas esféricas em proble-
mas com simetria longitudinal (independéncia da coordenada ¢) numa esfera
centrada na origem:

V2u(r,0) =0 =3 (ar'+ lH)Pl(cos o). (6.33)
1=0
No problema sendo resolvido, devemos fazer B; = 0 para evitar que a solugao tenda a infinito

quando r — 0; assim,
0) = Z Ayt Py(cosf) m
1=0

Para determinar A;, exigimos que a solugao satisfaca a condicao de fronteira nao homogénea:

- Z Ay b Py(cos) = f(0) .

=0

Essa equagao mostra que A;b' sdo os coeficientes da série de Legendre de f(6) descrita por (6.16) e
(6.17):

20+1

20+ 1
Albl l+ / f Pl(cose)senede = A= o

/Tr f(0)Py(cosf)senfdf m
0

A solugao é formada pelas duas equagoes finalizadas com um quadrado negro.

Exemplo 6.2.2. Calculo da solugdo u(r,8) da equagdo de Laplace na regido entre duas
superficies esféricas centradas na origem e de raios a e b (a < b) sob as condigoes de fronteira u(a, ) =0

e u(b,8) = f(0). U = f(9)
r=>b

Como as condigoes de fronteira nao dependem da longitude ¢, a solugao \
geral é aquela dada na equagao (6.33):

u(r, ) = i (Al 4 lBiH)Pl(cos 0) .

=0

Vamos impor primeiramente condigao de fronteira homogénea:

= B B
u(a,ﬁ):z<A1a+ l+1)Pl(cost9)—0 = Alal+al—+l1=O = B =-
1=0
cuja substituicao na solugao geral fornece
o0 a2+ 4, o0 . aH!
u(r,0) = lz_% (Al r+ 7+>H(cos ) = wu(r0) = ; A (r — I )Pl(cos 0) m

Agora impomos a outra condi¢do de fronteira:

21+1

0) = At = S ) Pleos) = Y
=0

=0

pRU+L _ 2141
[ T}Pl(cosﬁ) = f(0) .

Entre colchetes temos os coeficientes da série de Legendre de f(6); usando (6.17), podemo escrever

p+1 _ g20+1

2041 [T
! RS =— /0 f(0)P(cos0)senf db ,

donde
(20+1) pitt

A= 2(b2HT — g2I+T)

/f )P;(cosf)senf db m
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Exemplo 6.2.3. Resolva o seguinte problema em coordenadas esféricas:

0?u  20u 1 0 Oou
—_—— — 67 =

82+rar+r2sen989( 89) 0

€[2,0), €07, u(2,0) =—2cosf + 6sen?d + 10cos® 0 .

V2u(r,0) =

A figura abaixo ilustra esse problema.

AY
[o.0) o0
AN d
PN U = —2cos0+6sen’0 +10 cos®d
- e r=
o
e Y SN
- \\l .
~ ,/’ ol
\\ ~-_JY_- /I T
N ’
oo/ \00

De acordo com (6.33), temos que
Z (Alr + H_1>Pl(cos 6) .
1=

— B
Mas u(r — o0,0) deve ser finito = A, =0 = E l Pi(cos®) . [1]
rit
1=0

Agora impondo a condicao de fronteira, obtemos

oo

B L = cos
u(2,6) = ZTL.P[(COSG) = —2cosf + 6sen?0 +10cos® 0 ' <osf —2p +6(1 — p?) +10p*
1=0
ou -
Zﬂp()—G—Q — 6u? + 1043 [11]
s hie) = pu— 6p T
1=0

Vemos que B;/2!*! sdo os coeficientes da série de Legendre do polinémio no membro direito. Ora,
qualquer polindmio pode ser escrito em termos dos polinémios de Legendre facilmente usando as

relagoes que expressam as poténcias u® = 1, u, p?, --+ em termos de Pj(u):
Po(n) = 1 1= R
Pi(p) = p Py(p)
P = 25 - N W= w (6.34)
Po(u) 5u 2—3u 5 2P5( );3P1( )

Podemos, portanto, escrever [II]| na seguinte forma:

By B1 By Bs

ﬁpo(#) -5 Pi(p) + 55 P2(N)+¥P3(ﬂ)+“'

2Py () + Po(p) . 2Ps(p) + 3P (1)
3 5

= 4Py(p) +4Pi(p) —4APs(p) +4Ps(p)

6 Po(p) —2P1(p) —6-

donde, por simples comparagao, obtemos B; =0 para [ > 4, bem como

By B, By Bs
— =4 — =4 — =4 — =4 By = B =1 By = —32 Bs =64 .
5 Y 3 T = 0=28, 1 6, 2 32, 3=06
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Substituindo esses resultados em [I], obtemos a resposta:

B B B B
u(r,0) = “2Po(u) + 5 Pi() + 5 Pa(yr) + 7 Pap)

8 16 32 64
= ;Po(cos 0) + r—QPl(cos 0) — T—SPQ(COS 0) + r—4P3(COS 0) m

Alternativamente, podemos, no lado esquerdo de [II], substituir P;(u) por suas expressdes em
termos de u, assim obtendo uma série de poténcias de u, cuja comparagao com o polinémio no lado
direito permite calcular B;. Mas surge a questdo: é necessario substituir todos P;(u) (I =0,1,2--)
por suas respectivas expressoes? A resposta é nao! Sendo de 32 grau o polindémio no lado direito, basta
considerar, no lado esquerdo, apenas os polindmios de Legendre de até o 32 grau [até o Ps(u)|, uma

vez que o conjunto {PZ(N)}?: o » sendo linearmente independente e tendo polindmios de graus 0 até 3,
é uma base do espago vetorial formado por todos os polindmios de até o 3° grau.

Calculemos agora B; usando esse procedimento. Em [II], vamos substituir as expressdes dos po-
linébmios de Legendre de até o 3° grau:

Bg By

2TP0(M)+§P1(M)+ 27A2P2(M)+ i Ps(p)
BO Bl B2 3/1,2 -1 B3 5/13 - 3#

I D2 D3 op7 = oK
p Tt 2 16 2

== = 6—2u—6u%+104°
1 = e+ % p—6p° +10p” ,

16 32

- (BQ BQ) (Bl 3B3) @ 2 533 3
- \2 16

donde, comparando os coeficientes dos polindémios em ambos lados, obtemos

5B,

223 By = 64

32 = 3 6 )

3B,

e B

16 2 :

B 3By B 3(64)

AR e R UL B =1
1 32 1 3 - Bi=16,

Esses sao os mesmos valores ja calculados acima, sendo a resposta a mesma, portanto.

Exemplo 6.2.4. Calcule a solugao finita da equagao de Laplace em coordenadas esféricas
na regiao V dada por 22 + 3% + 22 < 9 sob a condicao u(z,y, z) = 2 + y? — z na fronteira de V.

A regido V e a condigao de fronteira é ilustrada na figura a direita. Esse 2,2
L. o . . i o
problema é independente da coordenada longitudinal ¢? Verificamos isso es- =3 Ay
crevendo a condicao de fronteira nas coordenadas esféricas:

u’r:B = [$2+y2—Z]T=3 = [T256n29—7‘c059}r

= 9sen?0 — 3cos¥ . [T]

=3

Uma vez que esse resultado é independente de ¢, temos, de acordo com
(6.33), que

o0 B
2 1 1
V2u(r,0) =0 = u(r,6) = l}fo: (Alr + m)P;(cos@).
Mas wu(r — 0,0) deve ser finito = B =0 = wu(r6d) = E AirtPy(cos ) | [1I]

=0

onde os coeficientes A; hao de ser determinados a partir da condi¢ao de fronteira em [I]:

u(3,0) = Z3lAlPl(cose) = 9sen?d — 3cosh ,
1=0
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ou, em termos de u = cos#,

u3,0) = > A P(n) = 91 —p)—3p = 9-3u—94>.  [II]
=0

Agora prosseguimos como no exemplo anterior, expressando o polinémio no lado direito em termos
dos polinémios de Legendre, obtendo

2P (p) + Po(p)

Ao Po(p) +3A1 Pr(p) +9A2 Po(p) + -+ = 9Po(p) =3 Pi(p) —9- 3
= 6Py(p) —3P1(pn) —6P2(n)
donde,
2
14():67 3A1:—3:>A1:—1, 9A2=—6:>A2:—§, Al|l>3:0’

Substituindo esses resultados em [II], obtemos, finalmente,

u(r,0) = AgPo(p) + AyrPi(p) + Agr? Po(u)

2
= 6 Py(cos@) — rPi(cosf) — 3 r2Py(cosf) m

Exemplo 6.2.5. Calculo da solucao u(r, ) da equagao de
Laplace na semiesfera de raio b mostrada na figura sob as condi¢oes
de fronteira:
- Na superficie plana (a base) da semiesfera: u(r,7/2) =0
- Na superficie esférica: u(b,0) = f(9).

A formulagao desse problema com simetria longitudinal é pa-

recida com aquela em (6.28), diferindo na variagido da colatitude,
agora 0 € [0,7/2], e pela condi¢ao adicional u(r,7/2) = 0:

2
Vzu(r,e):au 2 0u 1 0( 0U):0

ﬁ+;§+r2sen9%
rel0,b], 6€[0,7/2], u(r,m/2)=0, wu(b,0)=f(0).

(6.35)

Com a separacgao de variavel u(r,0) = R(r)©(0), obtemos as mesmas EDOs angular e radial em
(6.29) e (6.31). Mas o problema de Sturm-Liouville que surge para @(¢) é o do prob. (ii)-1 (6.18),
cujos autovalores e autofungdes sdo os fornecidos para o prob. (ii)-1 em (6.20). Entao continuam as
mesmas a forma da parte radial dada por (6.32) e a forma da solugao geral dada por (6.33), s6 devendo
os valores de [ serem apenas os impares. Portanto a solugao geral do presente problema é

By
u(r,6) = " (Al rl 4 m)PI(COS 0) . (6.36)
1=1,3,5---
Nesta, devemos fazer B; = 0 para evitar uma solucao infinita na origem:
u(r,0) = Z Ayl Pi(cost) m
1=1,3,5---
Para determinar os coeficientes A;, impomos a condi¢ao de fronteira ndo homogénea:
u(b,0) = Y [A] Pi(cost) = f(6), 0 €[0,7/2],
1=1,3,5---

onde, entre colchetes, temos os coeficientes da série de Legendre fmpar de f(#), os quais, de acordo
com (6.27), sdo dados por

/2
A = (201 1) / F(0)Pi(cos ) send do ,
0

donde 12
A= %/ f(0)P(cosf)senfdf m
0
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Exemplo 6.2.6. Resolva o problema no Exemplo 6.2.5 com esta tinica modificagao: a condigao

u
—(r,m/2)=0.
o 7/2)

Dessa condi¢ao de fronteira deduzimos que ©’(7/2) = 0, indicando que, agora, o problema de
autovalor é o prob. (ii)-2 em (6.18), cujos autovalores e autofungdes sao os fornecidos para o prob.
(ii)-2 em (6.20). Portanto, todo o calculo realizado no Exemplo 6.2.5 continua valido neste exemplo,
exceto pelos valores de [, que agora devem ser os naturais pares. Assim, a solugdo é

de fronteira na base da semiesfera agora é

u(r, 0) Z Alr Pi(cosf), com A; = 2l+1/ F(0)P(cosf)senddb m
1=0,2,4--

6.3 Exercicios

6.3.1 Enunciados

1] Calcule a solugao finita da equagdo de Laplace na regiao V dada por 1/4 < 22 + y? + 22 < 1 sob
as seguintes condicoes: u(w,y,2) =2z se 22 +y>+22=1/4 e u(z,y,2) =0 se 2> +y?> + 22 =1.

2] Resolva o seguinte problema em coordenadas esféricas:

0%u  20u 1 0 ou
Veu(r,0) = or2 + ror + r2 sené’%(sen(g%) 0
Elat], 0€0.75/2), ula0) = [(0), u(b0) =0, Tu(rn/2)=0.

3] Calcule a solugao finita da equagio de Laplace na semiesfera V dada por 22 +3%2+22<9 e 2z >0,
sob as seguintes condi¢des na fronteira dessa semiesfera: u = 1+ 322 na parte esférica e Ju/90 = 0 na
parte plana.

6.3.2 Solucgoes

1

A regido V encontra-se entre as superficies esféricas de raios 1/2 e 1 centradas na origem.

) = 32 (At P st om0y,

1=0 \ r=1/2
u(l, 9)—Z(Al+Bl>Pl(cos9):O = A +B =0 = B=-A.

L= 1

1/2

ZAZ< z+1) Pi(p) (p=cost) . QJ 5

u(1/2,0) ZAZ< 2”1) (1) = 2| = rcosf| = l,u.
9l r=1/2 r=1/2 9
1
Ao(1—2) Ro(p) + A1(574) Pi(p) +- = 3Pi(n) -
——
0

—_——
Ay (=7/2) = 1/2
Ap=0, Ay =-1/7, e Ay=0paral>2.

u(r,9) = A1<rfri2)P1(cos,9) = f%(r7%> cosf m
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A figura a direita ilustra o problema.

u(r,0) = Z (Al rt 4 TZBTII)B(COSG) .

1=0,2,4---

B
— l l _ l_ 32141
up,f) = > (Alb +bl?)Pl(cosé))70 = Bl= b2y,
1=0,2,4 e —_——t
5.0
_p2l+l
u(r,0) = Z A (rl + T)Pl(cos 0) .
1=0,2,4.-- " 3
Pl 2l T N—0u /80 =0 (base
u(r,f) = Z Al(irlﬂ )Pl(COSH) [ /s (base)
1=0,2,4---
g2 _ p2itl
u(@,8) = Y AZ(T)H(COS 0) = £(6), 0€[0,7/2.
1=0,2,4---
2+l _ p2i+l /2
Al(T) = (214 1)/0 f(0)P;(cosb)send db .
(2l + 1) alt?! /2
Al = W . f(e)B(COS 9) senfdbd m
3
A figura a direita ilustra esse problema.
ul, _y = (1432, _, = [L+3(rcos0)?], _, "= 14214
2P + P
Py(p) +27- M = 10Py(p) + 18Py (1) -
0(*)
"B
1 l
u(r,0) = (4" + 5 ) Pw)
1=0,2,4---
[ ) pois u(r — 0,0) finito = B; = O]
u(3,0) = 3'AIP(u) = Ao Po(p) + 9As Po(p) 4 -+ = 10Py(p) + 18Py () .
~~ -~
1=0,2,4--- 10 18
Ag=10, Ay=2

u(r,0) = Agr®Py(cos ) + Ayr® Py(cos f)

ou, opcionalmente, uma vez que, Py(u1) = (3u? —1)/2,

u(r, 6) 10 +7%(3cos® 0 — 1) .
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Capitulo 7

Resolucao de EDPs em Dominios
Infinitos

- Ref. [5], se¢.11.7, 11.8 ¢ 12.6
- Ref. [8], se¢. 14.3 e 14.4

- Ref. [6], cap. b

- Ref. [2], cap.6

7.1 Integrais de Fourier

7.1.1 Construgao das Integrais de Fourier

Cada integral de Fourier a se deduzir abaixo pode ser formalmente entendida como o limite de uma
série de Fourier quando o intervalo de expansao tende a infinito. Para mostrar isso, considere uma
funcao qualquer definida em todo o eixo real. Como, em geral, nao podemos desenvolver essa fungao
em série de Fourier em todo o seu dominio (a nao ser que ela seja periodica), comegamos considerando
a sua série de Fourier restrita a um intervalo [—¢,¢] com o intuito de fazer ¢ — oo:

An

¢ ‘
oo zl/f(x)cos@d:r, A(]:i/f(x)dx,
nmwx nwx n>1 L J_, l 20 J_;
fz) = ZA” cos ~ + B, senT , com Lot
n=0 B, = 7 / f(z)sen Lzm dz (By =0).

—¢

Mudemos o indice do somatorio de n para k = nxw/¢ para na forma

fl@) =" Ay coska + By senka ,
PR 4

T 27 37w
onde k:—O, Z, 7, 7,"

L 14
geral por — Ak, o que nao altera o somatorio, pois —Ak = 1, e mudemos em seguida a notacao dos
T

~ Qo T
-, que sao valores que saltam de Ak = 7 Multipliquemos agora o termo

coeficientes conforme indicamos abaixo:

1 1
flx) = E {;A}% coskx + ;B¥ senk‘a:} Ak = E [a(k) cos kz + B(k) senkz] Ak . (7.1)
k S—— —— k
= a(k) = B(k)

Além disso, vamos escrever «(k) e 5(k) na forma

1 [ 1 [t
—- f(x)coskxdx = — f(z)coskxdr se k>0
7T£ .y ™ J_y¢

14
o) =2Au = ¢1[f 1 /f 1 /f
~% 7Zf(x)d:v:%lef(x)coskxdxzﬁlef(x)dx se k=0,
¢ 01 [* I
B(k) = —Bs :ff/ f(sc)senk:xdx:f/ f(z)senkx dx .
m 7 wlJ_, T J_y
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Estamos pronto para proceder ao limite de £ — 0o, quando também Ak — 0, isto é, k tende a apre-

o0
sentar uma variagao continua e, por conseguinte, o somatorio E tende a ser uma integral / (---) dk,
0

k
0 que nos leva ao resultado

oo = %/OO f(z) coskx dx
flx) = / [a(k) cos kz + B(k)senkz|dk , com . _OOCO (7.2)
0 = ;/ f(x)senkx dx |

o qual compoe a chamada integral de Fourier em sentido estrito.
Se a fungao f(x) for impar, entdo a(k) = 0, obtendo-se, nesse caso, a integral de Fourier em senos:

/ B(k)senkx dk , com p(k / f(z)senkx dx . (7.3)

E, se f(x) for par, entdo S(k) =0, e (7.2) torna-se a integral de Fourier em cossenos:

flz) = /000 a(k)coskxdk , com a(k)= i/ooo f(z)coskx dx . (7.4)

Na Nota 1 abaixo demonstramos que a integral de Fourier (7.2) também tem a seguinte "forma
complexa" (ou "forma exponencial"):

fa)= [ eraman, com k) = - [ s (75)

PN o

Em sentido amplo, referimo-nos a (7.2), (7.3), (7.4) e (7.5) conjuntamente por integrais de Fourier,
sendo elas, em sentido estrito, a integral de Fourier completa, em senos, em cossenos e complexa,
respectivamente.

Nota 1 — Dedugao de (7.5)
Substituindo (1.16) na integral para f(x) em (7.2), obtemos

flx) = /Oo [a(k)M+B(k)M]dk

2 2
_) — 1 ) ) 0o )
— / Oé( ) 7’6( ) e*llzdl +/ a( ) + Zﬁ( ) elezdl — / ’y(l) elezdl v (77)
o 2 0 2 oo
() (1)
onde, na passagem (x), fizemos, na primeira integral, a mudanga de variavel k = —[ e invertemos a ordem

de integracdo, mudamos, na segunda integral, a letra de k para [, e, nas integrais resultantes, usamos a
funcdo v na defini¢do * abaixo . Assim demonstramos a representagio integral de f(x) dada em (7.5). Para
provar a representacgdo integral de v(k) em (7.5), substituimos, na definicdo * da fungdo ~, as expressoes
de a(k) e B(k) dadas em (7.2):

" . M (1>0) %/j:o f(m)coslmdx+%[i f(z)senlz dz (1>0)
~y(1) = = - ]
a(=1) —ip(=1) L= z) cos(—lz) dz — ~ - z) sen (—lz) dz
DD 1<) | s@eos(tmyda = L [ pa)sen(—tm)ds @ <0)
/OO f(x)(coslz + isenlx)dx se >0
_ —0o _ 1 o ilx
= 5 - = g/_oof(x)e dz v (7.8)

/ f(x)(coslz + isenlz)dx se 1 <0

Nota 2 — Cada integral de Fourier pode ser expressa por meio de uma unica equag¢ao:

Em (7.2), substituindo as expressdes de a(k) and B(k) na de f(z), tendo o cuidado de, antes da substituicao,
denotar a variavel de integragao x nas expressoes de a(k) and B(k) por outra letra, digamos z’, para
distingui-la da variavel = presente na representacdo integral de f(z), obtemos

/oo {( / f(z') cos kx'dx ) coskx + (l /oo f(a:/)senkm’dz') senkm}

o0
/ / (") COS kx' cos kx + senkx’ sen k’x] dz'dk ,

f(=)
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donde

1 oo oo

flx) = —/ / f(x') cosk(z' — x) da'dk . (7.9)
m™Jo —oo

Usando substitui¢des semelhantes para unificar (7.3), (7.4) e (7.5), obtemos

flz) = 2/ Senkx/ f(z)senka'dz'dk , (7.10)
™ Jo
2 (oo}

fz) = 7/ cosm/ f(z") cos ka'da' dkc (7.11)

/ / F(@)e*E =) gy’ df; . (7.12)

7.1.2 Condicoes Suficientes para a Validade das Integrais de Fourier

Condigoes suficientes para garantir a validade das integrais de Fourier (e, portanto, das transfor-
madas de Fourier) foram estabelecidas. Primeiramente exige-se que a fungio f(z) seja absolutamente
integrével, isto ¢ que [*_|f(x)|dz < 0o no caso de (7.2) e (7.5) e que [°|f(x)|dz < oo nos casos de
(7.3) e (7.4). Note que, para essa condigdo ser satisfeita, é necessario que a funcao tenda a zero no
infinito: f(x — +o0) = 0 em (7.2) e (7.5), e f(x = o00) = 0 em (7.3) e (7.4). As demais condigoes
s@o similares as que garantem a convergéncia das séries de Fourier: exige-se que tanto f(z) quanto
f/(x) sejam continuas por partes [isto é, que f(z) seja suave por partes| em qualquer por¢ao finita do
intervalo intervalo de integracao. Sob essas condigoes, vale a mesma regra de convergéncia das séries
de Fourier: (7.9), (7.10), (7.11) e (7.12) valem com f(z) (no lado esquerdo dessas equagoes) substituido
por [f(zt) + f(z7)]/2. Assim, tomando (7.12) para exemplificar essa regra de convergéncia, temos

que
/ / f(@')cosk(x' — x)da'dk = M . (7.13)

Como as condigoes estabelecidas sao suficientes, mas nao necessarias, existem fungoes que, mesmo
néo as satisfazendo, podem ser representadas por uma integral de Fourier. Esse assunto é tratado na
Ref. [2], segdo 53 tendo em conta a segéo 13.

7.1.3 Resolugao de EDPs por Integrais de Fourier

Assim como uma série de Fourier de uma fungéo f(z) surge como uma expansao dessa func¢ao em
autofuncoes oriundas de um problema de autovalor na variavel  que toma valores num intervalo finito,
espera-se que uma integral de Fourier para essa fungao surgird quando x tomar valores num intervalo
infinito. De fato, exemplificamos isso resolvendo a seguir, por separacao de varidveis, primeiramente a
equagdo unidimensional do calor numa barra de difusividade térmica « [para calcular a temperatura
T em funcao da abscissa x e do tempo ] e, em seguida, a equagio de Laplace. Admite-se que o aluno
esteja familiarizado com o exposto no Cap. 6 da Apostila de Calculo 4.

Exemplo 7.1.1. O problema de calor numa barra semi-infinita com sua extremidade a 0°:

0T . 10T
8 2( ) aav
T(0,t) =0, T(x,0) = f(z).

Este é o Exemplo 6.1 na Apostila de Célculo 4, mas com ¢ — oco. Resolvamo-lo por passos
similares aos realizados naquele exemplo, comecando por separar as varidveis, isto é, substituindo
T(z,t) = (x)7(t) e sendo A a constante de separacdo. Obtemos 7(t) = e~*** bem como o problema
de autovalor

€(0,00), t>0 (7.14)

P+ Mp(x) =0, € (0,00), ¥(0)=0,

que é assim resolvido (seguindo os passos do problema de autovalor na equagdo (6.1) da Apostila de
Calculo 4):

Para A =0: ¢(z) =c1 +cox

¢ =0 para evitar valor infinito de ¥ (x — o0) (x) = 0 (Vz)é a anica solugao
= ~ .
Y(0)=c =0 logo, nao zero é autovalor.
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Para A\ = —k% (k> 0): ¥(x) = c1 e 4 cpeh®

ca = 0 para evitar valor infinito de ¥ (z — o0) N P(z) =0 (V) é a unica solugao;
Y(0)=c =0 nao ha autovalores negativos.

Para A = k% (k > 0): 9(z) = ¢ coskz + cosenkx

Y0)=c1 =0 = (x)=cosenkx : esta solugdo é sempre finita! .

Portanto, temos os autovalores A\ = k?, (k> 0), aos quais correspondem as autofuncoes () =
senkx . Este ¢ um caso de autovalores de espectro continuo (em contraste aos autovalores de espectro
discreto observados anteriormente).

A solucéo geral é, portanto,

T(x,t) = /000 B(k)senkx e Fotdy m (7.15)
Vamos impor agora a condic¢ao inicial:

T(x,0) = /000 B(k)senkx dk = f(x) ,

e eis af a esperada expansdo de f(z) em autofungdes de espectro continuo, representada por uma
integral, em vez dos somatorios caracteristicos das séries de autofungoes de espectro discreto. Usando
(7.3), obtemos

B(k) = i/ooo f(z)senkxdx m (7.16)

A resposta do problema é (7.15) com B(k) dado por (7.16).

Exemplo 7.1.2. O problema de calor numa barra semi-infinita com sua extremidade isolada
termicamente:

2
g—f(x,t):l%—T, x € (0,00), t>0
a;:“ a ot (7.17)

Aat o o problema de autovalor

Com a separagao T'(z,t) = 1 (x)7(t), obtemos 7(t) = e~
U+ Mp(x) =0, x€(0,00), 9'(0)=0,
que ¢é assim resolvido:

Para A =0: ¢(z) =c1+cx = Y'(v)=c

P(x) = ¢1 (Vz)é solugao finita ndo nula;
logo, zero é autovalor.

V(0)=c2=0) = {

Para A = —k% (k> 0): ¥(z) =cre " 4 cpef® = o/ (2) = —kcy e 7 + keg b .

co = 0 para evitar valor infinito de ¥ (x — o0) N P(z) =0 (V) é a unica solugao;
Y (0)=-kecy =0 = ¢ =0 nao ha autovalores negativos.

Para A\ = k% (k > 0): 9(z) = ¢y coskx + casenkxr = '(x) = —kcy senkz + keg coska .

P'(0)=kea=0 = co=0 = (x)=cjcoskr: esta solugao é sempre finital! .

Portanto, temos os autovalores A\, = k?, (k > 0), aos quais correspondem as autofuncoes 1y (x) =
cos kx . Portanto, a solugao geral é

T(x,t) :/ A(k)coskme_k%‘tdk ] (7.18)
0

122



Impondo a condigao inicial, obtemos
T(x,0) = / A(k) coskx dk = f(x) ,
0
donde, usando (7.4), calculamos A(k), completando a resposta:

A(k) = 72r/000 f(z)coskrdr m (7.19)

Exemplo 7.1.3. O problema de calor numa barra infinita em ambas as diregoes:

0T 10T
w(x,t)zaa, z € (—o00,00), t>0, T(x,0) = f(x). (7.20)

Aat o o problema de autovalor

Com a separacao T'(z,t) = 1 (x)7(t), obtemos 7(t) = e~
"+ Xp(z) =0, com z € (—o0,00),

sem condigoes de fronteira pela simples razao de nao haver fronteira na reta real, sendo a condigao de
finitude a tnica a se impor.

Para A =0: ¢(x) =c1 + cox

¥(x) = ¢1 (Vz)é solugdo finita ndo nula;

¢ = 0 para evitar valor infinito de ¥(z — 00) ) = {logo7 10 & autovalor.

Para A = —k% (k> 0): ¥(x) = c1 e 4 cpeh®

¢y =0 para evitar valor infinito de (x — —o0) P(x) =0 (V) é a unica solugao;
. . . = ~ . .
co = 0 para evitar valor infinito de ¥(z — o) nao héa autovalores negativos.

Para A\ = k% (k > 0): ¢(z) = c1 coskz + casenkx
Nao ha qualquer restrigao sobre c; e cs.

Portanto, temos os autovalores A, = k%, (k > 0), aos quais correspondem as autofungoes
Ui (x) = A(k) cos kx + B(k)senkx. A solugao geral é, portanto,

T(z,t) = / [A(K) cos kx + B(k) senkz] e Fotgn m (7.21)
0
Impondo a condigao inicial
(o)
T(z,0) = / [A(k) cos kz + B(k) senkz| dk = f(z) ,
0
e usando (7.2), obtemos

A(k) = %/700 f(z)coskrdx e B(k)= %/700 f(z)senkrdx m (7.22)

A parte final da solugdo dentro dessa moldura acima pode ser desenvolvida pelo seguinte modo
alternativo:
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Para A = k% (k > 0): () = ¢ e + ¢y e senkx

Nao ha qualquer restrigao sobre c; e cs.

Portanto, temos os autovalores A\, = k%, com k € R, aos quais correspondem as autofuncdes
Yr(x) = e~ (v. Ressalva abaixo). A solugdo geral é, portanto,

T(x,t) = / C(k) e e e etgy m (7.23)

— 00

Impondo a condigao inicial

T(x,0) = /fo C(k)e *dk = f(z), (7.24)

e usando (7.5), obtemos

Clk) = % /_ T @) e*edr (7.25)

Ressalva: As autofungdes também podem ser expressas por 9y (z) = e**%  mas usamos a expressio
com o sinal negativo no expoente para obter (7.24) na forma de (7.5).

— Exemplo 7.1.4. Resolva o seguinte problema:

u  O%u
gaz t gy =0, w€(0,), y<Oh) (7.26)

w(0,y) = u(x,0) =0, u(x,h) = f(z).
0%u 0%u u(z,y) = X(2)Y (y) X" Yy” Ay _

Y
X"+ XX (z) =0, z€(0,00), X(0)=0. «—u =20

Este problema de autovalor foi resolvido no Exemplo 7.1.1, onde
obtivemos A\, = k% (k >0) e Xj(z) = senkx . o A_y—o
Y/ — M\ Ye(y)=0 = Yi(y) = A(k) cosh ky + B(k)senhky .

k?
Y:.(00=0 = A(k)=0 = Yi(y) = B(k)senhky .
ug(z,y) = Xp(2)Yi(y) = senkz B(k)senky .

u(x,y):/ uk(x,y)dk:/ B(k)senhkysenkx dk m (7.27)
0 0

|y

Determinamos B(k) impondo a condigao de fronteira ndo homogénea:
u(z, h) = / [B(k) senhkh]senkx dk = f(x) .

0
O termo entre colchetes pode ser calculado usando (7.3); logo,

2 [ 2 >
B(K) senhbh = /0 f)senkedr = B()= /O F(z)senkz dz m (7.28)

Nota-se que o método de separacao de variaveis também é eficaz na resolucao de uma EDP que
envolve um problema de autovalor de dominio infinito. Tudo funciona similarmente, sendo a solugao
representada por uma integral (um "somatoério de infinitésimos") com coeficientes dados pelas integrais
de Fourier, em vez de ser representada por uma série de Fourier (cujos coeficientes tém similaridade
ainda maior com as integrais de Fourier); em suma: somatorios "tornam-se" integrais. O exemplo
seguinte mostra um problema cuja resolugao envolve tanto um problema de autovalor de dominio
finito quanto um de dominio infinito, sendo sua solugao, portanto, representada tanto por uma série
quanto uma integral de Fourier.
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Exemplo 7.1.5. Resolva o seguinte problema de calor:

10T
V= 0y, 2e0.0), yeOh), 10
a—T(O t)=0, T( Ot)—a—T( h,t)=0, T( 0) = To(x,y) (729
3$ » Y, - ) T - ay €, n, — ) €,Y, = 10lT,Y) -
107 T(yt) =gy VY 1
=2 = — . Ay
v a Ot (@,9,1) P T A FaT/ay—O
2 Py | 0%y g
VY + Mp(z,y) = W+W+Aw(x7y)=0 oT o
l— —— —
1) sob as mesmas condlgoes de fronteira que T oz — 00
X/l Y// :
Y@, y) = X(@)Y(y) = 7+7+/\—0 ol A_1-0 T
< =~
L e
X" —+ AX(I‘) 0 v. Exemplo 7.1.2 )\k = kz (k? > O)
€ (0,00) X(O) Xi(x) = coskx .

Y”—i—yY( )= vp = (nm/2h)? (n=1,3,5--+)
{ € (0,h), Y(O) Y'(h)y=0 {Yn(y) = sen (nmy/2h) .

Yin(z,y) = Xi(2)Y,(y) = cos kxz sen (nmwy/2h) .

Trn + MenTin () [Mkn = pe + 0] = Trn(t) = e Mwnat
Tin(z,y,t) = w;m(x Y)Ten = cos kx sen (nmy/2h) e Akmat
T(x,y,t) = / Akn Tkn(x Y, ) dk

n=1,3,5--

T(z,y,t) = Z sen@ Appe M coskrdk m (7.30)

n=1,3,5--- 2h
T(z,y,0) = Z sen Y / Apn coskzdk| = To(z,y) .
2h | /o
n=1,3,5---
o 2 h
Agncoskxdk = — | T Y g
/0 kn COS kT h/o o(z,y) sen 57, 4 -
2 [>|2 ("
Apn = ;/0 [h/o To(z,y) senn;hydy] coskzdr m (7.31)

Pelas EDPs resolvidas acima, observamos que a cada problema de autovalor de espectro conti-
nuo corresponde uma integral de Fourier. As integrais de Fourier nao se restringem a autofungoes
trigonomeétricas (por exemplo, ha integrais de Fourier formadas pelas func¢oes de Bessel). A partir
delas podem ser definidas as famosas transformadas de Fourier, que oferecem um modo alternativo
de resolver EDPs. No que segue expomos uma rapida introdugao a elas que é restrita a aplicacao na
resolucao de EDPs, sendo omitidas, portanto, muitas propriedades importantes delas e muitas outras
consideragoes. Diga-se, entretanto, que, embora inicialmente formuladas com o proposito de resolver
equacoes diferenciais, as transformadas de Fourier tém uma vasta gama de aplicagoes.

7.2 Transformadas de Fourier

7.2.1 Definicao

O resultado em (7.3) permite definir a transformada de Fourier em senos de f(z), denotada por
Fs{f(x)}, como sendo a integral que fornece S(k) [funcao que passaremos a denotar por fs(k)], isto é,

F{f(z / f(z)senkxdr = fy(k)| , (7.32)
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bem como a chamada transformada de Fourier em seno inversa de f,(k), denotada por F;{f.(k)},
como sendo a integral que fornece f(z):

FUR ()} = / " Fu(k) senka dk = f(z)] - (7.33)

De modo anélogo, (7.4) permite definir a transformada de Fourier em cossenos de f(z), denotada
por F{f(x)}, como sendo a integral que fornece a(k) [fungdo que passaremos a denotar por f.(k)],
isto é,

FA{f(z / f(z)coskxdr = f.(k)| , (7.34)

bem como a chamada transformada de Fourier em cosseno inversa de f.(k), denotada por F. *{f.(k)},
como sendo a integral que fornece f(x):

T fe(k) / fe(k)coskxdk = f(x)| . (7.35)

E (7.5) permite definir a transformada de Fourier complexa de f(x), denotada por F{f(z)}, como
sendo a integral que fornece (k) [fungao que passaremos a denotar por f(k)], isto é,

T} =5 [ @ = | (730

bem como a chamada transformada de Fourier complexa inversa de f(k), denotada por F~{f(k)},
como sendo a integral que fornece f(z):

5 (f) = | T e (k) di = f(z) | (7.37)

— 00

Nota:

Ha certa flexibilidade na forma de definir as integrais de Fourier e, portanto, as transformadas de Fourier:

J4
Em (7.1) nada impede definir —A, = ca(k) e %BM = ¢B(k), assim incluindo um parametro positivo
™ T T

™
livre ¢ que passa a figurar nas integrais de Fourier. As equagdes (7.2), (7.3) e (7.5) passariam a ser

a(k) = < /oo f(z) cos kx dx

f(z) = 1 /oo [a(k) cos kz + B(k) senkz]dk , com -
€70 B(k) = E/ f(x)senkx dz ,
T J—oco
flz)= / B(k)senkx dk , com B(k 20/ f(z)senkzdz , (7.38)
f@) = %/jo ek (k) die, com (K) = /oo % f(2) de . (7.39)

Conclusdo 1: As duas constantes que aparecem multiplicando as duas integrais que definem a transformada
de Fourier em senos e sua inversa podem variar, mas com a restricdo de o produto ser 2/7 (o0 mesmo
acontecendo na transformada em cossenos), e as duas na definigdo da transformada complexa, com a do
produto ser 1/27.

Observe que, na equagao (7.6), efetuamos a mudanga de variavel k = —I na primeira integral e simplesmente
trocamos a letra k por | no integrando da segunda, assim obtendo, como mostra (7.7), uma tnica integral
com o termo e~ *® no integrando. Ora, poderiamos inverter essas operagdes entre as duas integrais em (7.6),
isto é, simplesmente trocar a letra k por [ na primeira integral e efetuar a mudanga k = —[ na segunda,
assim obtendo uma tnica integral com o termo €%®, ou seja, o resultado final seria (7.7) com o sinal de ilz
trocado. Consequentemente, a defini¢ao * da fungdo (I) resultaria com [ trocado por —I paral >0 e —I
trocado por [ para [ < 0, o que levaria ao resultado final em (7.8) com o sinal de ilx trocado.

Conclusao 2: Pode-se trocar o sinal de ikx entre as integrais (7.36) e (7.37) que definem a transformada de
Fourier complexa.

A forma da transformada de Fourier também pode variar efetuando-se uma mudanga da variavel de inte-
gragdo. Vejamos, por exemplo, a variagdo nas transformadas de Fourier causada pela mudanga de variavel
k = 2wl (= dk = 2wdl), primeiramente em (7.36) e (7.37):

Flz) = /e—”m onfrl)dl = FH{FD)Y = F(I) = 2nf(2ml) = 27 - — /ei%l“:f(w) dz = F{f(2)} ,
. t%z 27r_oo
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ou seja, a transformada de Fourier complexa passa a ter a nova forma

F@) = [ @ de=f1) o T = [ e d= @) (7.40)
agora em (7.32) e (7.33):
flz) = 2/ﬂf5(27rl) sen2nzldl = F7H ()} = fo() =nfs@nl) =7 - E/f(a:) sen2nzldr = Fs{f(x)},
0 =7 "o

ou seja, a transformada de Fourier em senos passa a ser dada por
Fs{f(z)} = 2/ flx)sen2nalde = fs(I) e FIH{fs()}= 2/ fs(D)sen2raldl = f(x) . (7.41)
0 0

Concluséo 3: Na transformada de Fourier complexa dada por (7.40) e na em senos dada por (7.41), o nimero
7 deixa de aparecer multiplicando as integrais, surgindo no argumento dos ntucleos dessas transformadas.

Pois bem, essa flexibilidade na definigao das transformadas de Fourier enseja formas preferenciais de uso
conforme a area em que sdo empregadas:

e Engenharia [com ¢ = /2 em (7.38) e ¢ = 27 em (7.39)]:

T {f(2)} = /OOO Fa)senkade = o(k) e FoH{Ju(k / Fo(k)senkadk = f(z) . (7.42)

1

FU@)= [ et @ de= 1) e THIW} =5

/oo ik F(k) dk = f(z) . (7.43)
e Fisica [com ¢ = \/7/2 em (7.38) e ¢ = v/27 em (7.39)]:
Fo{f(2)} = \E/m Fla)senkades = fo(k) e FoHT(k)} = \/2/00 Fo(k)senakdk = f(z) . (7.44)

F{f(z) et f(x)de = f(k) e TTHF(R)} e M f(k)dk = f(2) .  (7.45)

= L -l

e Processamento de Sinais [(7.41), e (7.40) com os sinais de i2wlz trocados nas duas integrais|:
FAF)} = 2/°° F(t)sen2mwtdt = fu(l) e T {Fo(w)} = 2/00 Folw)sen2rwtdw = f(£) . (7.46)
0 0
TPy = [ et ta=w ¢ Tl = [ e =10, (1)

Neste texto, usamos as formas das integrais e transformadas de Fourier que naturalmente surgiram ao serem
desenvolvidas, ou seja, por razoes didaticas. Elas também sdo empregadas na Ref. [2], na qual as eq. (8) e
(9) da seg.51 correspondem & eq. (7.2); as eq. (3) e (4) da seg. 54, & eq. (7.4); as eq. (5) e (6) da seg. 54, &
(7.3); e, no Prob. 3 da sec. 52, vemos a eq. (7.5) (exceto pelos sinais trocados de ikx).

7.2.2 Propriedades
e P1 - Linearidade:

Flaf(x) +bg(x)} =aF{f(z)} +bF{g9(x)}, com F=F, F. ou F,.

e P2 - Propriedades da diferenciagao:

T @)} = —ik () T (@)} = KT8 T @)} = (k)" T ().
TAL (@)} = (K = 24(0) . Tl (@)} = R L) = 210)
TS (@)} = —kF(h) TS (@)} = —R2Fh) + ZkF(0)

e P3 - Convolugao:

FHf(k)g(k)} = %f(fﬂ) xg(x) e F{f(x)g(x)} = f(k) *g(k) .
onde, em ambas as formulas, usamos a definigao

u(s) xv(s) = / u(o)v(s —o)do : convolugao de u e v .
—00
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e P4 - Teorema de Parseval:

/Oo F(@)g(x)dz = QW/OO Frk)g(k)dk .

Corolario: /OO |f(2)|?dz = 2m /00 |f* (k) |[2dE .

— 00 oo

Provas dessas propriedades

e Prova de P1

Haf@ +b9@) = 5 [ M [af@) +bo()]dn

1 .
a— elsz(a:)dx-i-b—/ e*rg(a)de = aF{f(z)} +bF{g(x)} v
27 ) — o 21 J _ oo
e Prova de P2
— Integrando por partes, obtemos

T @ == [ f@etde = S [p@et]” ) = [ f@)ede = —ikf(k) v
27 ) — o 2 S 27 J— o

0, pois f(@—E00)=0 F{f(@)} = Flk)

— Usando essa formula uma vez, temos que

T (@)} = F{If @)} = —ikF{f' (@)} = —ik(—ik)F{f ()} = (=ik)*F (k)

= —k2f(k) v
— E usando-a n vezes, também temos que
FUM (@)} = (k) - (—ik) T{f(2)} = (=ik)" (k) v
N————
n fatores
— Integragoes por partes fornecem
p-p- 2 o0 2 [
FA{f'(z / f'(z)coskxdr = f[f(x)coskx] —i—kf/ f(x)senkz dzx
™ 0 T Jo

Fo{f(@)} = Folk)
= gzﬂmm f(z) cos ke fifw) + ko fo(k) = kfs(k) — %f(o) v
—_—

0, pois f(z—00)=0

Fs{f'(2)} = %/Ooof/(m) senkx dx = %[f(z) senkm]zo fk%‘/ooo f(z) coskx dx

Fe{f(@)} = fe(k)

=2 lim f(z)senkx —kfe(k) = —kfe(k) v

T T—00
—_—
0, pois f(z—00)=0

— E usando essas duas ultima féormulas deduzimos estas duas:

TS @)} = A @)} = kTS (@)} — 2 £1(0) = K2 Fulk) — 2 £/(0) v
—kfe(k) " "

KIS @)} = ~k[R ) — 2 (0)]

F{f" (@)} = F{[f ()]}
e Prova de P3

“K() + ZRF0) ¢

[T e [ [ g ] awas

T (Ra(k)} = / e~ f(k)g(k)dk =

o [t etemawa)a = o [T it vy = i@ gt v
e B (T [ [ e inal s
= /::f(l) {%/j:ei(k_l” x)dx} dl = / FO gk —ndl = f(k)*g(k) v

e Prova de P4

/ ¥ (@) Pl = / Y P @) f@)de = 2r / = Pk F(kydk = 2 / TPk v
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7.2.3 Resolucao de EDPs por Transformadas de Fourier

Antes de aplicarmos as transformadas de Fourier na resolugdo de EDPs, dispensemos algumas linhas
sobre transformadas de Fourier de derivadas de fung¢bes de varias variaveis. Consideremos uma fungao
u(z,y) definida em todo o plano xy com o objetivo de calcular transformadas de Fourier de algumas de
suas derivadas. Conforme a integral que define a transformada de Fourier seja efetuada em relacao a
x ou y, dizemos que se estéd calculando a transformada de Fourier na variavel x ou y, respectivamente.

Pois bem, consideremos a transformada de Fourier de u(z,y) na variavel x:

1 o0

Flu(z,y)} = eik‘”u(:r,y)dx = a(k,y) .

2 ) o

Seguem transformadas de derivadas em relagdo a y:

ou 1 [ ... 0u d[1 [, du
St{i(xay)} = elkx dr = |: / elkxu(xay)dl} = ?y(k?y)a

y w ) oy T dylem )
0%u 1 [ .0% 21 [ . d*i
(i} = 5 [ G = pla [ o] = e,

Ou seja, a transformada de Fourier na variavel  de uma derivada em relagdo a y é a derivada da
transformada de Fourier: tais derivadas permanecem apoés a transformada.
Vejamos agora transformadas de derivadas em relagao a x:

6u _ 1 Ooikrau p._p. 1 ikx o . 1 Ooik:t _ 27, =
?{a—x(x,y)} = ﬁ/_ooe %dl‘ = ﬂ{e u(m,y)} —ik —/_ e u(x,y)de = —ik u(k,y) ,

9{%“‘*@)} = ?{a%[%(%y)}} =—ik3‘{%<x,y>} = (~ik)*u(k.y) ,

Assim, para calcular a transformada de Fourier na variavel x de uma derivada em relagio a x, usa-se
a propriedade P2, assim eliminando tal derivada.

Essas conclusoes também sdo validas para as transformadas em cosseno e seno. Observe nos exem-
plos abaixo que, quando as transformadas sao na variavel x, entao derivadas em relagao a y permanecem
e as em relagao a x sao eliminadas ap6s o uso da propriedade P2:

ou dac azu dz’L_Ls

?c{@(fvy)} = Ty(k’y) ) ?s{a—yQ(x,y)} = dy? (k. y)
ou _ 2 0%u 9 2 0u

T Gy @)} =Fuslk) = ~u0y) . T Ga@ )| = Ruclky) - Z5000),
ou - 0%u 5 2

Vejamos agora um exemplo de aplicagao mista de transformadas de Fourier. Se

F{u(z,y)} = 721_/000 u(z,y)coskxdr = u.(k,y)

Fofute)} = 2 [ ute)sentydy = iu(ed).
entao
Fo{Felu(z, y)}} = Fo{tc(k,y)} = tcs(k,1) .

Isso pode acontecer numa resolugao de EDP de varias varidveis em que se aplica ¥, numa variavel e
F noutra.
Quanto a como determinar qual a transformada de Fourier a se empregar, o preceito é o seguinte:
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a) Se o intervalo I da variavel em relagdo & qual uma transformada de Fourier sera aplicada for
infinito em ambas diregoes, isto é, I = (—o00,00), usamos a transformada de Fourier complexa e sua
inversa, dadas respectivamente por (7.36) e (7.37).

b) Se I for semi-infinito, isto é, I = [0,00), usamos a transformada de Fourier em senos e sua
inversa, dadas por (7.32) e (7.33), ou a em cossenos e sua inversa, dadas por (7.34) e (7.35), conforme
a condicao no extremo inicial de I seja respectivamente a de Dirichlet ou a de Neumann. Isso é
consistente com o fato de que o seno e o cosseno nessas transformadas tenham surgido de problemas
de autovalor sob condigoes de Dirichlet e Neumann, respectivamente.

Pois bem, nos cinco exemplos seguintes, resolvemos novamente os problemas dos Exemplos 7.1.1 a
7.1.5 apresentados na subsecdo 7.1.3, mas agora usando as transformadas de Fourier.

Exemplo 7.2.1. O problema de calor numa barra semi-infinita com sua extremidade a 0°:

0*T 10T
w(m,t) =5 com z € (0,00) e t >0, sendo T(0,t) =0 e T(z,0) = f(z) .
Solugao:

FAT(2, 1)} = 2 /Oo T(w,t) senka dz = Tu(k,t) .

T
62T_ 18£ 7,

1dT,
dr2  «a Ot P2

o dt

— 2
—k*Ty(k,t) + ZET(0,t) =
T
0 (%)
) De acordo com a condicdo de fronteira de Dirichlet em z = 0.
dT,
dt

+ak?Ty(k,t) =0 = Ty(k,t)=B(k)e ¥t [I]

T(z,t) = F;HT(k, )} = F7HB(k) e ¥} = T(x,1) :/OOO B(k) e “*t senkz dk m

T(z,0) = f(x) S ZNEN Ty(k,0) = F{f(x)} _m, B(k) = g/Oo f(z)senkx dzr m
Blk) ™o

A solugao do problema é composta por esses dois resultados, sendo exatamente aquela dada por
(7.15) e (7.16).

Exemplo 7.2.2. O problema de calor numa barra semi-infinita com sua extremidade isolada
termicamente:

0T 10T oT
@(x,t):aa, com z € (0,00) e t >0, sendo g(o,t)zo e T(z,0) = f(z) .
Solugao:

FAT(z,t)} = 2 /00 T(z,t) coskxdr = T,(k,t) .
T Jo

2T 10T 5 , 2 T 14T,

L 2% % Tkt - 2 (0,6 = ~ e

0x?2 «a Ot P2 KT (k. 1) s 8x(0’t) o dt
00

) De acordo com a condicao de fronteira de Neumann em z = 0.

ddfc Fak? Tk t) =0 = To(k,t)=A(k)e ¥t [1]

T(z,t) = F T (k,t)} = T H{AK) e ¥t} =  T(a,t) = /O h A(k) et cos kx dk m
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T(x,0) = f(z) —2os T.(k,0)=F{f(x)} — A(k):g/oof(x)coskxdx n
—— ™ Jo

A(k)

A solugao do problema é composta por esses dois resultados, sendo exatamente aquela dada por
(7.18) e (7.19).

— Exemplo 7.2.3. O problema de calor numa barra infinita em ambas as diregoes:

2
g%(x,t) = é%—f , com x € (—o0,00), sendo T(x,0) = f(x).
Solugao:

F{T (1)} = ZL / ¢ T, ) do = Tk, 1)

T J—co
O*T 10T ¥ o o 1dT
o oot w o FTRD=T5
dT 27 = —ak?t
kP T(k) =0 = T(ki1)=C(ke 1]
T(x,t) = F YT (k,t)} = FHC(k)e ¥} = T(:v,t):/ e CO(k) e % dk m
T(@,0)= f@) —— T(h0)=F{f@)} —s o) = — / e () du

—— 27'(' o

(k)

A solugao do problema é composta por esses dois resultados, sendo exatamente aquela dada por
(7.23) e (7.25).

Exemplo 7.2.4. Resolugdo da equagao de Laplace num dominio retangular, semi-infinito ao
longo do eixo x e de altura h:

Pu o _
0x? = oy?
uw(0,y) = u(x,0) =0, wu(z,h)=f(z).

0, x€(0,00), ye(0,h)

Solugao:

Fs{u(z,y)} = i/ooo u(z,y) senkx de = uq(k,y) .

0%u  O%u F 2 d?aq
UL 0 Ty Rk, y) + Sku(0,y) +
Ox? + Oy? P2 s (k,y) + T \‘u( ’_/y) * dy?

0 (%)
) De acordo com a condicdo de fronteira de Dirichlet em z = 0.

2_

ddqés—k%ls(k,y):o = i(k,y) = A(k)cosh ky + B(k)senhky . [I]

Y

w(@0)=0 —L & Gk0)=0 —\ Ak)=0 = a(ky)=Bk)senhky. [II]

u(z,y) = F; Has(k,y)} = T, H{B(k)senhky} = wu(z,y)= / B(k)senhkysenkx dk m
0

w(a,h) = fl@) —Ls Ak h) =Ffx)) — B(k)senhkh:z/ (@) senk do
B(k) senh ki /o

2 o
= B(k)= m/o f(z)senkxdz m

A solugao do problema é composta por esses dois resultados, sendo exatamente aquela dada por (7.27)
e (7.28).

131



Exemplo 7.2.5. Resolu¢ao da equacao do calor num dominio retangular, semi-infinito ao
longo do eixo x e de altura h:

10T
VAT =~ T (et), v € (0.00), yEOR), 130
or or
%(O,y,t) =0, T(x,0,t) = a—y(x,h,t) =0, T(x,y,0) =To(z,y) .
Solugao:
2 [ _
FeAT (z,y,t)} = 7/ T(x,y,t)cos kxdx = Ty (y,t) .
T Jo
Pr T 19T F. - 2 0T T, 10Ty
A Tes BTy, t) — = 0,y ) + 2k =
o2 ' 9y a ot (@,9.1) k(y:1) ﬂ'ﬁx( 4 )+3y2 a Ot
——
0 1 !/
_ Y
Essa EDP, com a separacio de variaveis Ty (y,t) = Y (y)7(t), toma a forma —k* + v = ar
I
Y"+vY(y)=0, ye(0,h) Vn = (nm/2h)? (n=1,3,5---)
Y(0)=Y'(h) =0 Y. (y) = sen(nmy/2h) .
T+ (R 4 v)amin(t) =0 = 7p(t) = e * ot
T — _(k2+’/n)0‘t @ .
Ky )= ) Ape sen —
n=1,3,5--
T(x,y,t) =F {Tk y,t } / [ Z Ak e~ (K Fvn)at oo coskxzdk m
n=1,3,5--

Determinamos os coeficientes Ay, por meio da transformada F. da condigao inicial:

T(x,y,()) = TO(l‘7y) ?—r> Tk(yao) = ?(:{TO(xvy)}

nmy 2 /°°
= A, sen —= = — To(x,y) coskx dx ,

que é uma série de Fourier da fungdo (de y) no membro direito, cujos coeficientes Ay, sdo, portanto,

Ay = h/ [ / Toxy)coskxdx]sen%dyl

A solucéao do problema é formada pelos dois resultados marcados com a quadricula, sendo exatamente
aquela dada por (7.30) e (7.31).
Vejamos mais um problema, ainda nao resolvido neste texto:

— Exemplo 7.2.6. Resolva o seguinte problema em coordenadas cilindricas :

V2u(p,,2) =0, pe(0,b), ¢€(0,7), z€ (0,00)
du (7.48)
u(b,p,2) = fp,2) %(p,O,Z) =u(p,7,2) =0, u(p,,0)=0.
Solugao: ® meio
Z1 semi-infinito
0% 100 10% 0% _
op*  pdp  p?op? 922
Tolulp.or2)} = [ ulp.p,)cos ke dz = alp.g.b).
0 OufBp=0-"x : £TNu =0
02%u 1 ou 102 2 0u (esquerda) : (direita)
D) 72 2777(/0’()070)*0 !
ap P 6,0 dy m 0z !
0 u = f(p,2) i >
(face curva)\ AN y
() Condicao de fronteira de Neumann em z = 0 . RN
AN
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_ R'+(1/p)R 1 &
u(p, o, k) = R(p)2(¢) = %+7*:0-

R p? P

—K

{@H+,u’¢(90)07 906(037) = {Mm:(mﬂ-/Q’y)z (TL:].,S,E))

P'(0) = &(7) =0 P () = cos(mmp/27) .

2 ! / 2 2 mm 2 — — — mm mm
PR+ pR — [Kp? + ( 27) [R(p) =0 = R=Rulp) = An(k) gz (kp) + Bon (k) K gz (kp)
0 ()
) R, (p — 00) finito =  B,,(k) =0, pois lim Kmz () = oo .
z—0 2y
mm
Um (p, 9, k) = Rin(p) P () = A (k) Iz (Kp) cos
_ _ mm
u(p, o, k) = Z Um(p, 0, k) = Z Am(kj)lvéﬁ(k;p)cos 5 Loy [1]
m=1,3,5--- m=1,3,5--- K v
u(p, o, 2) = FHa(p, o, k)} = / [ A, (k) I'ma (kp) cos mﬂ'go] coskzdz . [II]
0 m=1,3,5- > 2y
Fs _
u(bv 2 Z) = f(<)07 Z) —_— U(b, 2 k) = grs{f(()& Z)}
LN Z [ Irmr (k:b)} m;rcp / flp,z)coskzdz, @ €[0,7].
m=1,3,5--

Nessa equagao, entre colchetes, temos os coeficientes da série de Fourier generalizada da funcao de
¢ que resulta da integral em relagao a z que se encontra no membro direito, sendo essa série aquela
associada ao Problema de autovalor (iv) apresentado na pag. 40; portanto,

A () Iz (kb) = E/V [2 /OO f(%z)coskzdz] cos =
o L™ Jo

v Y

@ds&

Desse resultado e de [II] obtemos a resposta:

u(p, @, 2) = COSm @/ A, Ir%r(kp) coskzdz ,
m_135

mme
onde A, (k)= 7T’}/Im7r ) / / f(p, 2) cos kz cos 5 dzdy
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