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Prefácio
"A Física Matemática é a Matemática praticada por físicos que querem ser
rigorosos, ou a Física praticada por matemáticos que querem ser aplicados."

— (folclore acadêmico)

Trata-se de um texto didático para a disciplina "Cálculo 5" (ministrada pelo Departamento de

Matemática Aplicada da UFF sob o código GMA00162), cujo objetivo principal é descrever a resolução

de equações diferenciais parciais (EDPs) clássicas da Física – basicamente, as equações do calor, da

onda e de Laplace – pelo método de separação de variáveis. Para alcançar essa meta, é necessário munir

o aluno de outras teorias que são de importância geral e que, por isso, devem integrar o repertório

matemático de todo estudante de Física ou Engenharia, tornando-se metas adicionais tão relevantes

quanto a resolução de EDPs que orienta este texto.

Na verdade, tais resoluções são iniciadas em Cálculo 4, sendo restritas, porém, a soluções represen-

tadas por séries de senos e cossenos. Em Cálculo 5, a metodologia é aprofundada por meio da Teoria

de Sturm-Liouville, da qual emerge uma teoria de representação de funções por séries de autofunções

definidas em domínios finitos. Essa abordagem generaliza as séries trigonométricas ao envolver funções

de naturezas distintas, conhecidas como funções especiais, tais como os polinômios de Legendre e as

funções de Bessel. O estudo dessas funções e de suas propriedades fundamentais é essencial, pois elas

surgem de modo recorrente na modelagem de fenômenos físicos.

Consideram-se também problemas de EDPs cuja resolução requer o emprego de autofunções de-

finidas em domínios infinitos, casos em que as soluções são representadas por integrais, em vez de

séries. Tais problemas, todavia, restringem-se, neste texto, àqueles que podem ser tratados por meio

das integrais ou transformadas de Fourier construídas com autofunções trigonométricas.

A organização dos capítulos e seções segue o princípio de desenvolver a teoria à medida que se faça

necessária. Nesse espírito, a Teoria de Sturm-Liouville é introduzida logo no Capítulo 2, ainda que o

Capítulo 3 (que facilmente integraria o programa de Cálculo 4) não exija esse aparato mais geral, porque

assim, já no Capítulo 3, evidencia-se o arcabouço conceitual que fundamenta todas as representações

em séries de funções. O estudo das funções especiais, no Capítulo 4, antecede suas aplicações diretas,

desenvolvidas nos Capítulos 5 e 6, e o texto encerra-se, no Capítulo 7, com resolução de problemas

que envolvem autofunções definidas em domínios infinitos por meio das integrais e transformadas de

Fourier. O Capítulo 1 tem caráter complementar, contribuindo para a formação matemática do físico

e do engenheiro, e provendo conceitos matemáticos que são utilizados pontualmente ao longo do texto.

As principais referências bibliográficas são apresentadas abaixo do título de cada capítulo.
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Capítulo 1

Números Complexos e Funções de
Uma Variável Complexa

- Ref. [5] , cap. 13

1.1 Números Complexos e as Quatro Operações Elementares
Um número complexo z é uma expressão da forma z = x+ iy, onde x e y são números reais, e i, a

denominada unidade imaginária, satisfaz a equação i2 = −1. Há ainda a seguinte nomenclatura:

Em x+ iy:

{
x = Re z −→ parte real de z

y = Im z −→ parte imaginária de z

Note que Im z ∈ R.
Naturalmente, dois números complexos são iguais se e somente se tiverem as mesmas partes real e

imaginária. Assim, se (a + b) + i(a − b) = −4 + 10i, então a + b = −4 e a − b = 10, donde a = 3 e
b = −7.

O número complexo z = x+ iy é dito

• real se y = 0

• imaginário se y 6= 0

• imaginário puro se y 6= 0 e x = 0

Geometricamente, o número complexo z = x + iy pode ser visto como o
ponto de coordenadas cartesianas x e y ou coordenadas polares r e θ, assim se
identificando o plano xy com o chamado plano complexo. Também podemos
visualizar z = x + iy como o vetor desde a origem (0, 0) até o ponto (x, y)
desse plano.

A coordenada polar radial r define o módulo |z| de z : |z| = |x + iy| ≡
r =

√
x2 + y2.

A coordenada polar θ, que é indefinida no ponto z = 0, define o chamado
argumento de z. Num ponto z 6= 0, se θ é seu argumento, então qualquer
ângulo congruente θ+2kπ, k ∈ Z, também é. Denotamos o argumento de z por arg z, que, na verdade,
é uma função multivalorada (multivalente, plurívoca), associando cada ponto z 6= 0 à infinidade de
valores θ + 2kπ, sendo θ o valor escolhido para a coordenada polar angular desse ponto.

O valor de θ em cada ponto numa circunferência centrada na origem pode ser escolhido no intervalo
[0, 2π), ou [−π, π), ou qualquer outro intervalo de largura 2π. O argumento de z em cada ponto do plano
complexo (sem a origem) assim escolhido é uma função univalorada (univalente, unívoca), chamada
de determinação principal do argumento e denotada por Arg z.

Em resumo,
arg z = Arg z + 2kπ (k ∈ Z) , (1.1)

onde Arg z = θ : o valor escolhido para a coordenada polar angular em cada pondo do plano complexo,
exceto na origem.

Uma vez que x = r cos θ e y = r senθ, podemos escrever

z = x+ iy = r(cos θ + i senθ) .

1



Nessa equação, temos a representação do número complexo z na forma cartesiana, envolvendo x = Re z
e y = Im z, e na forma polar, envolvendo r = |z| e θ = Arg z. Quando usamos essas representações,
devemos ter em mente que

Dois números complexos que são iguais representam um mesmo ponto do plano complexo,
tendo, portanto, as mesmas coordenadas cartesianas e as mesmas coordenadas polares, i.e.,
(1) as mesmas partes real e imaginária, e (2) o mesmo módulo e argumentos congruentes.

(1.2)

Nessa observação, (1) já foi constatado acima, e (2) também pode ser constatada analiticamente:
Se z1 = r1(cos θ1 + i senθ1) e z2 = r2(cos θ2 + i senθ2), então

z1 = z2 ⇔

{
r1 cos θ1 = r2 cos θ2

r1 senθ1 = r2 senθ2

⋆
⇔


r21 (

1︷ ︸︸ ︷
cos2θ1 + sen2θ1) = r22 (

1︷ ︸︸ ︷
cos2θ2 + sen2θ2) ⇔ r1 = r2

e
cos θ1 = cos θ2
senθ1 = senθ2

〉
⇔ θ1 = θ2 + 2kπ (k ∈ Z) ,

onde, na passagem ⋆ , cada membro das duas equações foi elevado ao quadrado, e as equações resultantes
foram somadas membro a membro.

O número x− iy é o complexo conjugado (ou conjugado complexo) de z = x+ iy e é denotado por
z∗ (ou z̄):

z = x+ iy ⇒ z∗ = x− iy .

Obviamente |z∗| = |z|.
Adição, subtração, multiplicação e divisão de números complexos são definidas como os resultados

que se obtêm quando se aplicam as regras que governam os números reais acrescidas da regra i2 = −1.
Assim, se

z1 = x1 + iy1 e z2 = x2 + iy2 ,

então

z1 + z2 = x1 + x2 + i(y1 + y2)

z1 − z2 = x1 − x2 + i(y1 − y2)

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 + i2y1y2 + i(x1y2 + x2y1)

= x1x2 − y1y2 + i(x1y2 + x2y1) .

Em particular:

(a) z = r(cos θ + i senθ) ⇒ iz = r(− senθ + i cos θ)

= r[cos(θ + π/2) + i sen(θ + π/2)] ,

isto é, como resultado da multiplicação de i por um número complexo z, obtém-se
o vetor z girado de 90◦ no sentido trigonométrico (v. figura à direita).

(b) zz∗ = (x+ iy)(x− iy) = x2 + y2 + i(xy − xy)
= x2 + y2 = |z|2 .

Usamos (b) para deduzir que

z1
z2

=
x1 + iy1
x2 + iy2

=
z1z

∗
2

z2z∗2
=

(x1 + iy1)(x2 − iy2)
|z2|2

=
x1x2 + y1y2
x22 + y22

+ i
x2y1 − x1y2
x22 + y22

se z2 6= 0 .

Deduzimos agora as seguintes propriedades do módulo de z:

| z1 z2 | = | (x1x2 − y1y2) + i(x1y2 + x2y1) | =
√
(x1x2 − y1y2) 2 + (x1y2 + x2y1)

2

=
√

(x21x
2
2 −

hhhhh2x1x2y1y2 + y21y
2
2) + (x21y

2
2 +

hhhhh2x1y2x2y1 + x22y
2
1) =

√
(x21 + y21) (x

2
2 + y22)

= |z1| |z2| ;
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∣∣∣∣z1z2
∣∣∣∣ =

√(
x1x2 + y1y2
x22 + y22

)
+ i

(
x2y1 − x1y2
x22 + y22

)
=

√(
x1x2 + y1y2
x22 + y22

) 2

+

(
x2y1 − x1y2
x22 + y22

) 2

=

√
(x21x

2
2 +

hhhhh2x1x2y1y2 + y21y
2
2) + (x22y

2
1 −

hhhhh2x2y1x1y2 + x21y
2
2)

(x22 + y22)
2

=

√
(x21 + y21) (x

2
2 + y22)

(x22 + y22)
2 =

√
x21 + y21
x22 + y22

=

√
x21 + y21√
x22 + y22

=
|z1|
|z2|

;∣∣zn∣∣
n∈N = | z z · · · z︸ ︷︷ ︸

nvezes

| = |z| |z| · · · |z|︸ ︷︷ ︸
nvezes

= |z|n .

Podemos provar que quaisquer números complexos z1, z2 e z3 satisfazem as seguintes propriedades:

1) z1 + z2 e z1z2 são números complexos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lei de fechamento

2) (z1 + z2) + z3 = z1 + (z2 + z3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lei associativa da adição

3) z1 + z2 = z2 + z1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lei comutativa da adição

4) (z1z2)z3 = z1(z2z3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lei associativa da multiplicação

5) z1z2 = z2z1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lei comutativa da multiplicação

6) z1(z2 + z3) = z1z2 + z1z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lei distributiva

7) z1 + 0 = 0 + z1 = z1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . existência da identidade (0) da adição

8) z1 1 = 1 z1 = z1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . existência da identidade (1) da multiplicação

9) Para um número complexo z qualquer há um
único número complexo ζ tal que z + ζ = 0 ;
ζ é denominado inverso aditivo de z e é deno-
tado por −z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . existência do inverso na adição

10) Para um número complexo z 6= 0 qualquer há um
único número complexo ζ tal que zζ = 1 ; ζ
é denominado inverso multiplicativo de z e é
denotado por z−1 ou 1/z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .existência do inverso na multiplicação

Tais propriedades conferem a C a estrutura de um corpo (ou campo).
Entretanto, C, em contraste com R, não é um corpo ordenável, não havendo sentido em desigual-

dades como z1 > z2. Em razão disso, estará implícito neste texto que, em qualquer desigualdade, as
variáveis ou parâmetros que figurarem nelas são reais. Por exemplo, se r > 0, r é um número real
positivo.

Teorema de DE MOIVRE

Se z1 = r1(cos θ1 + i senθ1) e z2 = r2(cos θ2 + i senθ2), então

z1z2 = r1r2
[
cos(θ1 + θ2) + i sen(θ1 + θ2)

]
e

z1
z2

=
r1
r2

[
cos(θ1 − θ2) + i sen(θ1 − θ2)

]
;

além disso, para um produto com n fatores (n ∈ N∗),

z1z2 · · · zn = r1r2 · · · rn
[
cos(θ1 + θ2 + · · ·+ θn) + i sen(θ1 + θ2 + · · ·+ θn)

]
,

que, no caso de z1 = z2 = · · · = zn = r(cos θ + i senθ), fornece a fórmula

zn =
[
r(cos θ + i senθ)

]n
= rn

[
cos(nθ) + i sen(nθ)

]
.
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Eis a prova desse teorema:

z1z2 = r1(cos θ1 + i senθ1) r2(cos θ2 + i senθ2)

= r1r2
[
cos θ1 cos θ2 − senθ1 senθ2 + i( senθ1 cos θ2 + senθ2 cos θ1)

]
= r1r2

[
cos(θ1 + θ2) + i sen(θ1 + θ2)

]
✓

z1
z2

=
z1 z

∗
2

z2 z∗2
=
r1 (cos θ1 + i senθ1) r2 (cos θ2 − i senθ2)

|z2|2

=
r1r2 [cos θ1 cos θ2 + senθ1 senθ2 + i ( senθ1 cos θ2 − senθ2 cos θ1)]

r22

=
r1
r2

[ cos(θ1 − θ2) + i sen(θ1 − θ2) ] ✓

Na literatura é comum escrever a forma polar do número complexo na forma

z = r cis θ

mediante a definição da função
cis θ ≡ cos θ + i senθ .

Note que
| cis θ| =

√
cos2 θ + sen2θ = 1 . (1.3)

Nessa notação, com z1 = r1 cis θ1 e z2 = r2 cis θ2, o teorema de DE MOIVRE toma a forma

z1z2 · · · zn = r1r2 · · · rn cis(θ1 + θ2 + · · ·+ θn) ,
z1
z2

=
r1
r2

cis(θ1 − θ2) , zn = rn cis(nθ) . (1.4)

Exemplifiquemos o uso da terceira fórmula acima calculando (1 + i)6:

(1 + i)6 = (
√
2 cis 45◦)6 = (

√
2)6 cis(6× 45◦) =

√
8 cis 270◦ = −8i .

Com a substituição de z1 = r1 cis θ1 e z2 = r2 cis θ2 nas fórmulas em (1.4), deduzimos respectiva-
mente as seguintes:

cis θ1 cis θ2 = cis(θ1 + θ2) , cis θ1/ cis θ2 = cis(θ1 − θ2) , (cis θ)n = cis(nθ) . (1.5)

Observe ainda que, em vista do teorema de DE MOIVRE:

i) As propriedades do módulo (deduzidas na seção 1.1) seguem prontamente:

|z1z2| = r1r2 = |z1||z2| , |z1/z2| = r1/r2 = |z1|/|z2| , |zn| = rn = |z|n .

ii) iz =

1

|i| cis(π/2) |z| cis θ = |z| cis(π/2+θ), um resultado já obtido acima: que
iz é o vetor z girado de 90◦ no sentido trigonométrico (θ<0 na figura à direita).

iii) A verificação das seguintes fórmulas é deixada como exercício:

arg(z1z2) = arg z1 + arg z2 , arg(z1/z2) = arg z1 − arg z2 e arg(zn) = n arg z + 2kπ (k ∈ Z) .

Por exemplo,

z1 = −1 ⇒ arg z1 = π + 2k1π

z2 = −i ⇒ arg z2 =
3π

2
+ 2k2π

arg(z1z2) = arg(i) =
π

2
+ 2kπ

arg z1 + arg z2 =
5π

2
+ 2(k1 + k2)π

 argumentos congruentes

arg(z1/z2) = arg(−i) = 3π

2
+ 2kπ

arg z1 − arg z2 = −π
2
+ 2(k1 − k2)π

 argumentos congruentes
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Em vista da interpretação geométrica dos números complexos como vetores do plano complexo, a
definição da adição de números complexos corresponde à adição de vetores do plano, valendo, pois, a
regra do paralelogramo (bem como as do triângulo e do polígono). Abaixo são ilustradas a adição e
a subtração de números complexos. Nessas figuras, os pontos representam os números complexos, e a
extremidade de cada vetor só indica a posição do número complexo se estiver partindo da origem (do
ponto z = 0); assim, o vetor z1− z2 pode estar em qualquer lugar do plano, mas a extremidade dele só
indica o número complexo z1−z2 quando ele parte da origem. A notação na figura é um tanto ambígua
(mas é a normalmente empregada): a de usar z1− z2 para denotar tanto o vetor correspondente a esse
número complexo quanto o ponto do plano complexo correspondente a ele.

1.2 Propriedades da Conjugação

(i) (z1 ± z2)∗ = z∗1 + z∗2 (v) |z∗| = |z|

(ii) (z1z2)
∗
= z∗1z

∗
2 (vi)

z + z∗

2
= Re z

(iii) (z1/z2)
∗
= z∗1/z

∗
2 (vii)

z − z∗

2i
= Im z

(iv) (z∗)
∗
= z (viii) arg(z∗) = − arg z

(1.6)

Prova:

Sejam z1 = x1 + iy1 , z2 = x2 + iy2 , z3 = x3 + iy3 . Temos que:

(i) (z1 ± z2)∗ = [x1 ± x2 + i(y1 ± y2)]∗ = x1 ± x2 − i(y1 ± y2)
= x1 − iy1 ± (x2 − iy2) = z1

∗ ± z2∗ ✓

(ii) (z1 z2)
∗
= [(x1x2 − y1y2) + i(x1y2 + x2y1)] = (x1x2 − y1y2)− i(x1y2 + x2y1)

z1
∗z2

∗ = (x1 − iy1) (x2 − iy2) = (x1x2 − y1y2)− i(x1y2 + x2y1)

}
iguais! ✓

(iii) z ≡ z1/z2 ⇒ z z2 = z1 ⇒ (z z2)
∗
= z∗ z2

∗ = z1
∗ ⇒ z1

∗/z2
∗ = z∗ = (z1/z2)

∗ ✓
(iv) (z∗)

∗
= (x− iy)∗ = x+ iy = z ✓

(v) |z∗| = |x− iy| =
√
x2 + (−y)2 =

√
x2 + y2 = |z| ✓

(vi)
z + z∗

2
=
x+ iy + (x− iy)

2
= x = Re z ✓

(vii)
z − z∗

2i
=
x+ iy − (x− iy)

2i
= y = Im z ✓

(viii) A fórmula arg(z∗) = − arg z é geometricamente óbvia: v. figura acima. ✓
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1.3 Propriedades do módulo e das partes real e imaginária

(i) |z| ≥ 0 , onde |z| = 0 se e só se z = 0 , (ii) |z2 − z1| = distância de z1 a z2 ,

(iii) Re z ≤ |z| , (iv) Im z ≤ |z| , (v) |z∗| = | − z| = |z| ,

(vi) Re(z1 + z2) = Re z1 +Re z2 , (vii) Im(z1 + z2) = Im z1 + Im z2 ,

(viii) |z1z2| = |z1||z2| , (ix) |z1/z2| = |z1|/|z2| ,

(x) |zn| = |z|n , (xi) | n
√
z| = n

√
|z| ,

onde n ∈ N.
Algumas dessas propriedades já foram deduzidas, e a propriedade (xi) será provada mais adiante,

na pág. 17, equação (1.15). Algumas não foram deduzidas por serem simples, sendo então deixadas
como exercício.

Por meio da propriedade (ii), e usando conhecidas propriedades dos lados dos triângulos, podemos
visualizar geometricamente a validade das chamadas desigualdades triangulares:

|z1 + z2| ≤ |z1|+ |z2| e |z1 − z2| ≥
∣∣ |z1| − |z2| ∣∣ .

A primeira expressa que, num triângulo, ne-
nhum lado tem comprimento maior do que a
soma dos comprimentos dos outros dois, e a
segunda, que nenhum lado é menor do que a
diferença nos comprimentos dos outros dois.
A figura à direita ajuda a compreender isso.

Essas desigualdades podem ser provadas
analiticamente. Eis a dedução da primeira:

|z1 + z2| =
√
(z1 + z2)(z1 + z2)

∗
=
√

(z1 + z2) (z1∗ + z2∗) =
√
z1z1∗ + z2z2∗ + z1z2∗ + z1∗z2

=
√
|z1|2 + |z2|2 + z1z2∗ + (z1z2∗)

∗
=
√
|z1|2 + |z2|2 + 2Re(z1z2∗) ≤

√
|z1|2 + |z2|2 + 2|z1z2∗|

=
√
|z1|2 + |z2|2 + 2|z1||z2| =

√
(|z1|+ |z2|)2 = |z1|+ |z2| ✓

A segunda é obtida da primeira:

|z1 − z2|+ |z2| ≥ |z1 − z2 + z2| = |z1| ⇒ |z1| − |z2| ≤ |z1 − z2|
|z2 − z1|+ |z1| ≥ |z2 − z1 + z1| = |z2| ⇒ |z1| − |z2| ≥ −|z1 − z2|

}
⇒

−|z1 − z2| ≤ |z1| − |z2| ≤ |z1 − z2| ⇒ ||z1| − |z2|| ≤
∣∣ |z1| − |z2| ∣∣ ✓

1.4 Conjunto de pontos do plano complexo
Antes de expor esse assunto, convém observar que o lugar geométrico dos pontos do plano complexo

que satisfaz a equação |z| = r0 é a circunferência C1 na figura abaixo, de raio r0 e centro na origem.
Já |z − z0| = r0 descreve a circunferência C2, de raio r0 e centro no ponto z0. Por outro lado, as
desigualdades |z| < r0 e |z− z0| ≤ r0 descrevem as regiões D1 e D2 limitadas por essas circunferências,
D1 incluindo e D2 não incluindo os pontos das próprias circunferências.
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Pois bem, seguem abaixo várias definições, onde S é um conjunto de pontos qualquer de C.

a) No plano complexo, o conjunto de todos os pontos z do disco |z− z0| < r, onde r > 0 e z0 é um
ponto qualquer de C, é denominado de disco aberto de raio r e centro z0, sendo denotado por δ(z0; r)
ou, quando não é importante especificar o raio, por δ(z0).

Uma vizinhança de z0 é qualquer conjunto contendo um disco δ(z0).

b) Um ponto z0 de S é denominado ponto interior desse conjunto se existir um disco δ(z0) ⊂ S.
O conjunto de todos os pontos interiores de S é denominado interior de S.

c) Um conjunto S é dito aberto se todos seus pontos forem pontos interiores.

d) Um conjunto S é dito fechado se o seu complemento C− S for aberto.

e) Um ponto z0 de S é dito ponto de fronteira se todo disco δ(z0) contiver pelo menos um ponto
de S e pelo menos um ponto de C− S.

O conjunto de todos os pontos de fronteira de S é a chamada fronteira de S e é às vezes denotado
por ∂S.

f) Um conjunto S é dito limitado se existe M > 0 tal que |z| < M∀z ∈ S. Um conjunto ilimitado
é o que não é limitado.

g) Um conjunto S é dito conexo se dois pontos seus quaisquer podem ser conectados por uma linha
poligonal interiramentre contida nele.

h) Um conjunto D é chamado domínio se for aberto e conexo.
O conjunto D̄ ≡ D ∪ ∂D (a união de um domínio D com a sua fronteira ∂D) é chamado de

domínio fechado.

1.5 Funções Complexas: Conceitos Preliminares
Quando z designa qualquer número complexo de um conjunto A ⊂ C, chamamos z de variável

complexa, que toma valores em A.
Dizemos que num conjunto A de pontos do plano de z está definida uma função f(z) se houver

uma lei pela qual cada ponto z de A é posto em correspondência com um ponto determinado ou com
um conjunto determinado de pontos do plano de w. No primeiro caso, a função w = f(z) é dita
univalorada (univalente, unívoca); no segundo, multivalorada (multivalente, plurívoca). O conjunto A
é chamado de conjunto de definição, ou, quando for um domínio, que é quase sempre o caso, de domínio
de definição. Já o conjunto B de todos os pontos do plano de w que são postos em correspondência
com os pontos de A pela função é chamado de conjunto de variação, ou, se for um domínio, de domínio
de variação.

Se o conjunto de variação for subconjunto de C, temos uma função complexa; se for subconjunto
de A, uma função real.

Sejam z e w variáveis complexas, e sejam x, y e u variáveis reais. Observe a nomenclatura:

w = f(z) função complexa de uma variável complexa
w = f(x) função complexa de uma variável real
y = f(z) função real de uma variável complexa
y = f(x) função real de uma variável real
u = f(x, y) função real de duas variáveis reais

A função w = f(z) , com z = x + iy , tem partes real e imaginária u e v bem definidas e que são
funções de x e y :

z = x+ iy
f−−−−→ w = u+ iv ,

onde
f(x+ iy) = u+ iv ⇒

{
Re f(x+ iy) = u(x, y)
Im f(x+ iy) = v(x, y) .

Logo, a função complexa w = f(z) equivale ao par u(x, y) e v(x, y) de funções reais de duas
variáveis reais. Assim, tanto f(z) quanto o par equivalente u(x, y) e v(x, y) podem ser representados
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geometricamente como uma transformação do conjunto A de pontos do plano de z no conjunto B de
pontos do plano de w.

Um ponto P (x, y) do plano de z é transformado em um ou mais pontos P ′
k(u, v) (k = 1, · · · , n) do

plano de w, sendo P ′
k chamado imagem de P pela transformação. Em geral, sob uma transformação,

um conjunto de pontos, tal qual a curva C na figura abaixo, à esquerda, é transformado em um conjunto
correspondente de pontos, que é a imagem de C, digamos a curva Γ nessa figura. No caso de um função
f(z) multivalorada, um ponto ou uma curva do plano de z é transformado, em geral, em mais de um
ponto ou mais de uma curva do plano de w.

Para se empregarem certos termos geométricos, tais como translação, rotação e reflexão, é conveni-
ente, às vezes, considerar a transformação ocorrendo num único plano. Como exemplo disso, na figura
abaixo, à direita, representamos a função w1 = f1(z) = z+2i (translação de duas unidades para cima),
w2 = f2(z) = e−iγz (veremos adiante que, por essa função, há uma rotação do vetor z no sentido
horário de um ângulo γ > 0), e w3 = f3(z) = −x+ iy = −z∗ (reflexão em relação ao eixo imaginário).

1.6 Limite e Continuidade
Para uma função f(z) = u(x, y) + iv(x, y) definida univocamente num disco aberto, exceto, possi-

velmente, no centro z0 = x0 + iy0 desse disco, dizemos que

lim
z→z0

f(z) = u0 + iv0 se lim
x→x0
y→y0

u(x, y) = u0 e lim
x→x0
y→y0

v(x, y) = v0 .

Como tal definição de limite de uma função complexa baseia-se na de funções reais, valem para
aquela as mesmas propriedades que valem para estas; em particular,

lim(f ± g) = lim f ± lim g , lim(fg) = (lim f)(lim g) , lim(f/g) = (lim g)/(lim g) ,

se lim f e lim g existem, e lim g 6= 0 na última propriedade acima.
A definição de limite pode ainda ser dada através da noção de vizinhança. Basta observar que a

notação lim
z→z0

f(z) = w0 [em palavras: w0 é o limite de f(z) quando z tende a z0 , ou f(z) tende a w0

quando z tende a z0] expressa intuitivamente que pontos cada vez mais próximos de w0 (no plano de
w) são imagens de pontos cada vez mais próximos de z0 (no plano de z). Isso é o que ilustra a figura
abaixo.

Numa linguagem um pouco mais matemática, podemos dizer que um disco δ(w0, ρ) de raio ρ
arbitrariamente pequeno sempre contém a imagem de algum disco δ(z0, r) sem o seu ponto central z0
(essa exclusão do centro do disco é explicada adiante). Isto é ilustrado abaixo:
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Assim, a definição de limite que incorpora a ideia explicada acima é dada matematicamente como
segue:

Diz-se que lim
z→z0

f(z) = w0 quando, dado ρ positivo e arbitrariamente pequeno, existe r > 0 tal

que, se 0 < |z − z0| < r , então |f(z)− w0| < ρ .

Convém enfatizar que, de acordo com essa definição, a função f(z) tende ao limite w0 indepen-
dentemente da maneira como o ponto z tenda para z0. Em outras palavras, se o limite existe, então,
quando z tende a z0 segundo uma regra qualquer (por exemplo, segundo uma sequência de pontos ou
uma curva), f(z) tende àquele limite w0.

O limite w0 de uma função f(z) num ponto z0 independe da de-
finição do valor f(z0) nesse ponto. Por exemplo, o gráfico da função
f : R→ R à direita ilustra este fato, no qual f(x0) 6= y0 = lim

x→x0

f(x).

Pode até acontecer que o limite num ponto exista, mas a função em
tal ponto não seja definida, como é o caso da função ( senx)/x, inde-
finida em x = 0, onde seu limite é 1. Portanto, na definição do limite
w0 = lim

z→z0
f(z), o ponto z0 deve ser excluído do disco centrado nele,

evitando-se a exigência da validade da desigualdade |f(z0)−w0| < ρ ,
que só é satisfeita para uma classe especial de funções, as chamadas
"contínuas no ponto z0", definidas a seguir.

Dizemos que a função f(z) é contínua no ponto z0 quando, neste ponto, o valor-limite é igual ao
valor de definição: lim

z→z0
f(z) = f(z0). Logo, f(z) não é contínua no ponto z0 se: (a) lim

z→z0
f(z) não

existe; (b) f(z0) não é definido; (c) lim
z→z0

f(z) = w0 e f(z0) existem, mas são diferentes. É evidente que

a continuidade de f(z) em z0 é necessária e suficiente para que, no ponto (x0, y0), sejam contínuas as
funções u(x, y) e v(x, y) que compõem as partes real e imaginária dessa função complexa.

A função f(z) é dita contínua num domínio se for contínua em cada ponto desse domínio.

1.7 Diferenciabilidade e Analiticidade
Considere uma função definida num disco δ(z0). Dizemos que f(z) é diferenciável (ou derivável) no

ponto z0 se existir o seguinte limite, denotado por f ′(z0):

f ′(z0) ≡ lim
z→z0

f(z)− f(z0)
z − z0

[
= lim
h→0

f(z0 + h)− f(z0)
h

]
,

cujo valor denominamos derivada de f(z) em z0.
Uma função f(z) diferenciável em cada ponto de um domínio D é dita analítica (ou regular) nesse

domínio; dizemos que D é um domínio de analiticidade de f(z). Uma função é analítica num ponto z0
se este tiver uma vizinhança em que ela é analítica. O ponto onde uma função deixa de ser analítica é
chamado de singularidade. Nessas definições de função analítica, a função é presumida univalorada no
domínio D, pois as noções de limite e de derivada foram definidas acima apenas para funções unívocas.
Mais tarde generalizaremos o conceito de analiticidade para englobar as funções multivaloradas; por
enquanto, apenas funções univaloradas podem ser analíticas.

As condições de diferenciabilidade de uma função f(z) em termos das funções que compõem suas
parte real e imaginária são dadas pelo seguinte teorema:
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Teorema: Considere uma função f(z) = u(x, y) + iv(x, y) definida numa vizinhança de z0 =
x0+ iy0 e tal que u e v sejam diferenciáveis no ponto (x0, y0). A validade neste ponto das equações
(ou condições) de CAUCHY-RIEMANN ux = vy e uy = −vx é condição necessária e suficiente para
a diferenciabilidade de f(z) em z0.

Corolário: A validade das equações de Cauchy-Riemann num domínio D é condição necessária
e suficiente para a analiticidade de f(z) em D.

Convém ressalvar que, em vez das hipóteses de u e v serem diferenciáveis em (x0, y0), encontra-
mos frequentemente na literatura a de que essas funções sejam da classe C1 neste ponto. Isso não
altera o teorema, porque a diferenciabilidade é garantida pela continuidade das suas derivadas parciais
primeiras.

Abaixo, abreviamos "condições de Cauchy-Riemann" por simplesmente "condições CR".

Vamos provar a necessidade das condições CR, isto é, que se f ′(z0) existir então necessariamente
as condições CR são válidas. Nesse intuito, calculemos o limite que define f ′(z0) ,

lim
h→0

f(z0 + h)− f(z0)
h

= lim
h→0

f(x0 + iy0 + h)− f(x0 + iy0)

h
,

nos casos particulares de h → 0 paralelamente aos eixos real (i.e., com h = ξ ∈ R) e imaginário (i.e.,
com h = iη , η ∈ R):

lim
h= ξ→0

f(x0 + iy0 + ξ)− f(x0 + iy0)

ξ
= lim
ξ→0

f(x0 + ξ + iy0)− f(x0 + iy0)

ξ

= lim
ξ→0

u(x0 + ξ, y0) + iv(x0 + ξ, y0)−
[
u(x0, y0) + iv(x0, y0)

]
ξ

= lim
ξ→0

u(x0 + ξ, y0)− u(x0, y0)
ξ

+ i
v(x0 + ξ, y0)− v(x0, y0)

ξ

= ux(x0, y0) + ivx(x0, y0) [I]

lim
h= iη→0

f(x0 + iy0 + iη)− f(x0 + iy0)

iη
= lim
η→0

f
[
x0 + i(η + y0)

]
− f(x0 + iy0)

iη

= lim
η→0

u(x0, y0 + η) + iv(x0, y0 + η)−
[
u(x0, y0) + iv(x0, y0)

]
iη

= lim
η→0

u(x0, y0 + η)− u(x0, y0)
iη

+ i
v(x0, y0 + η)− v(x0, y0)

iη

= −iuy(x0, y0) + vy(x0, y0) [II]

Se a derivada f ′(z0) existir, então o limite que a define deve existir independentemente do modo
como h→ 0, ou seja, os dois resultados [I] e [II] acima devem ser iguais, o que acarreta nas condições
CR no ponto z0:

ux(x0, y0) + ivx(x0, y0) = −iuy(x0, y0) + vy(x0, y0) ⇒

{
ux(x0, y0) = vy(x0, y0)

vx(x0, y0) = −uy(x0, y0)

Para referência futura, destaquemos as duas expressões de f ′(z0) deduzidas acima, mas com z em
vez de z0:

f ′(z) = ux + ivx = vy − iuy . (1.7)

Não provaremos a suficiência das condições CR, isto é, que se as condições CR forem válidas então
a existência de f ′(z0) está garantida.

Visto que as propriedades ordinárias das operações algébricas e de limite são conservadas na pas-
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sagem para as funções complexas, as regras de diferenciação usuais também são; portanto,

• [f(z) + g(z)]′ = f ′(z) + g′(z)

• [f(z) g(z)]′ = f ′(z) g(z) + f(z) g′(z)

• [f(z)/g(z)]′ = [f ′(z) g(z)− f(z) g′(z)]/g2(z)

• { f [g(z)] }′ = f ′ [g(z)] g′(z)

• f ′(z) = 1/ (f−1)′(w) , onde w = f(z)

Considere, por exemplo, a função f(z) = x2 − y2 + i(2xy) , caso em que u(x, y) = x2 − y2 e
v(x, y) = 2xy . Como em todo o plano complexo temos que ux = vy = 2x e uy = −vx = −2y , isto
é, as equações de Cauchy-Riemann são satisfeitas, e também que u e v são da classe C1 (e portanto
diferenciáveis), podemos concluir que f(z) é analítica em todo o plano complexo.

A seguir, cada função elementar de uma variável real é estendida de modo a ser definida para uma
variável complexa Tal extensão, às vezes, enriquece a função com novas propriedades. Por exemplo, a
função exponencial de uma variável complexa ez torna-se periódica, as funções senz e cos z deixam de
ser limitadas, o logaritmo de números negativos (em verdade, de qualquer número complexo não nulo)
ganha sentido, etc.

1.8 A Função Potência w = zk (k inteiro)
Por definição,

zn ≡ z · · · z︸ ︷︷ ︸
n vezes

se n = 1, 2, 3 · · · .

As fórmulas zmzn = zm+n, zm/zn
∣∣
m>n

= zm−n e zm/zn
∣∣
m<n

= 1/zn−m (m e n naturais
não nulos) seguem diretamente da definição acima. As duas últimas podem ser unificadas na forma
zm/zn = zm−n para quaisquer valores naturais de m e n mediante as definições

z0 ≡ 1 e z−n
∣∣
n≥1
≡ 1/zn .

Por exemplo, se desejamos que 1/z2 = z3/z5 seja z3−5 = z−2 e que 1 = z2/z2 seja z2−2 = z0, é
necessário definir 1/z2 ≡ z−2 e 1 ≡ z0. As definições acima também justificam a notação z−1 do
inverso multiplicativo 1/z de z (v. a propriedade 10 do corpo dos complexos na pág. 3): 1/z =
z0/z1 = z0−1 = z−1.

Estão assim definidas as potências inteiras zk, k ∈ Z. Tais potências apresentam as seguintes
propriedades para quaisquer inteiros k e l, cuja verificação deixamos como exercício:

zkzl = zk+l , zk/zl = zk−l , (z1z2)
k = zk1z

k
2 , (z1/z2)

k = zk1/z
k
2 , (zk)l = zkl .

O cálculo de zn, com n natural, é mais fácil com z expresso na forma polar por causa do teorema
de DE MOIVRE:

zn
∣∣
n∈N = (r cis θ)n = rn cisnθ ,

fórmula que também vale para expoente k inteiro:

zk
∣∣
k∈Z = (r cis θ)k = rk cis kθ .

A validade dessa fórmula para k = −n (n = 1, 2, 3, · · · ) é provada como segue (onde z = r cis θ):

zk
∣∣∣
k=−n

=
1

zn
=

1

(r cis θ)n
=

1

rn cisnθ
= r−n

1

cosnθ + i sennθ

cosnθ − i sennθ

cosnθ − i sennθ

= r−n
cos(−nθ) + i sen(−nθ)
| cosnθ + i sennθ|2

= r−n
cis(−nθ)

1
= rk cis kθ ✓

Observe que a função f(z) = zn é analítica em todo o plano complexo, visto que, para todo z
complexo, existe o limite que fornece a derivada dessa função, obtida usando o binômio de NEWTON:

(zn)′ = lim
z→0

(z + h)n − zn

h
= lim
z→0

ZZzn + C n
1 z

n−1h+ C n
2 z

n−2h2 + C n
3 z

n−3h3 + · · ·+ hn −ZZzn

h

= lim
z→0

(
nzn−1 + C n

2 z
n−2h+ C n

3 z
n−3h2 + · · ·+ hn−1

)
= nzn−1 (n ∈ N) ,

fórmula também válida para expoente k inteiro:

(zk)′ = kzk−1 (k ∈ Z) .
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De fato, se k = −n (n = 1, 2, 3, · · · ), então

(zk) ′
∣∣∣
k =−n

=
( 1

zn

)′
=

0− (zn)′

(zn)2
=

−nzn−1

z2n
= −nzn−1−2n = −nz−n−1 = kzk−1 ✓

1.9 A Função Exponencial
Para todo z = x+ iy complexo, a função exponencial ez pode ser assim definida:

ez = ex+iy ≡ ex(cos y + i seny)

= eRe z
[
cos(Im z) + i sen(Im z)

]
= eRe z cis(Im z) . (1.8)

Nota: O aluno que achar a definição acima muito formal pode adotar, por analogia com a função expo-
nencial de variável real, a que é dada pela fórmula

ez ≡ lim
n→∞

(1 + z/n)n .

O resultado dessa definição é o mesmo em (1.8):

ez ≡ lim
n→∞

(1 + z/n)n︸ ︷︷ ︸
zn

= lim
n→∞

|zn| cis(arg zn) =
[

lim
n→∞

|zn|
][

cis( lim
n→∞

arg zn)
]
= ex cis y .

Para demonstrar isso, é necessário provar esse resultado do limite da sequência de números complexos
zn = (1+z/n)n para todo z ∈ C. Nesse sentido, provamos abaixo os limites lim

n→∞
|zn| = ex e lim

n→∞
arg zn =

y + 2kπ (k ∈ Z), onde x+ iy = z.

Temos que

|zn| = |1 + x/n+ iy/n|n =
[
(1 + x/n)2 + y2/n2

]n/2
=

[
1 + 2x/n+ (x2 + y2)/n2

]n/2
,

donde

lim
n→∞

|zn| = lim
n→∞

[
1+2x/n+(x2 + y2)/n2

]n/2
= lim
n→∞

(1+2x/n)n/2
N ≡ n/2

= lim
N→∞

(1+x/N)N = ex ✓ .

Também temos que

arg zn = n arg(1+x/n+iy/n) = n(2jπ+δn+arctan rn)
(†)
= 2kπ+n

(
δn+rn−

1

3
r3n+· · ·

)
, com rn ≡

y/n

1 + x/n
,

onde j ∈ Z, k ≡ nj, δn é igual a 0 se 1 + x/n + iy/n for do 1o¯ ou 4o¯ quadrante e é igual a π se for do 2o¯
ou 3o¯ quadrante, e, na passagem (†), usamos a expansão de Taylor do arco tangente. Temos então que

lim
n→∞

arg(zn) = 2kπ + lim
n→∞

n(rn −
1

3
r3n + · · · ) = 2kπ + lim

n→∞
nrn = 2kπ + lim

n→∞

y

1 + x/n
= y + 2kπ ✓

onde, para efetuar esse limite, notamos que existe um natural n̄ tal que, para n > n̄, 1 + x/n > 0, ou seja,
1 + x/n + iy/n é um ponto do 1o¯ ou 4o¯ quadrante e, portanto, δn = 0; além disso, podemos desprezar
termos menores do que os da ordem de 1/n.

É fácil mostrar que a função exponencial assim definida tem as seguintes propriedades:

1] A função exponencial complexa ez coincide com a função exponencial real ex se z = x ∈ R.

Na verdade, todas as funções elementares reais são estendidas ao domínio complexo de
modo que essa propriedade de coincidência seja válida (como há de ser) e que elas sejam
analíticas.

2] Se z = x+ iy, então inferimos diretamente da definição de ez as relações

|ez| = eRe z = ex e arg ez = Im z + 2kπ = y + 2kπ .

3] Continuam válidas para a exponencial complexa ez (z ∈ C) as conhecidas fórmulas para a exponen-
cial real ex (x ∈ R):

ez1ez2 = ez1+z2 , e−z =
1

ez
,

ez1

ez2
= ez1−z2 , (ez)k

∣∣∣
k∈Z

= ekz , ez 6= 0 ∀z (pois |ez| = ex > 0) .
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4] (ez)
∗
= e(z

∗) , ez+2πi = eze2πi = ez cis 2π︸ ︷︷ ︸
1

= ez (i.e., ez é periódica, sendo o período igual a 2πi) .

5] A função ez é analítica em todo o plano complexo, valendo a conhecida fórmula (ez)′ = ez.

6] Em particular, fazendo x = 0 e y = θ na definição de ez acima, obtemos a famosa fórmula de EULER:

eiθ = cos θ + i senθ = cis θ . (1.9)

Em virtude dessa fórmula, todo número complexo z pode ser representado na chamada forma
exponencial, dada abaixo logo após as outras duas representações já vistas, a cartesiana e a polar:

z = x + iy = r (cos θ + i senθ) = r eiθ , onde r = |z| e θ = Arg z .

A seguir deduzimos as propriedades acima que ainda não se encontram verificadas:

• As propriedades em [3] são assim deduzidas:

ez1ez2 = ex1(cos y1 + i seny1) e
x2(cos y2 + i seny2)

= ex1+x2

{
cos y1 cos y2 − y1 seny2 + i ( seny1 cos y2 + seny2 cos y1)

}
= ex1+x2

{
cos(y1 + y2) + i sen(y1 + y2)

}
= eRe(z1+z2)

{
cos
[
Im(z1 + z2)

]
+ i sen

[
Im(z1 + z2)

] }
= ez1+z2 ✓

e−z = e−x+i(−y) = e−x[cos(−y) + i sen(−y)] = e−x[cos y − i seny]

=
cos y − i seny

ex
cos y + i seny

cos y + i seny
=

1

cos y + i seny
=

1

z
✓

ez1

ez2
= ez1e−z2 = ez1−z2 ✓

Para n = 1, 2, 3 · · · , temos que

Se k = n : (ez)k = (ez)n = ez · · · ez︸ ︷︷ ︸
n vezes

= ez+···+z = enz = ekz

Se k = −n : (ez)k = (ez)−n =
1

(ez)n
=

1

enz
= e−nz = ekz

Se k = 0 : (ez)k = (ez)0 = 1 = e0z = ekz


⇒ (ez)k = ekz ∀k ∈ Z ✓

• A primeira propriedade em [4]:

(ez)∗ = (ex+iy)∗ = (ex[cos y+i seny])∗ = ex[cos y−i seny] = ex[cos(−y)−i sen(−y)] = ex+i(−y) = ez
∗✓

• Em [5], a analiticidade de ez decorre do fato de que, em qualquer ponto do plano complexo,
as derivadas parciais das partes real, ex cos y, e imaginária, ex seny, têm derivadas parciais primeiras
contínuas e satisfazem as equações de Cauchy-Riemann:

ux =
∂

∂x
(ex cos y) = vy =

∂

∂y
(ex seny) e uy =

∂

∂y
(ex cos y) = −vx = − ∂

∂x
(exseny) ✓

Calculamos a derivada de ez usando a fórmula f ′(z) = ux + ivx em (1.7):

(ez)′ = ux + ivx =
∂

∂x
(ex cos y) + i

∂

∂x
(ex seny) = ex cos y + iex seny = ez ✓
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Uma vez que as propriedades em [3] são as mesmas costumeiras das exponenciais reais, a multi-
plicação, a divisão e a potenciação de números complexos escritos na forma exponencial tornam-se
operações familiares. Observe isso no cálculo daquelas operações em (1.4):

z1z2 · · · zn = r1e
iθ1r2e

iθ2 · · · rneiθn = r1r2 · · · rnei(θ1+···+θn) .

z1
z2

=
r1e

iθ1

r2eiθ2
=

r1
r2
ei(θ1−θ2) .

zn = (r eiθ)n = rne(inθ) .

Esses resultados tomam a mesma forma daqueles em (1.4) se a equação (1.9) for usada para substituir
cada exponencial eiϕ por cisϕ.

1.10 A Função Logarítmica
A função logarítmica complexa f(z) = log z = w é definida como a função inversa da função

exponencial complexa, sendo o valor w de log z, portanto, tal que f−1(w) = ew = z. Essa definição é
sucitamente expressa pela seguinte proposição:

log z = w ⇔ z = ew . (1.10)

Vamos calcular log z = u + iv em função de z = |z| eiθ, sendo θ uma determinação qualquer, mas
fixa, de z:

log z = u+ iv ⇒ z = eu+iv ⇒ |z| eiθ = eueiv ⇒
{
|z| = eu ⇒ u = ln |z|
v = θ + 2kπ = arg z ,

Logo,
log z = ln |z|+ i arg z , (1.11)

onde "ln" denota a função logarítmica ordinária, de variável real(∗), e arg z é a função multivalorada
formada por todas as determinações do argumento de z, dada por (1.1).

Vejamos algumas propriedades dos logaritmos.
Com f(z) = log z e f−1(z) = ez, a relação de composição f−1◦f(z) = z continua válida:

f−1◦f(z) = elog z = eln |z|+i(Arg z+2kπ) = eln |z|︸ ︷︷ ︸
|z|

eiArg z ei2kπ︸ ︷︷ ︸
1

= |z| eiArg z = z ✓

Já f ◦f−1(z) nem sempre é z, porque a função multivalorada f(z) = log z é computada por último
nessa composição:

f ◦f−1(z) = log ez = ln |ez|+ i arg ez = ln eRe z + i [ Im z + 2kπ] (k ∈ Z)
= Re z + i Im z + 2kπi = z + 2kπi (= z apenas quando k = 0) .

Em resumo,
elog z = z e log ez = z + 2kπi (k ∈ Z) . (1.12)

Vejamos agora mais as seguintes propriedades, deduzidas usando-se (1.12) bem como as proprieda-
des da função exponencial:

log(z1z2) = log(elog z1elog z2) = log(elog z1+log z2) = log z1 + log z2 + 2kπi .

log(z1/z2) = log(elog z1/elog z2) = log(elog z1−log z2) = log z1 − log z2 + 2kπi .

log zn
∣∣∣
n∈N+

= log(elog z)n = log(en log z) = n log z + 2kπi .

(∗) O emprego de símbolos distintos para a função logarítmica de variável complexa e a de variável real evita absur-
dos. De fato, na equação (1.11), se designássemos com o mesmo símbolo ln essas duas funções, e substituíssemos, por
exemplo, z = 2 = 2 cis 2π (estamos considerando o argumento 2π do número real e complexo 2), aquela equação seria
inadequadamente expressa por ln 2 = ln 2 + 2πi, em vez da notação adotada e mais consistente Log2 = ln 2 + 2πi.

14



A equação (1.11) mostra que log z é uma função multivalorada, com uma infinidade de determina-
ções, advindas da infinidade de determinações do argumento de z. A figura abaixo mostra que todas
as determinações de um certo complexo z estão sobre uma reta vertical.

Em analogia com as notações Arg z e arg z, pelo símbolo Logz designaremos uma das determinações
de log z, e, caso seja necessário, indicaremos a determinação Logz escolhida. Como a determinação do
argumento de z fixa uma determinação do logaritmo de z, temos que

Logz = ln z + iArg z .

Em todo domínio D que não contenha nenhuma curva fechada cercando a origem, podemos es-
colher um conjunto infinito de ramos contínuos e unívocos da função multivalorada w = log z, cujas
determinações em cada ponto fixo diferem de múltiplos de 2πi. Cada ramo w = Logz realiza uma
transformação biunívoca dos pontos do domínio D e, portanto, de acordo com o teorema da derivada
da função inversa, ele possui a derivada

( Logz)′ =
1

(ew)′
=

1

ew
=

1

z
.

Assim, todos os ramos de log z são funções analíticas.

1.11 A Função Raiz Enésima w = n
√

z (n =2, 3, 4, · · ·)
A função raiz enésima n

√
z é definida como a inversa da função potência zn. Partindo dessa definição,

vejamos como calcular w = n
√
z (n = 2, 3, · · · ).

Por definição, se w = n
√
z, então wn = z, equação que, com as substituições w = |w| ei argw e

z = |z| ei arg z, fornece

wn =
[
|w| ei argw

]n
= |w|n

[
ei argw

]n
= |w|nein argw = |z|ei arg z ,

donde, de acordo com (1.2), concluímos que |w|n = |z| e n argw = arg z , e, portanto, que

|w| = n
√
|z| e argw =

arg z

n
.

Assim, temos que

w = n
√
z = |w|ei argw = n

√
|z| e i

arg z
n . (1.13)

Se Arg z = θ é a determinação escolhida (a principal) para o argumento de z, então todas as suas
determinações, de acordo com (1.1) são dadas por

arg z = θ ± 2jπ (j ∈ N) ,

donde
arg z

n
=
θ ± 2jπ

n
=
θ

n
± j

n
2π .

Acima, a divisão de naturais j/n é igual a algum natural m mais a fração k/n, onde k é o resto da
divisão, igual a 0, 1, 2, · · · ou n−1. Assim, substituindo j/n = m+ k/n na equação anterior, obtemos

arg z

n
=
θ

n
±
(
m+

k

n

)
2π =

θ

n
± 2mπ ± 2π

n
k ,
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donde
e i

arg z
n = e

i
(
θ
n ± 2mπ± 2π

n k
)
= e

i
(
θ
n ± 2π

n k
)
.

A substituição desse resultado na equação (1.13) fornece

w = n
√
|z| ei

(
θ
n ± 2π

n k
)
.

Assim concluímos que a função w = n
√
z é multivalorada, associando cada z a n raízes enésimas

dadas por

n
√
z = wk = n

√
|z| ei

(
Arg z
n + 2π

n k
)
(k = 0, 1, 2, · · · , n−1) , (1.14)

onde preferimos usar, em vez de θ, a notação Arg z (a determinação escolhida para o argumento de z).
Note que descartamos o sinal "−" em "±": após interpretarmos o resultado acima, ficará claro que o
sinal negativo leva às mesmas raízes enésimas que o sinal positivo, bastando então adotar um deles.

Como estão dispostas no plano complexo as n raízes enésimas de z = r cis θ dadas por (1.14)? Para
responder, observemos, primeiramente, que todas elas têm o mesmo módulo |wk| = n

√
|z|. Isso significa

que elas estão sobre a circunferência de raio ρ = n
√
|z|. Elas só diferem no argumento φk = Arg z

n + 2π
n k.

Note, entretanto, que o ângulo entre os vetores associados a duas raízes consecutivas wk = ρ eiφk e
wk+1 = ρ eiφk+1 é constante, dado por φk+1 − φk = 2π/n . Ora, estando uniformemente distribuídas
sobre a citada circunferência, concluímos que essas raízes são os vértices de um polígono regular de n
lados inscrito nessa circunferência. A figura abaixo ilustra isso com n = 3.

z = r cis θ

ρ = 3
√
r

∡(w0, w1) = ∡(w1, w2) = ∡(w2, w3) = 2π/3 = 120◦

φ0 = θ/3

φ1 = φ0 + 2π/3

φ2 = φ1 + 2π/3

wk = 3
√
z = ρ cisφk (k = 0, 1, 2)
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Exemplo – as raízes cúbicas de z = 8i :

3
√
8i =

3
√

8 ei(π/2+2kπ) =
3
√
8 ei(

π/2
3 +2π

3 k) =
3
√
8 ei(30

◦+120◦k)

≡ wk =


2 ei30

◦
= 2(
√
3/2 + i/2) =

√
3 + i = w0

2 ei150
◦
= 2(−

√
3/2 + i/2) = −

√
3 + i = w1

2 ei270
◦
= 2(−i) = −2i = w2

Essas três raízes cúbicas de 8i são mostradas à direita. Elas
podem ser comprovadas mostrando-se que (−2i)3 = (

√
3 + i)3 =

(−
√
3 + i)3 = 8i.

O exemplo acima serve para explicar duas maneiras simplificadas, frequentemente possíveis, de se
calcularem as raízes: a) Basta calcular w0 e então girar essa raiz duas vezes de 120◦, obtendo-se assim
as outras duas, w1 e w2, cujos valores são facilmente obtidos por simetria. b) Mais simples ainda: não
se calcula w0, mais infere-se a raiz óbvia −2i, da qual, por dois giros de 120◦, obtêm-se as outras duas.
Para n 6= 3, gira-se w0 ou a raiz óbvia n−1 vezes de 360◦/3.

Notas:

1) De (1.14), deduzimos que

| n
√
z | =

∣∣∣ n
√
|z| cis

(Arg z

n
+

2π

n
k
)∣∣∣ = ∣∣∣ n

√
|z|
∣∣∣ ∣∣∣cis(Arg z

n
+

2π

n
k
)∣∣∣︸ ︷︷ ︸

1

= n
√
|z| . (1.15)

Essa é a propriedade (xi) listada na seção 1.3.

2) No cálculo de raízes quadradas de números complexos cujos argumentos não são ângulos notáveis
(0◦, 30◦, 45◦, 60◦ · · · ), o seguinte método é mais conveniente:

√
3 + 4i ≡ x+ iy ⇒ 3 + 4i = (x+ i)2 = x2 − y2 + 2xyi

⇒
{
2xy = 4 ⇒ y = 2/x
x2 − y2 = 3

〉
⇒ x2 − (2/x)2 = 3 ⇒ x4 − 3x2 − 4 = 0

⇒

x2 = −1 (não serve, pois x ∈ R)
ou
x2 = 4 ⇒ x = ±2 ⇒ y = 2 /(±2) = ±1

∴
√
3 + 4i = ±(2 + i) ■

Comprovação: [±(2 + i)]2 = 4 + 4i− 1 = 3 + 4i .

3) A resolução da equação do 2o
¯ grau pela clássica fórmula quadrática,

az2 + bz + c = 0 ⇒ z =
−b+

√
∆

2
, com ∆ = b2 − 4ac ,

continua válida com coeficientes a, b e c complexos, pois todas as operações realizadas em sua dedução
continuam válidas no domínio complexo. Em particular, note que

√
∆ possui dois valores.

Por exemplo, vamos fatorar P (z) = (1 + i)z2 + (1− 3i)z − 6 + 8i em monômios:

P (z) = 0 ⇒ z =
−(1− 3i) +

√
∆

2(1 + i)
.

Calculemos as duas raízes quadradas de ∆:

∆ =
√
(1− 3i)2 − 4(1 + i)(−6 + 8i) =

√
48− 14i ≡ x+ iy

⇒ 48− 14i = (x+ iy)2 = x2 − y2 + 2xyi ⇒
{
2xy = −14 ⇒ y = −7/x
x2 − y2 = 48

x2 − 49

x2
= 48 ⇒ x4 − 48x2 − 49 = 0 ⇒

{
x2 = −1 (não serve, pois x ∈ R)
x2 = 49 ⇒ x = ±7 ⇒ y = −7/(±7) = ±(−1)

∴
√
∆ = ±7± (−1)i = ±(7− i) .
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Portanto, as raízes são

z =
−(1− 3i)± (7− i)

2(1 + i)
=


6 + 2i

2(1 + i)
=

3 + i

1 + i
= 2− i

−8 + 4i

2(1 + i)
=
−4 + 2i

1 + i
= −1 + 3i .

Finalmente, podemos fatorar o polinômio dado:

P (z) = (1 + i)(z − 2 + i)(z + 1− 3i) ■

Vimos acima que a função raiz enésima não é univalorada, apresentando n determinações se z 6= 0:
os n valores de n

√
z. Também vimos que certa determinação de n

√
z decorre da determinação escolhida

para o argumento de z, e isto se deve ao termo (arg z)/n em (1.13). Pois bem, resumindo este assunto
um tanto complicado, podemos afirmar que, em qualquer domínio D do plano complexo que não
contenha alguma curva fechada cercando a origem, podemos definir n funções contínuas e univaloradas,
cada uma coincidindo com uma determinação de n

√
z . Tais n funções são chamadas de ramos da função

multivalorada n
√
z, por meio das quais, a cada ponto fixo z, associam-se as n determinações da raiz.

[No caso da inversa da função real de variável real y = x2, visualizamos os dois ramos x =
√
y e

x = −√y (y > 0) como os dois ramos da parábola que compõem seus gráficos.]
Cada um desses n ramos, evidentemente, realiza uma transformação biunívoca dos pontos de D, e,

por esta razão, em cada ponto desse domínio, o teorema da derivada da função inversa é válido, pelo
qual a derivada

( n
√
z)′ =

1

(wn)′
=

1

nwn−1
=

w

nwn
=

1

nwn−1
=

1

n(n
√
z )n−1

é bem definida. Por conseguinte, um ramo qualquer assim construído é uma função analítica no
domínio D. Se escrevermos n

√
z = z1/n, a equação acima toma a forma mais mnemônica da derivada

de potências: (
z

1
n

)′
=

1

n
z

1
n−1 .

1.12 As Funções Trigonométricas
As funções trigonométricas no domínio complexo são expressas simplesmente por meio da função

exponencial complexa. Para a variável real x, a fórmula de Euler, equação (1.9), fornece

eix = cosx+ i senx e e−ix = cosx− i senx ,

donde

cosx =
eix + e−ix

2
e senx =

eix − e−ix

2i
. (1.16)

Em vista disso, para qualquer z complexo, toma-se por definição

cos z ≡ eiz + e−iz

2
e senz ≡ eiz − e−iz

2i
. (1.17)

As demais funções trigonométricas são definidas a partir das funções senz e cos z :

tan z ≡ senz/ cos z , cot z ≡ cos z/ senz , sec z ≡ 1/ cos z , csc z ≡ 1/ senz .

As funções assim definidas:

1) para z = x ∈ R, coincidem com as funções trigonométricas de variável real.

2) satisfazem as relações trigonométricas ordinárias:

cos2 z + sen2z = 1 , cos(z1 ± z2) = cos z1 cos z2 ∓ senz1 senz2 ,

cos 2z = cos2 z − sen2z sen(π/2− z) = cos z , etc.
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3) satisfazem as fórmulas ordinárias de derivação:

(cos z)′ = − senz , ( senz)′ = cos z , (tan z)′ = sec2 z , etc.

4) têm a mesma periodicidade apresentada no domínio real:

cos(z + 2π) = cos z , sen(z + 2π) = senz , tan(z + π) = tan z , etc.

5) tem a mesma paridade apresentada no domínio real:

cos(−z) = cos z (par) , sen(−z) = − senz (ímpar) , etc.

6) têm apenas aqueles mesmos zeros que apresentam no domínio real:

senz = 0 ⇒ z = kπ , cos z = 0 ⇒ z = (2k + 1)π/2 , etc.

Todas essas proposições decorrem da definição, equação (1.17), e sua verificação é deixada como
exercício.

1.13 As Funções Hiperbólicas
As funções hiperbólicas de variável complexa são definidas de modo análogo às de variável real:

cosh z ≡ ez + e−z

2
, senhz ≡ ez − e−z

2

tanh z ≡ senhz

cosh z
, coth ≡ cosh z

senhz
, sechz ≡ 1

cosh z
, cschz ≡ 1

senhz
.

Deixa-se como exercício verificar:

1) que continuam válidas as relações ordinárias, incluindo as fórmulas de derivacão:

cosh2 z − senh2z = 1

senh(z1 ± z2) = senhz1 cosh z2 ± senhz2 cosh z2

cosh(z1 ± z2) = cosh z1 cosh z2 ± senhz1 senhz2

cosh(−z) = cosh z (par) , senh(−z) = − senhz (ímpar)
(cosh z)′ = senhz , ( senhz)′ = cosh z , ( sechz)′ = − sechz tanh z , etc.

2) as seguintes relações entre o seno e o cosseno hiperbólicos e os trigonométricos:

senhiz = i senz cosh iz = cos z

seniz = i senhz cos iz = cosh z

1.14 As Inversas das Funções Hiperbólicas e Trigonométricas
Sabemos que as inversas das funções hiperbólicas de variável real podem ser expressas em termos

da função logarítmica real; exatamente as mesmas expressões se obtém para as inversas das funções
hiperbólicas de variável complexa em termos da função logarítmica complexa:

arcsenhz = log(z +
√
z2 + 1 ) , arccoshz = log(z +

√
z2 − 1 ) , arctanhz =

1

2
log

1 + z

1− z
, etc.

Para as inversas das funções trigonométricas de variável complexa há a novidade de também pode-
rem ser expressas em termos da função logarítmica complexa:

arcsenz = −i log(iz +
√
1− z2 ) arccos z = −i log(z +

√
z2 − 1 )

arctan z =
1

2i
log

1 + iz

1− iz
arccot =

1

2i
log

z + i

z − i

arcsecz = −i log 1 +
√
1− z2
z

arccscz = −i log i+
√
z2 − 1

z
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Por dependerem da função logarítmica, multivalorada, todas essas funções inversas (de funções
hiperbólicas ou trigonométricas) são também multivaloradas. A raiz quadrada que aparece em alguma
delas, cujas duas determinações hão ser consideradas, contribui adicionalmente para a multivaloração
dessas funções. Para mostrar o método de se obterem as expressões dessas funções inversas, deduzimos
abaixo a expressão da função arcsenz:

arcsenz = w ⇒ z = senw =
eiw − e−iw

2i
=
e2iw − 1

2ieiw
⇒ (eiw)2 − 2iz(eiw) = 1

(eiw − iz)2 = 1− z2 ⇒ eiw = iz +
√

1− z2 ⇒ w = arcsenz = −i log(iz +
√
1− z2 ) ■

As demais são obtidas por um procedimento análogo.

1.15 As Funções Potência w = zc e Exponencial w = cz Genera-
lizadas

Tais funções de z ∈ C são definidas, em termos de um parâmetro c ∈ C, pelas equações

zc ≡ ec log z e cz ≡ ez log c ,

onde, para dois números complexos a e b, a operação ba é assim definida:

• para b 6= 0 : ba ≡ ea log b .

• para b = 0 (base nula) :

{
0a ≡ 0 se a ∈ R>0

0a é indefinido se a 6∈ R>0

Note que b0 ≡ 1 está bem definido, mas são indefinidos, por exemplo, 0−2 e 0i.

1.16 Apêndice: Redução Ao Primeiro Quadrante
Seja f uma das funções sen , cos, tan, cot, sec ou csc. Considere os dois problemas seguintes, nos

quais θ é um ângulo fora do 1o
¯ quadrante e se admitem conhecidos os valores de f no 1o

¯ quadrante:
a) o de calcular f(θ) quando θ é dado, e b) o de calcular θ quando f(θ) e o quadrante de θ são dados.
Resolvemo-los por meio da técnica de redução ao 1o

¯ quadrante, que consiste em usar o ângulo φ do 1o
¯

quad. tal que f(φ) = |f(θ)|, donde f(θ) = ±f(φ), nessa equação devendo ser o usado o sinal "+" ou
"−" que a torne verdadeira, uma questão simples, pois o sinal de f é conhecido nos quatro quadrantes.

As figuras acima mostram, para cada ângulo θ, o ângulo φ do 1o
¯ quad. tal que f(φ) = |f(θ)| . A

seguir resumimos as fórmulas de redução de um ângulo θ (no 2o
¯, 3o

¯ ou 4o
¯ quad.) a esse ângulo φ do

1o
¯ quad., as chamadas fórmulas de redução ao primeiro quadrante:

φ = 180◦ − θ se θ ∈ 2o
¯ quad. = (90◦, 180◦) ,

φ = θ − 180◦ se θ ∈ 3o
¯ quad. = (180◦, 270◦) ,

φ = 360◦ − θ se θ ∈ 4o
¯ quad. = (270◦, 360◦) ,

φ = −θ se θ ∈ 4o
¯ quad. = (−90◦, 0◦) ,

onde, para θ ∈ 4o
¯ quad., consideramos tanto determinações positivas quanto negativas de θ, ambas

usadas com frequência.
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Acima, expressamos os ângulos em graus, mas nada impede escrevê-los em radianos. Além disso,
quando se faz referência ao quadrante de um ângulo, raramente é necessário precisar os quadrantes dos
ângulos limítrofes (0◦, 90◦, 180◦ e 270◦), sendo essa a razão de especificá-los por intervalos abertos.

Seguem exemplos do uso da redução ao primeiro quadrante na resolução dos dois tipos de problemas
supracitados, nos quais desenhamos figuras que ajudam a lembrar as fórmulas acima:

a) Exemplos de cálculo de funções trigonométrica de ângulos fora do 1o
¯ quadrante:

i) θ = 150◦ ∈ 2o
¯ quad., onde o seno é positivo, e o cosseno é negativo.

sen150◦ = +sen30◦ = 1/2

cos 150◦ = − cos 30◦ = −
√
3/2

ii) θ = 240◦ ∈ 3o
¯ quad., onde o seno é negativo, e a tangente é positiva.

sen240◦ = − sen60◦ = −
√
3/2

tan 240◦ = +tan 60◦ =
√
3

iii) θ = 315◦ ∈ 4o
¯ quad., onde o seno é negativo, e a tangente é negativa.

sen315◦ = − sen45◦ = −
√
2/2

tan 315◦ = − tan 45◦ = −1

iv) θ = −60◦ ∈ 4o
¯ quad., onde o cosseno é positivo.

cos(−60◦) = +cos 60◦ = 1/2

b) Exemplos de cálculo de θ sendo fornecidos o quadrante desse ângulo e o valor de uma função
trigonométrica f(θ):

i) Cálculo de θ ∈ 2o
¯ quad. tal que tan θ = −

√
3:

tanφ = | tan θ| =
√
3 ⇒ φ = 60◦ .

Pela figura vemos que θ = 180◦ − 60◦ = 120◦ ■

ii) Cálculo de θ ∈ 3o
¯ quad. tal que senθ = −1/2:

senφ = | senθ| = 1/2 ⇒ φ = 30◦ .

Pela figura vemos que θ = 30◦ + 180◦ = 210◦ ■

iii) Cálculo de θ ∈ 4o
¯ quad. tal que senθ = −

√
3/2:

senφ = | senθ| =
√
3/2 ⇒ φ = 60◦ .

Pela figura vemos que θ = −60◦ (ou 360◦ − 60◦ = 300◦) ■
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1.17 Exercícios
1] Passe para a forma polar:
(a) 1 + i (b) − 5 + 5i (c) − 3 + i

√
3 (d)

√
3− 3i

(e) − 3i (f) − 5 (g) i (h) − i
(i) 1 (j) − 1 (k) 2 + 2i (l) −

√
6− i

√
2

2] Reduza à forma a+ bi :

(a)
3 i30 − i19

2 i21 − i40
(b)

5 + 5i

3− 4i
+

20

4 + 3i
(c)

(2 + i) (3− 2i) (1 + 2i)

(1− i)2

(d)
i4 − i9 + i16

2− i5 + i10 − i15
(e) (2i− 1)2

[
4

1− i
+

2− i
1 + i

]
(f) 3

(
1 + i

1− i

)2

− 2

(
1− i
1 + i

)3

(g)

(√
3− i√
3 + i

)4(
1 + i

1− i

)5

(h)

(
1 + i

√
3

1 + i

)8

3] Se z1 = 2 + i , z2 = 3− 2i , e z3 = −(
√
3− i)/2 calcule:

(a) |3z1 − 4z2| (b) z31 − 3z21 + 4z1 − 8 (c) (z∗3)
8

(d)

∣∣∣∣2z2 + z1 − 5− i
2z1 − z2 + 3− i

∣∣∣∣
4] Encontre números reais x e y tais que:
(a) 3x+ 2iy − ix+ 5y = 7 + 5i
(b) 2x− 3iy + 4ix− 2y − 5− 10i = (x+ y + 2)− (y − x+ 3) i

5] Se z1 = 1− i , z2 = −2 + 4i e z3 =
√
3− 2i , calcule:

(a) Im(2z31 + 3z22 − 5z23)
(b) Re(z1z2/z3)

6] Identifique e desenhe o lugar geométrico do plano complexo dado por:

(a) |2z − 2− 2i| = 12 (b) Im z2 = 4 (c) 1 < |z + i| ≤ 2 (d) |(z − 3)/(z + 3)| = 2

(e) |z − 2| = 2|z + 2i| (f) Re(1/z) < 1/4 (g) Re z2 > 0 (h) Re z2 > 1
(i) Re

[
z∗(z + 2)

]
= 3 (j) |Arg(z3)| < π/2

7] Encontre a equação apresentando apenas a variável z (= x+ iy) :
(a) do círculo de raio 2 e centro em (−3, 4)
(b) do círculo 4(x− 2)2 + 4(y + 3)2 = 36

8] Determine a curva do plano de w que é imagem do quadrado de vértices em 0, 1, 1+ i e i do plano
de z sob a transformação w = z2.

9] Mostre que:

(a) (ez)
∗
= e(z

∗) (b) (cos z)
∗
= cos(z∗) (c) ( senz)

∗
= sen(z∗) (d) (tan z)

∗
= tan(z∗)

(e) | senz|2 = sen2x+ senh2y = cosh2 y − cos2 x (f) | cos z|2 = (cos 2x+ cosh 2y)/2

10] Determine os zeros das seguintes funções:
(a) senz (b) cos z (c) senhz (d) cosh z

11] Calcule lim
z→ i

z17 − i
z10 + 1

.

12] Separe a parte real u e imaginária v das seguintes funções:

(a) 2z2 − 3iz (b) z +
1

z
(c)

1− z
1 + z

(d)
√
z (e) senz (f) cosh z (g) e3iz
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13] Calcule:

(a) 3
√
1 (c) 3

√
−8i (e) 6

√
−64 (g)

√
−8 + 6i

(b)
√
2 + i2

√
3 (d) 4

√
−4 (f) 4

√
−8 + i8

√
3

14]
(a) Calcule

√
15− 8i

(b) Fatore em monômios: P (z) = (1− i)z3 + (−5 + i)z2 + (6− 4i)z

15] Resolva:

(a) z2 + (4 + 3i)z − 2 + 8i = 0 (b) iz2 − (1 + 2i)z + 1 + 3i = 0 (c) z4 + z2 + 1 = 0

16] Calcule todas as raízes de cada uma das seguintes equações:

(a) log3 z = − iπ
3

8
(b) log

2 cot z

3
=
iπ

2
(c) log cos z =

πi

2

17] Calcule, na forma a + b i, as expressões abaixo. No caso de função multivalorada, forneça todas
as determinações.

(a) 4 senh(πi/3) (b) coth(3πi/4) (c) sen
[
(π+i ln 8)/3

]
(d) cosh

[
(2k+1)

πi

2

]
(k∈Z)

(e)
√
[1− cos(i ln 5) ]/0, 1 (f) log(−1/2− i

√
3/2) (g) (−1)π (h) Im

[
1
√
2
]

(i) |(−i)i| (j) (1 + i)i (k) ( 1 + i
√
3 )−i

18] Identifique as curvas do plano complexo ao longo das quais as seguintes funções têm apenas valores
reais:
(a) senz (b) senhz .

RESPOSTAS COM ALGUMAS SOLUÇÕES

Na soluções que seguem, quando 2kπ ou kπ compor um ângulo em radianos, está implícito que
k ∈ Z , a não ser que se diga explicitamente o contrário.

1
Passar para a forma polar:

(a) z = 1 + i = r cis θ

r = |z| =
√
12 + 12 =

√
2

tan θ =
1

1
= 1

θ ∈ 1o¯ quad.−−−−−−−−−→ θ =
π

4

〉
z =
√
2 cis

π

4
■

(b) 5
√
2 cis(3π/4) (c) 2

√
3 cis(5π/6) (d) 2

√
3 cis(−π/3) [ou 2

√
3 cis(5π/3)]

(e) 3 cis(3π/2) (f) 5 cis(π) (g) cis(π/2) (h) cis(3π/2)

(i) cis 0 (j) cisπ (k) 2
√
2 cis(π/4)

(l) z = −
√
6− i

√
2 = r cis θ

r = |z| =
√
(−
√
6)2 + (−

√
2)2 =

√
8 = 2

√
2

tan θ =
−
√
2

−
√
6
=

1√
3

θ ∈ 3o¯ quad.−−−−−−−−−→ θ =
π

6
+ π =

7π

6

〉
z = 2

√
2 cis

7π

6
■

2
Reduzir à forma a+bi :

(a)
3 i30 − i19

2 i21 − i40
=

3 i2 − i3

2 i1 − i0
=

3(−1)− (−i)
2i− 1

=
−3 + i

2i− 1
· −2i− 1

−2i− 1
=

3 + 2 + 6i− i
22 + (−1)2

=
5 + 5i

5
= 1 + i ■

(b) 3− i (c) −15/2 + 5i

(d) 2− i (e) −(11 + 23i)/2 (f) −3− 2i
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(g) Cálculo de
(√

3− i√
3 + i

)4(
1 + i

1− i

)5

:

(√
3− i√
3 + i

)4

=



(
e−iπ/6

eiπ/6

)4

=
(
ei(−π/6−π/6)

)4
=
(
e−iπ/3

)4
= e−i4π/3 (modo 1)

ou(√
3− i√
3 + i

·
√
3− i√
3− i

)4

=

(
(
√
3 )2 − 2(

√
3 )i+ i2

(
√
3 )2 + (−1)2

)4

=

(
3− 2i

√
3− 1

4

)4

=

(
2− 2i

√
3

4

)4

=

(
1− i

√
3

2

)4

=

(
2 e−iπ/3

2

)4

= e−i4π/3 (modo 2)

(
1 + i

1− i

)5

=

(
1 + i

1− i
· 1 + i

1 + i

)5

=

(
1 + 2i− 1

1 + 1

)5

=

(
2i

i

)5

= i5 = i .

∴
(√

3− i√
3 + i

)4(
1 + i

1− i

)5

= e−i4π/3 i = i e−240◦ = i e−240◦+360◦ = i e120
◦
= i
[
cos(120◦) + i sen(120◦)

]
= i
[
− 1

2
+ i

√
3

2

]
= −
√
3

2
− i

2
■

Note que a diferença entre os modos 1 e 2 acima é que, no modo 1, escrevemos o numerador
e o denominador na forma exponencial antes de efetuar a divisão, enquanto, no modo 2,
efetuamos a divisão antes de usarmos a forma exponencial.

(h) Cálculo de
(
1 + i

√
3

1 + i

)8

:

(
1 + i

√
3

1 + i

)8

=

(
2 eiπ/3√
2 eiπ/4

)8

=
( 2√

2

)8[
ei(π/3−π/4)

]8
= (
√
2 )8

[
eiπ/12

]8
= 16 ei8π/12 = 16 ei2π/3

= 16
(
− 1

2
+ i

√
3

2

)
= −8 + 8i

√
3 ■

Note que o cálculo acima foi efetuado pelo modo 1 apresentado no item (g) acima. Pelo
modo 2 haveria complicação; observe:(

1 + i
√
3

1 + i

)8

=

(
1 + i

√
3

1 + i
· 1− i
1− i

)8

= · · · =
(√

3 + 1

2
+ i

√
3− 1

2

)8

,

onde, não tendo o complexo (
√
3+1)/2+i(

√
3−1)/2 argumento notável, torna-se trabalhoso

elevá-lo à oitava potência.

3
(a)
√
157 (b) −7 + 3i

(c) Cálculo de (z∗3)
8, com z3 = −(

√
3− i)/2 :

z3 =
−
√
3 + i

2
⇒ (z∗3)

8 =

[
−
√
3− i
2

]8
=

(
√
3 + i)8

28
=

(2 ei30
◦
)8

28
=

@@28 ei240
◦

@@28
= −1

2
− i
√
3

2
■

(d) 1

4
(a) x = −1 e y = 2

(b) Se 2x− 3iy + 4ix− 2y − 5− 10i = (x+ y + 2)− (y − x+ 3)i, então:

2x− 3iy + 4ix− 2y − 5− 10i︸ ︷︷ ︸
(2x−2y−5)+(−3y+4x−10)i

= (x+ y + 2)− (y − x+ 3)i

⇒
{

2x− 2y − 5 = x+ y + 2
−3y + 4x− 10 = −y + x− 3

⇒
{

x− 3y = 7
3x− 2y = 7

⇒
{
x = 1
y = −2 ■
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5
(a) Cálculo de w = Im(2z31 + 3z22 − 5z23), com z1 = 1− i, z2 = −2 + 4i e z3 =

√
3− 2i :

z31 = (1− i)3 = 13 − 3 · 12 · i+ 3 · 1 · i2 − i3

−i
= 1− 3i− 3 + i = −2− 2i .

z22 = (−2 + 4i)2 = 4− 16i− 16 = −12− 16i .

z23 = (
√
3− 2i)2 = 4− 4

√
3 i− 4 = −1− 4i

√
3 .

∴ w = Im
[
2(−2− 2i) + (−12− 16i)− 5(−1− 4i

√
3 )
]
= −4− 48 + 20

√
3 = −52 + 20

√
3 ■

(b) (2
√
3− 12)/7

6
Passar para a forma polar:

(a) |2z − 2− 2i| = 12 :

|2z − 2− 2i| = 12
÷2−−−→ |z − (1 + i)| = 6

∴ A circunferência de raio 6 centrada em z = 1 + i ■

(b) Im z2 = 4 :
Im z2 = 4 ⇒ Im(x+ iy)2 = Im(x2 + 2xyi− y2) = 2xy = 4

⇒ xy = 2 : A hipérbole mostrada à direita ■

(c) 1 < |z + i| ≤ 2 :
1 < |z + i| ≤ 2 ⇒ 1 < |z − (−i)| ≤ 2

∴ A região com a forma de uma arruela, centrada em z = −i, de
raios 1 e 2, contendo a borda externa, mas não a interna ■

(d) |(z − 3)/(z + 3)| = 2 :
|(z−3)/(z+3)| = 2 ⇒ |z−3| = 2|z+3| ⇒ |z−3|2 = 4|z+3|2 ⇒ |x−3+iy|2 = 4|x+3+iy|2

⇒ (x−3)2+y2 = 4[ (x+3)2+y2] ⇒ x2−6x+9+y2 = 4[x2+6x+9+y2] ⇒ x2 + 10x︸ ︷︷ ︸
(x+5)2−25

+9+y = 0

⇒ (x+ 5)2 + y2 = 16 : circunferência de raio 4 centrada em z = −5 ■

(e) Circunferência de raio
√
32/3 e centro em (−2− 8i)/3 .

(f) Re(1/z) < 1/4 :

Re
1

z
<

1

4
⇒ Re

1

z
< Re

1

z

z∗

z∗
= Re

x− iy
x2 + y2

=
x

x2 + y2
<

1

4

⇒ 4x < x2 + y2 ⇒ x2 − 4x︸ ︷︷ ︸
(x−2)2−4

+y2 > 0 ⇒ (x− 2)2 + y2 > 4 .

∴ O exterior da circunferência de raio 2 centrada em z = 2 ■

(g) A região entre as retas y = ±x contendo o eixo x .

(h) A região limitada pelos ramos da hipérbole x2 − y2 = 1 contendo quase todo o eixo x .

(i) A circunferência de raio 2 e centro em z = −1 .

(j) |Arg(z3)| < π/2 :

|Arg(z3)|< π

2

Arg z ≡ θ−−−−−−−→
|z| ≡ r

|Arg(r eiθ)3| = |Arg(r3e3iθ) | = |3θ|< π

2
.

∴ −π
6
< θ <

π

6
: a região aberta entre as semirretas y = ±

√
3

3
x

∣∣∣∣
x>0

■

7
(a) Circulo de raio 2 e centro em (−3, 4) −→ |z − (−3 + 4i)| = 2 ■

(b) Circulo 4(x− 2)2 + 4(y + 3)2 = 36 ⇒ (x− 2)2 + (y + 3)2 = 9 −→ |z − (2− 3i)| = 3 ■
Trata-se da circunferência de raio 3 centrada em z = 2− 3i .
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8
É a curva do plano w = u+ iv formada pelo segmento de reta desde w = −1 até 1 e pelos arcos de

parábola u = 1− v2/4 e u = −1 + v2/4 entre 2i e −1 .

9
(e) Mostrar que | senz|2 = sen2x+ senh2y = − cos2 x+ cosh2 y .

| senz|2 = | sen(x+ iy)|2 = | senx cos iy + seniy cosx|2 = | senx cosh y + i senhy cosx|2

= ( senx cosh y)2 + ( senhy cosx)2 = sen2x cosh2 y + senh2y cos2 y

= sen2x(1 + senh2y) + senh2y(1− sen2y)

= sen2x+(((((((
sen2x senh2y + senh2y −(((((((

senh2y sen2y

=

{
sen2x+ senh2y ■
1− cos2 x+ cosh2 y − 1 = − cos2 x+ cosh2 y ■

10
Determinar zeros de funções:

(a) senz :

senz =
eiz − e−iz

2i
= 0

·eiz−−−→ e2iz = 1 ⇒ 2iz = log 1 = ln 1︸︷︷︸
0

+ i2kπ ⇒ z = kπ (k ∈ Z) ■

(b) (2k + 1)π/2

(c) kπi

(d) cosh z :

cosh z =
ez + e−z

2
= 0

·ez−−−→ e2z = −1

⇒ 2z = log(−1) = ln(−1)︸ ︷︷ ︸
0

+i(π + 2kπ) ⇒ z = (2kπ + 1)
π

2
i (k ∈ Z) ■

11

lim
z→ i

z17 − i
z10 + 1

=
i17 − i
i10 + 1

=
i1 − i
z2 + 1

=
i− i
−1 + 1

=
0

0
: forma indeterminada.

∴ lim
z→ i

z17 − i
z10 + 1

= lim
z→ i

17z16

10z9
=

17i16

10i9
=

17i7

10
=

17i3

10
= −17i

10
■

12
Separar as partes real u e imaginária v de funções:

(a) 2z2−3iz = 2(x+ iy)2−3i(x+ iy) = 2(x2−y2+2xyi)−3ix+3y = 2x2 − 2y2 + 3y︸ ︷︷ ︸
u

+(4xy − 3x)︸ ︷︷ ︸
v

i ■

(b) z +
1

z
= z +

z∗

zz∗
= z +

z∗

|z|2
= x+ iy +

x− iy
x2 + y2

= x+
x

x2 + y2︸ ︷︷ ︸
u

+ y − y

x2 + y2︸ ︷︷ ︸
v

i ■

(c)
1− z
1 + z

=
1− x− iy
1 + x+ iy

=
1− x− iy
1 + x+ iy

· 1− x− iy
1 + x− iy

=
1− x2 − y2 + (1− x)iy − iy(1 + x)

(1 + x)2 + y2
=

1− x2 − y2

(1 + x)2 + y2︸ ︷︷ ︸
u

+
−2y

(1 + x)2 + y2︸ ︷︷ ︸
v

i ■

(d)
√
z =
√
r eiθ =

√
r eiθ/2 =

√
r
[
sen(θ/2) + i sen(θ/2)

]
=
√
r cos(θ/2)︸ ︷︷ ︸

u

+
√
r sen(θ/2)︸ ︷︷ ︸

v

i ■

(e) senz = sen(x+ iy) = senx cos iy + seniy cosx = senx cosh y︸ ︷︷ ︸
u

+ i cosx senhy︸ ︷︷ ︸
v

■

(f) cosh z = cosh(x+ iy) = coshx cosh iy + senhx senhiy = coshx cos y︸ ︷︷ ︸
u

+ i senhx seny︸ ︷︷ ︸
v

■

(g) e3iz = e3i(x+iy) = e−3yei3x = e−3y(cos 3x+ i sen3x) = e−3y cos 3x︸ ︷︷ ︸
u

+ i e−3y sen3x︸ ︷︷ ︸
v

■
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13

(a) 3
√
1 =

3
√
ei(0◦+360◦k) = ei 120

◦k =



k=0
= ei0

◦
= 1 ■

k=1
= ei120

◦
= −1

2
+ i

√
3

2
■

k=2
= ei240

◦
= −1

2
− i
√
3

2
■

(b)
√
2 + i2

√
3 =
√
4 ei(60◦+360◦k) = 2 ei (30

◦+180◦k)

=


k=0
= ei30

◦
= 2
(√3

2
+
i

2

)
k=1
= ei210

◦
= 2
(
−
√
3

2
− i

2

)
〉

= ±(
√
3 + i) ■

(c) 3
√
−8i = 3

√
8 ei(−90◦+360◦k) = 2 ei (−30◦+120◦k)

=



k=0
= e−i30

◦
= 2
(√3

2
− i

2

)
=
√
3− i ■

k=1
= 2 ei90

◦
= 2i ■

k=2
= ei210

◦
= 2
(
−
√
3

2
− i

2

)
= −
√
3− i ■

(d) 4
√
−4 =

4
√
4 ei(180◦+360◦k) =

√
2 ei (45

◦+90◦k)

=



k=0
=
√
2 ei45

◦
=
√
2
( 1√

2
+

i√
2

)
= 1 + i ■

k=1
=
√
2 ei135

◦
=
√
2
(
− 1√

2
+

i√
2

)
= −1 + i ■

k=2
=
√
2 ei225

◦
=
√
2
(
− 1√

2
− i√

2

)
= −1− i ■

k=3
=
√
2 ei315

◦
=
√
2
( 1√

2
− i√

2

)
= 1− i ■

(e) 6
√
−64 =

6
√
64 ei(180◦+360◦k) = 2 ei (30

◦+60◦k)

=



k=0
=
√
2 ei30

◦
= 2
(√3

2
+
i

2

)
=
√
3 + i ■

k=1
= 2 ei90

◦
= 2i ■

k=2
= 2 ei150

◦
= 2
(
−
√
3

2
+
i

2

)
= −
√
3 + i ■

k=3
= 2 ei210

◦
= 2
(
−
√
3

2
− i

2

)
= −
√
3− i ■

k=4
= 2 ei270

◦
= −2i ■

k=5
=
√
2 ei330

◦
= 2
(√3

2
− i

2

)
=
√
3− i ■
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(f) 4
√
−8 + i8

√
3 =

4
√
16 ei(120◦+360◦k) = 2 ei (30

◦+60◦k)

=



k=0
=
√
2 ei30

◦
= 2
(√3

2
+
i

2

)
=
√
3 + i ■

k=1
= 2 ei120

◦
= 2
(
− 1

2
+ i

√
3

2

)
= −1 + i

√
3 ■

k=2
= 2 ei210

◦
= 2
(−√3

2
− i

2

)
= −
√
3− i ■

k=3
= 2 ei300

◦
= 2
(1
2
− i
√
3

2

)
= 1− i

√
3 ■

(g)
√
−8 + 6i = x+ iy ⇒ −8 + 6i = x2 − y2 + 2xyi ⇒

{
2xy = 6 ⇒ y =

3

x
x2 − y2 = −8

⇒ x2−
( 3
x

)2
= −8 ⇒ x4+8x2−9 = 0 ⇒


2xy = 6 ⇒ x2 = −9 (não serve, pois x 6∈ R)
ou
x2 = 1 ⇒ x = ±1 ⇒ y =

3

±1
= ±3

⇒
√
−8 + 6i = ±1 + i(±3) = ±(1 + 3i) ■

14
(a) Cálculo de 15− 8i

√
15− 8i ≡ x+ iy ⇒ 15− 8i = (x+ iy)2 = x2 − y2 + 2xyi

⇒
{
2xy = −8 ⇒ y = −4/x
x2 − y2 = 15

〉
⇒ x2 − (−4/x)2 = 15 ⇒ x4 − 15x2 − 16 = 0

⇒

x2 = −1 (não serve, pois x ∈ R)
ou
x2 = 16 ⇒ x = ±4 ⇒ y = −4 /(±4) = −(±1)

∴
√
15− 8i = ±4− i(±1) = ±(4− i) ■

Comprovação: [±(4− i)]2 = 16− 8i− 1 = 15− 8i .

(b) Esboço da solução:
P (z) = (1− i)z3 + (−5 + i)z2 + 6− 4i = (1− i)(z − z1)(z − z2)(z − z3) .
Uma raiz óbvia desse polinômio é z1 = 0 .
As outras duas são as raízes de (1− i)z2+(−5+ i)z+6− 4i = 0, dadas por z2 = 2+3i e z3 = 1− i

(calculem-nas!).
Logo,
P (z) = (1− i)

[
z − 0

][
z − (2 + 3i)

][
z − (1− i)

]
= (1− i)z(z − 2− 3i)(z − 1 + i) ■

15
(a) Cálculo das raízes de z2 + (4 + 3i)z − 2 + 8i = 0 :
√
∆ =

√
(4 + 3i)2 − 4(1)(−2 + 8i) =

√
(16 + 24i− 9) + 8− 32i

=
√
15− 8i = ±(4− i) : calculado no prob. 14(a) .

∴ z =
−(4 + 3i) +

√
∆

2(1)
=
−(4 + 3i)± (4− i)

2
=


−(4 + 3i) + (4− i)

2
=
−4i
2

= −2i ■

ou
−(4 + 3i)− (4− i)

2
=
−8− 2i

2
= −4 + i ■

(b) Cálculo das raízes de iz2 − (1 + 2i)z + 1 + 3i = 0 :
√
∆ =

√
(1 + 2i)2 − 4i(1 + 3i) =

√
(1 + 4i− 4)− 4i+ 12 = ±

√
9 = ±3 .

∴ z =
1 + 2i+

√
∆

2i
=

1 + 2i± 3

2i
=


4 + 2i

2i
= 1− 2i ≡ z1 ■

ou
−2 + 2i

2i
= 1 + i ≡ z2 ■
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Observe a validade das fórmulas z1+z2 = −b/a (soma das raízes) e z1z2 = c/a (produto das raízes),
onde, no caso, a = i, b = −(1 + 2i) e c = 1 + 3i :

z1 + z2 = (1− 2i) + (1 + i) = 2− i
−b/a = (1 + 2i)/i = −i+ 2

〉
iguais, e (1− 2i)(1 + i) = 1 + 2 + i− 2i = 3− i

c/a = (1 + 3i)/i = −i+ 3

〉
iguais.

(c) ±(1 + i
√
3)/2 e ±(1− i

√
3)/2

16
(a) Solução da equação log3 z = −iπ3/8 :

log z =
π

2
3
√
−i = π

2

3
√
ei(270◦+360◦k) =

π

2
ei(90

◦+120◦k) =
π

2



ei(90
◦) = i

ei(210
◦) = −

√
3

2
− i

2

ei(330
◦) =

√
3

2
− i

2

=



πi

2

−π
√
3

4
− πi

4
π
√
3

4
− πi

4

⇒ z =


eπi2 = i ■

e−π
√
3/4 e−πi/4 = e−π

√
3/4
√
2 (1− i)/2 ■

eπ
√
3/4 e−πi/4 = eπ

√
3/4
√
2 (1− i)/2 ■

(b) Solução da equação log
2 cot z

3
=
iπ

2
:

log
2 cot z

3
=
iπ

2
⇒ 2 cot z

3
= eiπ/2 = i ⇒ cot z =

3i

2
.

cos z

senz
=

(eiz + e−iz)/2

(eiz − e−iz)/2i
· e

iz

eiz
= i · e

2iz − 1

e2iz + 1
=

3i

2
⇒ 2 e2iz + 2 = 3 e2iz − 3 .

e2iz = 5 ⇒ 2iz = log 5 = ln 5 + i2kπ ⇒ z = kπ − i ln
√
5 (k ∈ Z) ■

(c) Solução da equação log cos z = iπ/2 :

cos z = i −→ eiz + e−iz = 2i
·eiz−−−→ (eiz)2 − 2i(eiz) + 1 = 0 .

eiz =
2i+

√
−4− 4

2
=

2i± 2i
√
2

2
= i(1±

√
2) .

iz = log[i(1±
√
2)] = ln |i(1±

√
2)|+ i arg[i(1±

√
2)] = ln(

√
2± 1) + i(±π/2 + 2kπ) .

z = −i ln(
√
2± 1)± π/2 + 2kπ = ln(

√
2 + 1) + i(2kπ + π/2) ou ln(

√
2− 1) + i(2kπ − π/2) ■

17

(a) 4 senh
πi

3
= 4i sen

πi

3
= 4i

√
3

2
= 2i
√
3 ■

(b) coth
3πi

4
=

cosh
3πi

4

senh
3πi

4

=
cos

3πi

4

i sen
3πi

4

=
−
√
2/2

i
√
2/2

= i ■

(c) sen
π + i ln 8

3
= sen

(π
3
+
i ln 8

3

)
= sen

π

3
cos

i ln 8

3
+ sen

i ln 8

3
cos

π

3

=

√
3

2
cosh

ln 8

3
+
(
i senh

ln 8

3

)1
2

=

√
3

2
cosh ln 81/3 +

i

2
senh ln 81/3

=

√
3

2
· e

ln 2 + e− ln 2

2
+
i

2
· e

ln 2 − e− ln 2

2
=

√
3

2
· 2 + 1/2

2
+
i

2
· 2− 1/2

2

=

√
3

2
· 5/2

2
+
i

2
· 3/2

2
=

5
√
3 + 3i

8
■
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(d) cosh
[
(2k + 1)

π

2
i
]

= cos
[
(2k + 1)

π

2

]
= 0 ■

(e)

√
1− cos(i ln 5)

0, 1
=

√
1− cosh(ln 5)

0, 1
=

√
1− (eln 5 + e− ln 5)/2

0, 1
=

√
1− (5 + 1/5)/2

0, 1

=

√
1− (26/5)/2

0, 1
=

√
1− (13/5)

0, 1
=

√
−8/5
0, 1

=
√
−16 = ±4i ■

(f) log
(
− 1

2
− i
√
3

2

)
= ln

∣∣∣− 1

2
− i
√
3

2

∣∣∣︸ ︷︷ ︸
ln 1 = 0

+ i arg
(
− 1

2
− i
√
3

2

)
= i

(4π
3

+ 2kπ
)

■

(g) (−1)π =
[
elog(−1)

]π
=
[
eln |−1|+i arg(−1)

]π
=
[
e0+i(π+2kπ)

]π
=
[
ei(2k+1)π)

]π
= ei(2k+1)π2) = cos[(2k + 1)π2] + i sen[(2k + 1)π2] ■

(h) Im
[
1
√
2
]

= Im
[
e
√
2 log 1

]
= Im

[
e
√
2 (ln 1+i arg 1)

]
= Im

[
e
√
2 (0+i 2kπ)

]
= Im

[
ei 2kπ

√
2
]

= Im
[
cos(2kπ

√
2 ) + i sen(2kπ

√
2 )
]
= sen(2kπ

√
2 ) ■

(i) |(−i)|i =
∣∣ ei log(−i)∣∣ =

∣∣ ei [ ln |−i|+i arg(−i) ]
∣∣ =

∣∣ ei [ ln 1+i (3π/2+2kπ) ]
∣∣ =

∣∣ ei [ 0+i (3π/2+2kπ) ]
∣∣

=
∣∣ e−(3π/2+2kπ)

∣∣ = e−(3π/2+2kπ) ■

(j) (1 + i)i = ei log(1+i) = ei [ ln |1+i|+i arg(1+i) ] = ei [ ln
√
2+i (π/4+2kπ) ] = ei ln

√
2−(π/4+2kπ)

= e−(π/4+2kπ) ei ln
√
2 = e−π/4−2kπ

(
cos ln

√
2 + i sen ln

√
2
)

■

(k) (1 + i
√
3 )−i = e−i log(1+i

√
3 ) = e−i [ ln |1+i

√
3 |+ i arg(1+i

√
3 ) ] = e−i [ ln

√
1+3+ i (π/3+2kπ) ]

= e−i ln 2+ (π/3+2kπ) = eπ/3+2kπ e−i ln 2 = eπ/3+2kπ
(
cos ln 2− i sen ln 2

)
■

18
(a) senz :

senz = sen(x+ iy) = senx cos iy + seniy cosx = senx cosh y + i senhy cosx .

Im( senz) = senhy cosx = 0 ⇒

 senhy = 0 ⇒ y = kπ
ou
cosx = 0 ⇒ x = (2k + 1)π/2 .

Assim, o seno é real ao longo do eixo real e das retas verticais x = (2k + 1)π/2 ■

(b) senhz :

senhz = senh(x+ iy) = senhx cosh iy + senh iy coshx = senhx cos y + i seny coshx .

Im( senhz) = seny coshx︸ ︷︷ ︸
̸= 0

= 0 ⇒ seny = 0 ⇒ y = kπ .

Assim, o seno hiperbólico é real ao longo das seguintes retas horizontais:
y = 0 , y = ±π , y = ±2π , y = ±3π · · · ■
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Capítulo 2

Séries de Funções Ortogonais
- Ref. [4] , seç. 5.7 e 5.8

- Ref. [8] , seç. 11.1 a 11.4

- Ref. [6] , cap. 2 (Séries Duplas de Fourier: p. 34 e 52) e cap. 3

2.1 Ortogonalidade de Funções e Expansão em Funções Orto-
gonais

2.1.1 Produto Escalar
A definição de espaço vetorial envolve um conjunto não vazio de elementos denominados vetores e um corpo

de números chamados escalares. Para nossos propósitos, basta restringir esse corpo ao dos números reais, caso
em que usamos a denominação espaço vetorial real, ou ao dos números complexos, que é o caso do chamado
espaço vetorial complexo. Um espaço vetorial real ou complexo é dito euclidiano ou unitário, respectivamente,
se for dotado de um produto escalar, cuja definição é a seguinte:

Denominamos produto escalar dos vetores u e v – aqui denotado por ⟨u, v⟩ – o escalar produzido por
qualquer operação entre eles que satisfaça as quatro propriedades abaixo, sendo u e v qualquer par de vetores
do espaço considerado:

PE1) Simetria: ⟨u, v⟩ = ⟨v, u⟩∗ (nota: ⟨u, v⟩ = ⟨v, u⟩ se o espaço for real)

PE2) Linearidade em relação ao 2o
¯ fator: ⟨u, αv + βw⟩ = α ⟨u, v⟩+ β ⟨u,w⟩

PE-3) Quadrado escalar não negativo: ⟨u, u⟩ ≥ 0

PE-4) Quadrado escalar nulo apenas no caso do vetor nulo: ⟨u, u⟩ = 0 ⇔ u = 0

onde α e β são escalares (neste capítulo, numa expressão matemática, escalares são denotados pelas letras
gregas α e β, e vetores de espaços vetoriais genéricos, pelas letras latinas u, v e w), e empregamos o símbolo 0
para denotar tanto o número zero quanto o vetor nulo, o que nunca é passível de confusão.

Note que a desigualdade na propriedade PE-3 só faz sentido se o escalar ⟨u, u⟩ for real, o que de fato ocorre
em vista da propriedade PE-1.

Das propriedades PE-1 e PE-2 deduz-se que

⟨αu+ βv,w⟩ = ⟨w,αu+ βv⟩∗ =
(
α ⟨w, u⟩+ β ⟨w, v⟩

)∗
= α∗⟨w, u⟩∗ + β∗⟨w, v⟩∗ (2.1)

= α∗ ⟨u,w⟩+ β∗ ⟨v, w⟩ . (2.2)

Por meio do produto escalar podemos dotar o espaço vetorial com o conceito de ortogonalidade do mesmo
modo que o expressamos no R3: dizemos que dois vetores u e v diferentes do vetor nulo são ortogonais se
⟨u, v⟩ = 0 (essa expressão é consistente com o fato de que, se ⟨u, v⟩ = 0, então ⟨v, u⟩ = 0, mesmo quando
⟨u, v⟩ ̸= ⟨v, u⟩).

Das propriedades do produto escalar também se deduz a desigualdade de Cauchy-Schwarz, a qual, para
dois vetores u e v quaisquer, é dada por

| ⟨u, v⟩ | ≤
√
⟨u, u⟩

√
⟨v, v⟩ (valendo a igualdade se e só se u e v forem linearmente dependentes) . (2.3)

Provemos essa desigualdade:
De imediato vê-se que ela é satisfeita quando u = 0 ou v−0, pois ⟨0, v⟩ = ⟨u, 0⟩ = 0(†). Passemos então a admitir que

nenhum dos vetores u e v na desigualdade de Cauchy-Schwarz seja o vetor nulo. Nesse caso, podemos definir o seguinte

(†)Para qualquer v tem-se que ⟨v, 0⟩ = ⟨v, 0 · 0⟩ = 0 ⟨v, 0⟩ = 0 .
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vetor, cujo quadrado escalar é igual a 1:

û ≡
u√
⟨u, u⟩

⇒ ⟨û, û⟩ =
〈

u√
⟨u, u⟩

,
u√
⟨u, u⟩

〉
=

⟨u, u⟩(√
⟨u, u⟩

)2
= 1 .

Considere agora a seguinte decomposição de v em dois componentes, um paralelo, v∥, e outro, v⊥, perpendicular ao
vetor u:

v = v∥ + v⊥ , onde v∥ ≡ ⟨û, v⟩ û e v⊥ ≡ v − v∥ .

A justificativa das qualificações "paralelo" e "perpendicular" decorre do fato de que, no espaço vetorial R3, usando a
definição de produto escalar que é ordinariamente empregada, a decomposição acima realmente produz o componente
v∥ e o v⊥, respectivamente paralelo e perpendicular a v. Além disso, em qualquer espaço vetorial, essa decomposição
produz componentes v∥ e o v⊥ que são de fato ortogonais:〈

v∥, v⊥
〉
=

〈
⟨û, v⟩ û, v − ⟨û, v⟩ û

〉
=

〈
⟨û, v⟩ û, v

〉
−

〈
⟨û, v⟩ û, ⟨û, v⟩ û

〉
= ⟨û, v⟩∗⟨û, v⟩ − ⟨û, v⟩∗⟨û, v⟩ ⟨û, û⟩︸ ︷︷ ︸

1

= 0 .

Pois bem, desenvolvendo o produto escalar ⟨v, v⟩, obtemos

⟨v, v⟩ =
〈
v∥ + v⊥, v∥ + v⊥

〉
=

〈
v∥, v∥

〉
+

〈
v∥, v⊥

〉︸ ︷︷ ︸
0

+
〈
v⊥, v∥

〉︸ ︷︷ ︸
0

+ ⟨v⊥, v⊥⟩

=
〈
⟨û, v⟩ û, ⟨û, v⟩ û

〉
+ ⟨v⊥, v⊥⟩ = ⟨û, v⟩∗⟨û, v⟩ ⟨û, û⟩︸ ︷︷ ︸

1

+ ⟨v⊥, v⊥⟩ = | ⟨û, v⟩ |2 + ⟨v⊥, v⊥⟩

=

∣∣∣∣∣
〈

u√
⟨u, u⟩

, v

〉∣∣∣∣∣
2

+ ⟨v⊥, v⊥⟩ =

∣∣∣∣∣ 1√
⟨u, u⟩

⟨u, v⟩

∣∣∣∣∣
2

+ ⟨v⊥, v⊥⟩ =
| ⟨u, v⟩ |2

⟨u, u⟩
+ ⟨v⊥, v⊥⟩ ,

donde

⟨v, v⟩ −
| ⟨u, v⟩ |2

⟨u, u⟩
= ⟨v⊥, v⊥⟩ ≥ 0 ⇒ ⟨u, u⟩ ⟨v, v⟩ − | ⟨u, v⟩ |2 ≥ 0 ⇒ | ⟨u, v⟩ | ≤

√
⟨u, u⟩

√
⟨v, v⟩ ,

que é a desigualdade de Cauchy-Schwarz.
Nela, a igualdade ocorre quando ⟨v⊥, v⊥⟩ = 0, donde, pela propriedade PE-4, v⊥ = v − v∥ = 0, isto é, v − αu = 0

(onde α = ⟨û, v⟩ = ⟨u, v⟩ / ⟨u, u⟩), ou seja, quando u e v forem linearmente dependentes. Reciprocamente, se u e v forem
linearmente dependentes, então v = βu, donde

| ⟨u, v⟩ | = | ⟨u, βu⟩ | = |β| ⟨u, u⟩ =

√
|β|2 ⟨u, u⟩2 =

√
⟨u, u⟩

√
β∗β ⟨u, u⟩

=
√

⟨u, u⟩
√

⟨βu, βu⟩ =
√

⟨u, u⟩
√

⟨v, v⟩ ,

que é a desigualdade de Cauchy-Schwarz, que agora se encontra provada.

Neste estudo do produto escalar convém trazer à baila o conceito de norma de um vetor, que é qualquer
função que associa todo vetor u do espaço vetorial considerado a um número real ||u|| que satisfaz as proprie-
dades definidoras desse conceito, que são as seguintes:

N-1) ||u|| ≥ 0

N-2) ||αu|| = |α| ||u||

N-3) ||u+ v|| ≤ ||u||+ ||v|| (desigualdade triangular)

N-4) ||u|| = 0 ⇔ u = 0 (o único vetor de norma nula é o vetor nulo)

onde α é um escalar qualquer, e u e v são dois vetores quaisquer. A norma permite definir a distância entre
duas grandezas vetoriais u e v pela expressão ||u− v|| (a qual, no R3, reproduz o conceito familiar da distância
entre os dois pontos representados por u e v). Assim, ||u|| também pode se denominar o comprimento ou a
magnitude do vetor u (no R3, trata-se da distância entre a origem e o ponto designado por u). Se a magnitude
||u|| for igual a 1, o vetor u é dito unitário. Note que se v ̸= 0 então v/||v|| é um vetor unitário, uma vez que
|| v/||v|| || = ||v||/||v|| = 1 .

Pois bem, o produto escalar também permite dotar o espaço vetorial com a norma

||u|| ≡
√
⟨u, u⟩ . (2.4)

Note então que
||u||2 = ⟨u, u⟩ , (2.5)

onde, à esquerda temos a norma quadrática e à direita o quadrado escalar do vetor u.
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Vejamos se a expressão no membro direito dessa equação realmente satisfaz as propriedades da norma. N-1
é uma consequência direta de (2.4). N-4 decorre diretamente da PE-4. Já N-2 e N-3 são assim verificadas:

N-2 : ||αu|| =
√
⟨αu, αu⟩ =

√
α∗α ⟨u, u⟩ =

√
|α|2 ⟨u, u⟩ = |α|

√
⟨u, u⟩ = |α| ||u|| ✓

N-3 : ||u+ v||2 = ⟨u+ v, u+ v⟩ = ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩ = ||u||2 + ⟨u, v⟩+ ⟨v, u⟩+ ||v||2

= ||u||2 + 2Re ⟨u, v⟩+ ||v||2
(†)
≤ ||u||2 + 2 |⟨u, v⟩|+ ||v||2

(¶)

≤ ||u||2 + 2
√
⟨u, u⟩

√
⟨v, v⟩+ ||v||2 ≤ ||u||2 + 2||u||||v||+ ||v||2 = (||u||+ ||v||)2

⇒ ||u+ v|| ≤ ||u|| + ||v|| ✓

onde, na passagem (†), usamos a desigualdade Re z ≤ |z|, válida para todo número complexo z (a prop. (ii) na
seção 1.3), e, na passagem (¶), usamos (2.3), a desigualdade de Cauchy-Schwarz, que agora pode ser reescrita
em termos das normas de u e v:

| ⟨u, v⟩ | ≤ ||u|| ||v|| (valendo a igualdade se e só se u e v forem linearmente dependentes) . (2.6)

Num espaço vetorial com produto escalar, a norma é sempre aquela em (2.4), que tem a importante
propriedade

⟨u, v⟩ = 0 ⇒ ||u+ v||2 = ||u||2 + ||v||2 , (2.7)

análoga ao teorema de Pitágoras, que é assim provada:

⟨u, v⟩ = 0 ⇒ ||u+ v||2 = ⟨u+ v, u+ v⟩ = ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩︸ ︷︷ ︸
0

+ ⟨v, v⟩ = ||u||2 + ||v||2 ✓

Um conjunto de vetores não nulos é dito ortogonal se todo par de vetores desse conjunto for ortogonal, e
um conjunto ortogonal de vetores é dito ortonormal se todo vetor desse conjunto for unitário. A definição do
chamado

delta de Kronecker : δij ≡
{
1 se i = j
0 se i ̸= j

(2.8)

permite expressar a ortogonalidade e a ortonormalidade de um conjunto de vetores B = {v1, v2, · · · , vn} como
segue:

⟨vi, vj⟩ =
{
δij ||vj ||2 se B for ortogonal
δij se B for ortonormal. (2.9)

Usemos essa relação de ortogonalidade para provar que tal conjunto B é necessariamente linearmente indepen-
dente:

n∑
j=1

cjvj = 0 ⇒

〈
vi ,

n∑
j=1

cjvj

〉
=

n∑
j=1

cj ⟨vi , vj⟩ =
n∑
j=1

cjδij ||vj ||2 = ci ||vi||2︸ ︷︷ ︸
̸= 0

= 0 ⇒ ci = 0 ✓

Vejamos alguns exemplos de produto escalar, que varia conforme o espaço vetorial.
O produto escalar de duas ênuplas u = (α1, · · · , αn) e v = (β1, · · · , βn) é comumente definido por

⟨u, v⟩ ≡
n∑
i=1

α∗
i βi no Cn ou ⟨u, v⟩ ≡

n∑
i=1

αiβi no Rn .

É fácil mostrar que as propriedades PE-1 e PE-4 são satisfeitas (exercício).
Seja F [µ, ν] o espaço vetorial complexo formado por todas as funções complexas de uma variável real

definidas no intervalo [µ, ν], podendo µ → −∞ e/ou ν → ∞. O produto escalar de duas funções f e g desse
espaço é definido por

⟨f, g⟩ ≡
∫ ν

µ

f∗(x)g(x)w(x)dx , (2.10)

onde w(x) é uma função contínua e positiva em [µ, ν] chamada de função peso. Por exemplo, as funções
sen(mπx/ℓ) e cos(mπx/ℓ), com m e n inteiros, são inteiros, são ortogonais no intervalo [−ℓ, ℓ], porque é nulo
o produto escalar 〈

sen
mπx

ℓ
, sen

nπx

ℓ

〉
=

∫ ℓ

−ℓ
sen

mπx

ℓ
sen

nπx

ℓ
dx = 0 . (2.11)
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2.1.2 Operadores Lineares
Num certo espaço vetorial V , uma transformação linear L de V sobre si mesmo, isto é, L : V → V , é

denominada operador linear; observe dois exemplos:

1) L : R2 −→ R2

u =

(
α1

α2

)
7→ v = Lu =

(
2 −1
1 5

)(
α1

α2

)
=

(
β1
β2

)

2) L : F [µ, ν] −→ F [µ, ν]

f(x) 7→ g(x) = Lf(x) =
d2f

dx2
+

∫ x

µ

f(x)dx .

Seguem a nomenclatura e a definição de alguns operadores importantes:

• Nulo, denotado por 0: 0u = 0 ∀u

• Identidade, denotado por I: Iu = u ∀u

• Inverso de L, denotado por L−1: L−1(Lu) = L(L−1u) = u ∀u

• Adjunto de L, denotado por L+:
〈
L+u , v

〉
= ⟨u, Lv⟩ ∀u, v

• Autoadjunto: se L+ = L, isto é, ⟨Lu, v⟩ = ⟨u, Lv⟩ ∀u. Tal operador é dito simétrico ou hermitiano, conforme
seja real ou complexo o espaço vetorial, respectivamente.

• Ortogonal ou unitário, conforme seja real ou complexo o espaço vetorial: se L+ = L−1.

Chegamos agora ao objetivo desta seção, as duas propriedades dos operadores hermitianos abaixo; para
esse tipo de operador, tem-se que:

Propriedades dos operadores hermitianos:

OH-1) São reais os autovalores.

OH-2) São ortogonais os autovetores correspondentes a autovalores distintos.

De fato, se Lui = λiui i = 1, 2, · · · , sendo L+ = L, e, lembrando que ui ̸= 0 (não há autovetor nulo), temos
que

0 = ⟨ui , Lui⟩ − ⟨Lui , ui⟩ = ⟨ui , λiui⟩ − ⟨λiui , ui⟩ = λi ⟨ui , ui⟩ − λ∗
i ⟨ui , ui⟩

= (λi − λ∗
i ) ⟨ui , ui⟩︸ ︷︷ ︸

̸= 0

= 0 ⇒ λi − λ∗
i = 0 (i.e., λi ∈ R) . (2.12)

e, no caso de dois autovalores distintos λi ̸= λj (reais, como já demonstrado), temos que

0 = ⟨ui , Luj⟩ − ⟨Lui , uj⟩ = ⟨ui , λjuj⟩ − ⟨λiui , uj⟩ = λj ⟨ui , uj⟩ − λi ⟨ui , uj⟩

= (λj − λi)︸ ︷︷ ︸
̸= 0

⟨ui , uj⟩ = 0 ⇒ ⟨ui , uj⟩ = 0 (i.e., ui ⊥ uj) . (2.13)

2.1.3 Expansão em Funções Ortogonais
Seja {u1, u2, · · · , un} um conjunto ortonormal de vetores do Rn (de dimensão n), e considere o problema

de escrever um vetor genérico v do Rn como combinação linear daqueles vetores ortogonais:

v =

n∑
i=1

αiui .

Como calcular esses coeficientes αi? Resposta: usando a relação de ortogonalidade dada por (2.9):

v =

n∑
j=1

αjuj ⇒ ⟨ui , v⟩ =

〈
ui ,

n∑
j=1

αjuj

〉
=

n∑
j=1

αj ⟨ui , uj⟩︸ ︷︷ ︸
||ui||2δij

= αi||ui||2 ,

donde a conclusão:

v =

n∑
i=1

αiui ⇒ αi =
⟨ui , v⟩
||ui||2

. (2.14)
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Considere agora o problema análogo no espaço de funções F [µ, ν] (de dimensão infinita), o de escrever uma
função f(x) como combinação linear de um número infinito de funções ortogonais,{

ψi(x)
}∞
i=1

, sendo ⟨ψi, ψj⟩ = ||ψi||2δij : (2.15)

f(x) =

∞∑
i=1

αiψi(x) : expansão de f(x)em série das funções ortogonais ψi(x) . (2.16)

De posse da relação de ortogonalidade em (2.15), podemos realizar formalmente operações de produto escalar
similares àqueles na dedução da equação (2.14) para obter uma fórmula, também similar, para os coeficientes
da expansão de f(x) na equação (2.16):

f(x) =

∞∑
i=1

αiψi(x) ⇒ αi =
⟨ψi , v⟩
||ψi||2

=

∫ ν

µ

ψ∗
i (x)f(x)w(x)dx∫ ν

µ

|ψi(x)|2w(x)dx
. (2.17)

Nessa expansão, temos os chamados coeficientes de Fourier de f(x). Eles foram deduzidos formalmente, sem
cogitar várias complicações:

1) Sabemos que um conjunto B de vetores é uma base se satisfizer dois requisitos: o de B ser linearmente
independente e o de gerar todos os demais vetores ("gerar"significa reproduzir todos os vetores por meio de
combinações lineares dos vetores de B). Aqui, estamos interessados apenas em bases formadas por vetores
ortogonais, o que torna automaticamente satisfeito o requisito de independência linear. Já a questão de saber
se B gera o espaço vetorial difere radicalmente conforme seja finita ou infinita a dimensão do espaço: quando
a dimensão é finita, digamos igual a n, todo conjunto ortogonal de n vetores é uma base, mas, em espaços
vetoriais de dimensão infinita, um conjunto ortogonal com uma infinidade de vetores não forma necessariamente
uma base. Por exemplo,

{
sennx

}∞
n=1

é um conjunto ortogonal [considere (2.11) com ℓ = π] contido no espaço
F [−π, π], mas esses senos não geram nenhuma função par definida em [−π, π]. Nesse intervalo, além dos senos,
é necessário acrescentar os cossenos

{
cosnx

}∞
n=0

para obtermos uma base.
2) Há também a questão de se aplicar a propriedade PE-2 (distributividade) a um produto escalar entre

uma função e uma combinação linear de uma infinidade de funções:〈
ψi,

∞∑
j=1

αjψj

〉
=

∫ ν

µ

ψ∗
i (x)

( ∞∑
j=1

αjψj(x)
)
w(x)dx

(†)
=

∞∑
j=1

αj

∫ ν

µ

ψ∗
i (x)ψj(x)w(x)dx =

∞∑
j=1

αj ⟨ψi, ψj⟩ .

Nota-se nesse cálculo que a validade da passagem (†) requer a integrabilidade termo a termo de uma série
infinita de funções.

3) Há ainda a questão da convergência dessas séries, bem como outras questões cuja análise está fora dos
nossos objetivos.

Diga-se, entretanto, que investigações bastante complicadas confirmam a validade da fórmula (2.17) sob con-
dições bem determinadas. Quando estas são satisfeitas, temos em (2.17) a chamada série de Fourier generalizada
de f(x) formada pelas funções ψi(x).

Como exemplo de (2.17) , considere as funções ψn(x) = sen(nπx/ℓ) (n = 1, 2, 3, · · · ). De acordo com (2.11)
[observe a função peso unitária], elas formam um conjunto ortogonal em [0, ℓ]. Calculando os coeficientes da
série

f(x) =

∞∑
n=1

bn sen
nπx

ℓ
,

tendo em conta que

||ψn||2 =

∫ ℓ

0

sen2 nπx

ℓ
dx =

ℓ

2
,

obtemos

bn =
1

||ψn||2

∫ ℓ

0

ψ∗
n(x)f(x)dx =

2

ℓ

∫ ℓ

0

sen
nπx

ℓ
f(x)dx (n = 1, 2, · · · ) .

Ora, essa é a série de Fourier em senos da função f(x) estudada na seção 5.3 da Apostila de Cálculo 4.
Nas aplicações, além das funções trigonométricas, surgem várias outras que também são ortogonais e em

termos das quais se deseja expandir funções como uma série de Fourier generalizada. Tratamos disso na próxima
seção, onde estudamos os famosos problemas de Sturm-Liouville, que oferece uma abordagem comum a diversos
conjuntos de funções, tratando da questão da ortogonalidade e das séries de Fourier generalizadas formadas
com elas, em vez de analisá-los caso a caso.

2.2 Teoria de Sturm-Liouville
Considere o operador diferencial linear

L = a2(x)
d 2

dx2
+ a1(x)

d

dx
+ a0(x) , x ∈ (µ, ν) . (2.18)
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O operador L apresenta uma propriedade importante: a de tornar-se hermitiano sob a escolha correta da função
w(x) do produto escalar na equação (2.10) e de certos tipos de condições (ditas condições de fronteira) nos
extremos x = µ e x = ν do intervalo considerado. A caracterização dessa propriedade é o principal objetivo
desta seção.

Admitimos que se encontram satisfeitas todas as condições necessárias para que as grandezas e operações
envolvidas no desenvolvimento da teoria ora apresentada sejam bem definidas; assim, citem-se, desde já, as
funções reais a0(x), a1(x) e a2(x), e as derivadas que compõem o operador L definido para x ∈ (µ, ν), bem
como toda integral

∫ ν
µ

[
cujo cálculo, por convenção aqui adotada, há de ser segundo a extensão do conceito

de integral dada por lim
(
b→ν−

a→µ+

)∫ b
a

]
que surge nesse desenvolvimento [ela já apareceu no produto escalar em

(2.10)]. Está fora do escopo deste texto descrever tais condições necessárias.

Para investigar a hermiticidade de L {Ref. [1, sec. 5.10]}, consideramos duas funções complexas de variável
real f(x) e g(x) arbitrárias e calculamos

⟨f, Lg⟩ =
∫ ν

µ

f∗(x)Lg(x)w(x)dx =

∫ ν

µ

f∗(a2g
′′ + a1g

′ + a0g)w dx[
wa2f

∗g′ + wa1f
∗g

]ν
µ
−

∫ ν

µ

[
(wa2f

∗)′g′ + (wa1f
∗)′g − wa0f∗g

]
dx ,

onde integramos por partes uma vez os termos envolvendo g′′ e g′. Analogamente, temos que

⟨Lf, g⟩ = ⟨g, Lf⟩∗

=
[
wa2gf

∗′ + wa1gf
∗
]ν
µ
−

∫ ν

µ

[
(wa2g)

′f∗′ + (wa1g)
′f∗ − wa0gf∗] dx ,

equação que pode ser obtida mais facilmente da anterior permutando f e g e tomando o complexo conjugado
do resultado, lembrando que essas duas funções são complexas (as demais são reais) e que f ′∗ = f∗′.

Subtraindo membro a membro as duas equações deduzidas acima, obtemos

⟨f, Lg⟩ − ⟨Lf, g⟩ =
[
wa2(f

∗g′ − f∗′g)
]ν
µ
−

∫ ν

µ

[
(wa2)

′ − wa1
]
(f∗g′ − f∗′g)dx .

Esta equação mostra que, para L ser hermitiano, isto é, o 1o
¯ membro anular-se, é necessário e suficiente impor

a condição de fronteira [
wa2(f

∗g′ − f∗′g)
]ν
µ
= 0 (2.19)

juntamente com a condição
(wa2)

′ = wa1 , (2.20)

pela qual se determina a função peso do produto escalar: w(x) = [C/a2(x)] e
∫

(a1/a2)dx. Esse resultado mostra
que, para a função peso w(x) ser positiva, de acordo com a exigência enunciada logo após (2.10), devemos nos
restringir a EDOs em que a função a2(x) tenha sempre o mesmo sinal no intervalo (µ, ν) e escolher o sinal da
constante de integração C igual ao de a2.

Nota:

Os problemas ditos singulares, nos quais o intervalo [µ, ν] seja infinito ou a função a2(x) se anule em
algum ou ambos extremos desse intervalo, requerem análise mais cuidadosa que não será abordada
aqui; entretanto, as conclusões aqui traçadas permanecem válidas.

Convém usar (2.20) para substituir a1 = (wa2)
′/w em (2.18), eliminando a presença de a1, mas fazendo a

função peso figurar explicitamente na expressão de L:

Lψ = a2ψ
′′ + a1ψ

′ + a0ψ = a2ψ
′′ +

[
(wa2)

′/w
]
ψ′ + a0ψ

=
[
(wa2)ψ

′′ + (wa2)
′ψ′]/w + a0ψ = (wa2ψ

′)′/w + a0ψ

=
[
(wa2︸︷︷︸
u

ψ′)′ + wa0︸︷︷︸
−v

ψ
]
/w = − 1

w

( d

dx
u
d

dx
+ v

)
ψ ,

onde, também por conveniência, em vez das funções arbitrárias a2 e a0, passamos a usar as funções também
arbitrárias(∗)

u(x) ≡ −w(x)a2(x) e v(x) ≡ −w(x)a0(x) . (2.21)

Podemos então dizer que o operador de Sturm-Liouville

L = − 1

w(x)

[
d

dx
u(x)

d

dx
+ v(x)

] [
x ∈ (µ, ν) , w(x) > 0

]
(2.22)

(∗) L deixou de ser expresso em termos das três funções a0, a1 e a2, passando a exibir as três novas funções u, v e w.
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é hermitiano num espaço vetorial com produto escalar de função peso w(x) e formado por funções que satisfaçam
condições de fronteira que por sua vez tornem satisfeita a condição em (2.19).

A equação diferencial
Lψ(x) = λψ(x) , (2.23)

com a substituição da expressão de L dada por (2.22), toma a forma da chamada equação de Sturm-Liouville:

d

dx

[
u(x)

dψ

dx

]
+

[
v(x) + λw(x)

]
ψ(x) = 0 , x ∈ (µ, ν) . (2.24)

Caso se rejeite a solução trivial ψ(x) ≡ 0, essa equação sob as condições de fronteira que tornem L hermitiano
constitui um problema de autovalor, no qual se buscam os valores de λ (autovalores) que possibilitam soluções
distintas da trivial (autofunções).

Denomina-se problema de Sturm-Liouville o problema de autovalor formado pela equação diferencial (2.24)
e quaisquer condições de fronteira que impliquem a validade da condição (2.19)[

u(f∗g′ − f∗′g)
]ν−
µ+

= 0 . (2.25)

Note que, para a validade de (2.25) e, por conseguinte, da hermiticidade do operador L, os limites laterais hão
de ser únicos e finitos; ou seja:

Só devem ser aceitas soluções (autofunções) no intervalo (µ, ν) tais que tanto ela
quanto sua derivada possuam limites únicos e finitos quando x→ µ+ e x→ ν−.

(2.26)

Além dessa exigência matemática, podem existir outras de natureza física, química, econômica, etc., sendo a
mais corriqueira, e admitida em todos os problemas de resolução de EDPs considerados neste texto, a de não
se aceitar que a autofunção se torne infinita em qualquer ponto de (µ, ν).

A equação (2.25) estará satisfeita se f e g satisfizerem uma das condições CF-1 a CF-5 quando x → µ+ e
x→ ν− ou ainda a condição CF-6 (que não envolve tais limites laterais) que seguem listadas abaixo:

CF-1: ψ(µ+) = ψ(ν−) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . condição do 1o
¯ tipo (Dirichlet)

CF-2: ψ′(µ+) = ψ′(ν−) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . condição do 2o
¯ tipo (Neumann)

CF-3:

{
ψ(µ+) + αψ′(µ+) = 0

ψ(ν−) + βψ′(ν−) = 0
(α e β reais não nulos) . . . . . . . . . . condição do 3o

¯ tipo (Robin)

CF-4: u(µ+) = u(ν−) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . condição supressiva

CF-5: Uma das condições acima quando x→ µ+ e outra quando x→ ν−. . . . . . . condição mista

CF-6: ψ e u definidas em R e periódicas de mesmo período ν − µ . . . . . . . . . . condição periódica

(2.27)

Outras condições poderiam ser citadas, mas listamos apenas as mais frequentes.
Ao serem modeladas (com base nas propriedades físicas, químicas, etc., do sistema), as condições de fronteira

envolvem os limites laterais ou as derivadas laterais de ψ nos extremos do intervalo (µ, ν) considerado. Mas,
note acima, que são usados os limites laterais ao invés das derivadas laterais. Não há inconsistência nisso, pois
prova-se(∗) que são iguais esses limites laterais de derivadas e as respectivas derivadas laterais empregadas nas
modelagens; isto é, ψ′(µ+) = ψ′

+(µ) e ψ′(ν−) = ψ′
−(ν).

No que segue, usaremos a expressão "uma condição CF-n" para fazer referência a uma das condições
CF-1· · ·CF-6 da lista acima. Também não mais escreveremos limites laterais para expressar as condições de
fronteira, mas eles estarão implícitos; assim, ao escrevermos ψ(µ) = 0 e ψ′(ν) = 0 expressando uma condição
mista Dirichlet-Neumann, subtende-se o uso dos limites laterais apropriados: ψ(µ+) = 0 e ψ′(ν−) = 0. É rara
a necessidade de explicitar tais limites laterais nos cálculos. Por rigor, foram considerados no desenvolvimento
da teoria; por simplicidade nas aplicações, são omitidos.

(∗) Sendo a EDO (2.24) bem definida em (µ, ν), uma solução ψ dela deve ser, no mínimo, duas vezes derivável e também
contínua nesse intervalo. Além disso, ψ deve possuir os limites laterais quando x→ µ+ e x→ ν− de acordo com (2.26).
Logo, identificando ψ(µ) e ψ(ν) respectivamente com os valores de ψ(µ+) e ψ(ν−) oriundos da modelagem das condições
de fronteira (sendo isso, na verdade, um complemento consistente da modelagem), tornamos ψ contínua no intervalo
fechado [µ, ν].

Em vista disso, ψ é contínua em [µ, µ+ h] e derivável em (µ, µ+ h), onde h é um incremento tal que µ+ h ∈ [µ, ν] , o
que, com base no Teorema do Valor Médio, nos permite dizer que existe algum c ∈ (µ, µ+h) tal que [ψ(µ+h)−ψ(µ)]/h
= ψ′(c) . Tomando o limite de ambos os membros dessa equação quando h → 0+, isto é, lim

h→0+
[ψ(µ + h) − ψ(µ)]/h =

lim
h→0+

ψ′(c), obtemos, tendo em conta que c, situando-se entre µ e µ+ h, tende a µ pela direita, o que desejamos provar:

ψ′
+(µ) = ψ′(µ+) . De modo análogo prova-se que ψ′

−(ν) = ψ′(ν−) . CQD.
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No caso da condição CF-6, em que ψ(x) = ψ(x + p) ∀x ∈ R (com p = ν − µ), sendo todo o eixo real o
domínio do problema, não é apropriado referir-se à condição periódica como uma condição de fronteira, pois,
se x ∈ (−∞,∞), não há fronteira! Além disso, encontramos frequentemente na literatura, no lugar da CF-6
acima, as equações u(µ) = u(ν), ψ(µ) = ψ(ν) e ψ′(µ) = ψ′(ν), que decorrem da CF6 e produzem os mesmos
resultados (mesmos autovalores e autofunções) que a CF6 produz, sendo, por isso, também denominadas
condições periódicas.

Considere o problema de autovalor formado pela EDO de Sturm-Liouville Lψ(x) = λψ(x), com L dado
por (2.22), e por uma das condições acima (i.e., por uma condição CF-n). As soluções desse problema devem
pertencer ao subespaço vetorial Vn de F [µ, ν] contendo todas as funções que satisfazem a condição CF-n
considerada, e como esse operador L é hermitiano em Vn [pois a condição (2.25) é satisfeita por duas funções
f e g quaisquer de Vn], concluímos que, para esse problema de autovalor, são ortogonais as autofunções que
correspondam a autovalores distintos, isto é,

⟨ψm, ψn⟩ =
∫ ν

µ

ψ∗
m(x)ψn(x)w(x)dx = 0 se λm ̸= λn . (2.28)

A importância dos problemas de Sturm-Liouville reside no fato de que, ao se resolverem EDPs da Física
Matemática pelo método de separação de variáveis, com frequência obtêm-se problemas de autovalor formados
por EDOs lineares homogêneas de 2a

¯ ordem sob condições de fronteira dos tipos listadas acima. Isso se respalda
na possibilidade de se escrever qualquer desses problemas, genericamente descritos por a2y′′+a1y′+a0 = λy(x),
na forma da equação de Sturm-Liouville em (2.24), em que as funções u, v e w são determinadas usando-se
(2.20) e (2.21).

Notas:

1) Logo após a condição em (2.25), afirmamos que qualquer condição CF-n imposta a f e g implica na
validade daquela condição. Mostremos isso no caso da CF-3, o menos óbvio. O lado direito da equação
(2.25) consiste na diferença de dois termos: um é calculado com x = ν e o outro com x = µ. Ambos se
anulam se f e g satisfazem a CF-3. De fato, para x = µ, temos{

f(µ) + αf ′(µ) = 0
g(µ) + αg′(µ) = 0

⇒
{
f(µ) = −αf ′(µ)
g(µ) = −αg′(µ) ;

logo,
u(µ)

{
f∗(µ)g′(µ)− f∗′(µ)g(µ)

}
= u(µ)

{[
− αf ′(µ)

]∗
g′(µ)− f∗′(µ)

[
− αg′(µ)

]}
= 0 ,

lembrando que α é real. Para provar que o termo com x = ν também se anula, age-se de modo análogo.

2) Usamos a denominação supressiva para a condição CF-4 porque a sua ocorrência numa parte da fronteira
"suprime" a necessidade de, nessa parte, se impor alguma condição para ψ. À primeira vista parece que
tal tipo de condição não impõe restrições às autofunções; observe, entretanto, que os pontos onde a função
u(x) se anula são pontos singulares da equação, onde geralmente a solução geral ψ(x) também apresenta
componentes singulares que geralmente devem ser descartados. Temos, nesse caso, o chamado problema
singular de Sturm-Liouville; os outros são ditos regulares.

2.3 Problemas de Sturm-Liouville com a EDO ψ′′ + λψ(x) = 0

O aluno já aprendeu, ao cursar Cálculo 4, que, na separação de variáveis das equações do calor e da onda,
surge a EDO

ψ′′ + λψ(x) = 0 , (2.29)

que é a equação de Sturm-Liouville (2.24) com u(x) = 1, v(x) = 0 e w(x) = 1. Assim, exigindo que a
solução ψ(x) de (2.29) satisfaça uma condição CF-n, obtemos um problema de autovalor cujas autofunções
são ortogonais com respeito ao produto escalar de função peso unitária. Obviamente, problemas de autovalor
formados por essa mesma EDO, mas sob condições de fronteira distintas, apresentam soluções (i.e., autofunções
e autovalores) distintas. Abaixo resumimos os autovalores e as autofunções de problemas de Sturm-Liouville
formados com a mesma EDO acima sob as condições de fronteira mais usuais (todas sendo uma condição CF-n).
Fornecemos também, para cada problema de Sturm-Liouville, a série de Fourier generalizada de uma função
f(x) com base em (2.17).

Problema de autovalor (i){
ψ′′ + λψ(x) = 0

x ∈ (0, ℓ) , ψ(0) = ψ(ℓ) = 0 (Dirichlet)
⇒


λn = (nπ/ℓ)2 (n = 1, 2, 3, · · · )

ψn(x) = sen
nπx

ℓ
.

(2.30)

• Relação de ortogonalidade:
∫ ℓ

0

sen
mπx

ℓ
sen

nπx

ℓ
dx = 0 se m ̸= n .
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• Normas quadráticas: || sen nπx
ℓ
||2 =

∫ ℓ

0

sen2mπx

ℓ
dx =

ℓ

2
.

• Série de Fourier generalizada:

f(x) =

∞∑
n=1

bn sen
nπx

ℓ
, com bn =

〈
sen

nπx

ℓ
, f

〉
|| sen nπx

ℓ
||2

=

∫ ℓ

0

f(x) sen
nπx

ℓ
dx

ℓ/2
.

Esta é a série de Fourier em senos, já estudada em Cálculo 4.

Problema de autovalor (ii){
ψ′′ + λψ(x) = 0

x ∈ (0, ℓ) , ψ′(0) = ψ′(ℓ) = 0 (Neumann)
⇒


λn = (nπ/ℓ)2 (n = 0, 1, 2, 3, · · · )

ψn(x) = cos
nπx

ℓ
.

(2.31)

• Relação de ortogonalidade:
∫ ℓ

0

cos
mπx

ℓ
cos

nπx

ℓ
dx = 0 se m ̸= n .

• Normas quadráticas: || cos nπx
ℓ
||2 =

∫ ℓ

0

cos2
mπx

ℓ
dx =

{
ℓ/2 se n ≥ 1
ℓ se n = 0 .

• Série de Fourier generalizada:

f(x) =

∞∑
n=0

an cos
nπx

ℓ
, com an =

〈
cos

nπx

ℓ
, f

〉
|| cos nπx

ℓ
||2

=



∫ ℓ

0

f(x) cos
nπx

ℓ
dx

ℓ/2
se n ≥ 1∫ ℓ

0

f(x)dx

ℓ
se n = 0 .

Esta é a série de Fourier em cossenos, já estudada em Cálculo 4.

Problema de autovalor (iii){
ψ′′ + λψ(x) = 0

x ∈ (0, ℓ) , ψ(0) = ψ′(ℓ) = 0 (mista Dirichlet-Neumann)
⇒


λn =

(nπ
2ℓ

)2

(n = 1, 3, 5, · · · )

ψn(x) = sen
nπx

2ℓ
.

(2.32)

• Relação de ortogonalidade:
∫ ℓ

0

sen
mπx

2ℓ
sen

nπx

2ℓ
dx = 0 se m ̸= n .

• Normas quadráticas: || sen nπx
2ℓ
||2 =

∫ ℓ

0

sen2mπx

2ℓ
dx =

ℓ

2
.

• Série de Fourier generalizada:

f(x) =

∞∑
n=1

bn sen
nπx

2ℓ
, com bn =

〈
sen

nπx

2ℓ
, f

〉
|| sen nπx

2ℓ
||2

=

∫ ℓ

0

f(x) sen
nπx

2ℓ
dx

ℓ/2
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Problema de autovalor (iv){
ψ′′ + λψ(x) = 0

x ∈ (0, ℓ) , ψ′(0) = ψ(ℓ) = 0 (mista Neumann-Dirichlet)
⇒


λn =

(nπ
2ℓ

)2

(n = 1, 3, 5, · · · )

ψn(x) = cos
nπx

2ℓ
.

(2.33)

• Relação de ortogonalidade:
∫ ℓ

0

cos
mπx

2ℓ
cos

nπx

2ℓ
dx = 0 se m ̸= n .

• Normas quadráticas: || cos nπx
2ℓ
||2 =

∫ ℓ

0

cos2
mπx

2ℓ
dx =

ℓ

2
.

• Série de Fourier generalizada:

f(x) =
∞∑
n=1

an cos
nπx

2ℓ
, com an =

〈
cos

nπx

2ℓ
, f

〉
|| cos nπx

2ℓ
||2

=

∫ ℓ

0

f(x) cos
nπx

2ℓ
dx

ℓ/2

Problema de autovalor (v)
ψ′′ + λψ(x) = 0

x ∈ R : ψ(x) = ψ(x+ 2ℓ)

(CF-6, com ν −µ = período 2ℓ)

⇒


λn =

(nπ
ℓ

)2

(n = 0, 1, 2, 3, · · · )

ψn(x) = an cos
nπx

ℓ
+ bn sen

nπx

ℓ
(b0 = 0) .

(2.34)

• Relação de ortogonalidade:

Se m ̸= n , então qualquer das duas autofunções cos
mπx

ℓ
e sen

mπx

ℓ
é ortogonal a qualquer das duas

autofunções cos
nπx

ℓ
e sen

nπx

ℓ
em qualquer intervalo I de largura igual ao período 2ℓ {por exemplo, I = [0, 2ℓ)

ou [−ℓ, ℓ) }; portanto, a relações de ortogonalidade são∫
I

cos
mπx

ℓ
cos

nπx

ℓ
dx =

∫
I

sen
mπx

ℓ
sen

nπx

ℓ
dx =

∫
I

cos
mπx

ℓ
cos

nπx

ℓ
dx = 0 se m ̸= n .

• Normas quadráticas:

|| cos nπx
ℓ
||2 =

∫
I

cos2
mπx

ℓ
dx =

{
ℓ se n ≥ 1
2ℓ se n = 0 .

e

|| sen nπx
ℓ
||2 =

∫
I

sen2mπx

ℓ
dx = ℓ .

• Série de Fourier generalizada de uma função f(x) de período 2ℓ :

f(x) =

∞∑
n=0

an cos
nπx

ℓ
+ bn sen

nπx

ℓ
,

com

an =

〈
cos

nπx

ℓ
, f

〉
|| cos nπx

ℓ
||2

=



∫
I

f(x) cos
nπx

ℓ
dx

ℓ
se n ≥ 1∫

I

f(x)dx

2ℓ
se n = 0 .

e

bn =

〈
sen

nπx

ℓ
, f

〉
|| sen nπx

ℓ
||2

=

∫
I

f(x) sen
nπx

ℓ
dx

ℓ
,

que é a série de Fourier (completa) já estudada em Cálculo 4.
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As soluções dos problemas (i), (ii), (v) e (vi) acima encontram-se deduzidas na seção 6.1 da apostila de
Cálculo 4. Abaixo deduzimos as referentes aos problemas (iii) e (iv), buscando os autovalores (sabidamente
reais) separadamente, isto é, conforme λ seja nulo, negativo ou positivo:

Resolução do problema de autovalor (iii) :

Para λ = 0:

ψ(x) = c1 + c2x ⇒ ψ′(x) = c2
ψ(0) = c1 = 0
ψ′(ℓ) = c2ℓ = 0 ⇒ c2 = 0

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
logo, zero não é autovalor.

Para λ < 0 : λ ≡ −k2 (k > 0):

ψ(x) = c1 cosh kx+ c2 senhkx
ψ′(x) = c1k senhkx+ c2k cosh kx
ψ(0) = c1 = 0
ψ′(ℓ) = c2 k cosh kℓ︸ ︷︷ ︸

̸=0

= 0 ⇒ c2 = 0

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
não há autovalor negativo.

Para λ > 0 : λ ≡ k2 (k > 0):

ψ(x) = c1 cos kx+ c2 senkx .

ψ′(x) = −c1k senkx+ c2k cos kx .

ψ(0) = c1 = 0 ⇒ ψ(x) = c2 senkx .

ψ′(ℓ) = c2k cos kℓ = 0
(∗)
⇒ cos kℓ = 0 ⇒ kℓ = nπ/2 ⇒ k = kn = nπ/2ℓ (n

(†)
= 1, 3, 5, 7 · · · ) .

(∗) admitimos c2 ̸= 0 para viabilizar solução ψ(x) não nula
(†) excluímos n = ···−7,−5,−3,−1 e 0 , pois k> 0

Logo, λ = λn = k2n = (nπ/2ℓ)2 (n = 1, 3, 5 · · · ) são os autovalores, e ψn(x) = c2n sen(nπx/2ℓ) são as
autofunções correspondentes, nas quais as constantes c2n podem ser ignoradas, pois basta tomar uma única
autofunção do autoespaço de λn. Estão assim justificados os resultados em (2.32).

Resolução do problema de autovalor (iv) :

Para λ = 0:

ψ(x) = c1 + c2x ⇒ ψ′(x) = c2
ψ′(0) = c2 = 0
ψ(ℓ) = c1 = 0

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
logo, zero não é autovalor.

Para λ < 0 : λ ≡ −k2 (k > 0):

ψ(x) = c1 cosh kx+ c2 senhkx
ψ′(x) = c1k senhkx+ c2k cosh kx
ψ′(0) = c2k = 0 ⇒ c2 = 0 (pois k ̸= 0)
ψ(ℓ) = c1 cosh kℓ︸ ︷︷ ︸

̸=0

= 0 ⇒ c1 = 0

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
não há autovalor negativo.

Para λ > 0 : λ ≡ k2 (k > 0):

ψ(x) = c1 cos kx+ c2 senkx .

ψ′(x) = −c1k senkx+ c2k cos kx .

ψ′(0) = c2k = 0 ⇒ c2 = 0 (pois k ̸= 0) ⇒ ψ(x) = c2 cos kx .

ψ(ℓ) = c2 cos kℓ = 0
(∗)
⇒ cos kℓ = 0 ⇒ kℓ = nπ/2 ⇒ k = kn = nπ/2ℓ (n

(†)
= 1, 3, 5, 7 · · · ) .

(∗) admitimos c2 ̸= 0 para viabilizar solução ψ(x) não nula
(†) excluímos n = ···−7,−5,−3,−1 e 0 , pois k> 0

Logo, λ = λn = k2n = (nπ/2ℓ)2 (n = 1, 3, 5 · · · ) são os autovalores, e ψn(x) = cos(nπx/2ℓ) (ignorando-se
quaisquer constantes multiplicativas) são as autofunções correspondentes. Estão assim justificados os resultados
em (2.33).
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2.4 Problemas de Sturm-Liouville Com Outras EDOs
Seguem duas outras EDOs que, em capítulos vindouros, surgirão quando resolvermos certas EDPs pelo

método de separação de variáveis. Aqui, nesta seção, não resolvemos problemas de autovalor baseados nelas
pelo simples fato de ainda não termos discutido as soluções delas; isso é feito no Cap. 4.

i) x2ψ′′ + xψ′ + (λx2 − ν2)ψ(x) = 0. (2.35)

No Cap.5, veremos que as autofunções de problemas de autovalor com essa EDO são as chamadas funções de
Bessel. Obtemo-la na forma da equação de Sturm-Liouville, (2.24), com u(x) = x, v(x) = −ν2/x e w(x) = x:

d

dx

(
x
dψ

dx

)
+

(
λx− ν2

x

)
ψ(x) = 0 . (2.36)

Portanto, as autofunções são ortogonais com respeito à função peso w(x) = x :∫
ψm(x)ψn(x)x dx = 0 se m ̸= n ,

sendo a integração efetuada no intervalo em que a EDO é resolvida.

ii) (1− x2)ψ′′ − 2xψ′ + λψ(x) = 0. (2.37)

Essa EDO é a de Sturm-Liouville com u(x) = 1− x2 , v(x) = 0 e w(x) = 1:

d

dx

[
(1− x2)dψ

dx

]
+ λψ(x) = 0 .

Com frequência resolve-se essa EDO no intervalo (−1, 1). Neste caso, o fato de u(x) = 1−x2 anular-se quando
x → −1+ e x → 1− [uma condição de fronteira do tipo CF-4: supressiva] torna (2.37) singular nesses pontos,
nos quais a exigência da existência dos limites de ψ e ψ′ quando x → −1+ e x → 1− condiciona o parâmetro
λ a tomar apenas certos valores (os autovalores). Assim, o problema de encontrar as soluções não nulas da
EDO (2.37) com x ∈ (−1, 1) sob as exigências delineadas em (2.26) é, por si só (sem qualquer condição de
fronteira), um problema de autovalor. Veremos que as autofunções são formadas pelos conhecidos Polinômios
de Legendre, estudados no Capítulo 4 e usados no Capítulo 6.

2.5 Série de Fourier Generalizada Dupla e Tripla
Sejam {ψn(ξ)}n=1,2··· e {ϕn(η)}n=1,2··· dois conjuntos ortogonais com respeito a produtos escalares de

funções peso w1(ξ) e w2(η), respectivamente, provenientes de problemas de Sturm-Liouville distintos, sendo as
relações de ortogonalidade dadas por

⟨ψm, ψn⟩1 =

∫ ν1

µ1

ψ∗
m(ξ)ψn(ξ)w1(ξ) dξ = 0 se m ̸= n

e
⟨ϕm, ϕn⟩2 =

∫ ν2

µ2

ϕ∗
m(η)ϕn(η)w2(η) dη = 0 se m ̸= n ,

onde, para distinguir os produtos escalares, apomos o subíndice 1 ou 2 ao parêntese angulado direito. É
frequente a ocorrência de séries duplas do tipo

∞∑
m=1

∞∑
n=1

cmn ψm(ξ)ϕn(η) = f(ξ, η) , (2.38)

em que se deseja calcular os coeficientes cmn da expansão de f(ξ, η) nas citadas autofunções. Mostraremos que
tais coeficientes são dados por

cmn =

∫ ν2

µ2

∫ ν1

µ1

f(ξ, η)ψ∗
m(ξ)ϕ∗

n(η)w1(ξ)w2(η) dξ dη

||ψm(ξ)||2 ||ϕn(η)||2
. (2.39)

Prova:

Basta, começando com a equação (2.38), tomar, pela esquerda, o produto escalar de ambos os membros
por ϕn e, depois, na equação resultante, por ψm, usando a distributividade do produto escalar bem como as
relações de ortogonalidade ⟨ϕn, ϕn′⟩2 = ||ϕn||2δn′n e ⟨ψm, ψm′⟩1 = ||ψm||2δm′m ; observe:

f =
∑
m′,n′

cm′n′ψm′ϕn′ ⇒ ⟨ϕn, f⟩2 =
∑
m′,n′

cm′n′ψm′ ⟨ϕn, ϕn′⟩2︸ ︷︷ ︸
||ϕn||2δn′n

= ||ϕn||2
∑
m′

cm′nψm′ ⇒
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〈
ψm, ⟨ϕn, f⟩2

〉
1
= ||ϕn||2

∑
m′

cm′n ⟨ψm, ψm′⟩1︸ ︷︷ ︸
||ψm||2δm′m

= ||ψm||2||ϕn||2cmn ⇒ cmn =

〈
ψm, ⟨ϕn, f⟩2

〉
1

||ψm||2||ϕn||2
,

onde 〈
ψm, ⟨ϕn, f⟩2

〉
1
=

∫ ν1

µ1

ψ∗
m ⟨ϕn, f⟩2 w1dξ =

∫ ν1

µ1

ψ∗
m

{∫ ν2

µ2

ϕ∗
nfw2dη

}
w1dξ

=

∫ ν2

µ2

∫ ν1

µ1

f(ξ, η)ψ∗
m(ξ)ϕ∗

n(η)w1(ξ)w2(η)dξdη . CQD

Há também séries triplas, quádruplas, etc. Exemplo de série tripla:∑
l

∑
m

∑
n

clmnψl(ξ)ϕm(η)χn(ζ) = f(ξ, η, ζ) . (2.40)

Se {ψl(ξ), ξ ∈ [µ1, ν1]}, {ϕm(η), η ∈ [µ2, ν2]} e {χl(ζ), ζ ∈ [µ3, ν3]} são conjuntos ortogonais com respeito
às funções peso w1(ξ), w2(η) e w3(ζ), respectivamente, é fácil mostrar, por uma extensão óbvia da prova
apresentada acima para o caso da série dupla, que

clmn =

∫ ν3

µ3

∫ ν2

µ2

∫ ν1

µ1

f(ξ, η, ζ)ψ∗
l (ξ)ϕ

∗
m(η)χ∗

n(ζ)w1(ξ)w2(η)w3(ζ) dξ dη dζ

||ψl(ξ)||2 ||ϕm(η)||2 ||χn(ζ)||2
. (2.41)

Vejamos um exemplo da série dupla na equação (2.38), considere os dois conjuntos de funções { sen(mπx)/ℓ}m=1,2,3···
e {cos(nπy)/2h}n=1,3,5···. Eles são ortogonais com respeito a produtos escalares de funções peso unitárias, pois
são formados por autofunções dos problemas de Sturm-Liouville (i) e (iv) listados na seção 2.3. Temos portanto
que se

f(x, y) =

∞∑
m=1

∑
n=1,3,5···

cmn sen
mπx

ℓ
cos

nπy

2h
,

então os coeficientes, segundo a equação (2.39), são dados por

cmn =

∫ h

0

∫ ℓ

0

f(x, y) sen
mπx

ℓ
cos

nπy

2h
dx dy

|| senmπx
ℓ
||2 || cos nπy

2h
||2

,

onde

|| senmπx
ℓ
||2 =

∫ ℓ

0

sen2mπx

ℓ
dx =

ℓ

2
e || cos nπy

2h
||2 =

∫ h

0

cos2
nπy

2h
dy =

h

2
.

Note que, nas séries de Fourier nas equações (2.38) e (2.40), admitimos que cada tipo de autofunção tem um
índice apenas. Mas a dependência indicial pode ser mais intricada, havendo autofunções que têm dois ou mais
índices, sendo alguns deles em comum com autofunções de outra categoria. Mas, ainda assim, os coeficientes são
calculados por fórmulas como aquela na equação (2.41). Para exemplificar isso, tomemos a seguinte expansão
de uma função das coordenadas esféricas nas autofunções ortogonais que surgem na resolução da equação do
calor ou onda numa esfera de raio b centrada na origem, isto é,

f(r, θ, φ) =

∞∑
n=1

∞∑
l=0

l∑
m=−l

cnlmRln(r)Θlm(θ)Φm(φ) (2.42)

(não é necessário aqui expor os detalhes dessas autofunções), sendo as relações de ortogonalidade dadas por
(observe as funções peso r2, senθ e 1)

⟨Rln′ , Rln⟩r =
∫ b

0

R∗
ln′(r)Rln(r) r

2dr = ||Rln(r)||2δn′n ,

⟨Θl′m,Θlm⟩θ =
∫ π

0

Θ∗
l′m(θ)Θlm(θ) senθ dθ = ||Θlm(θ)||2δl′l ,

⟨Φm′ ,Φm⟩φ =

∫ 2π

0

Φ∗
m′(φ)Φm(φ)dφ = ||Φm(φ)||2δm′m .

Os coeficientes dessa série são obtidos pelo mesmo procedimento usado para a série em (2.38): tomamos o
produto escalar de ambos os membros de (2.42), pela esquerda, por Φm, Θlm e Rnl (nessa ordem), usando, em
cada etapa, a distributividade do produto escalar e a relação de ortogonalidade associada a este. O resultado é

clmn =

∫ 2π

0

∫ π

0

∫ b

0

f(r, θ, φ)R∗
ln(r)Θ

∗
lm(θ)Φ∗

m(φ) (r2) ( senθ) (1) dr dθ dφ

||Rln(r)||2 ||Θlm(θ)||2 ||Φm(φ)||2 , (2.43)

onde

||Rln(r)||2 =

∫ b

0

R2
ln(r) r

2dr , ||Θlm(θ)||2 =

∫ π

0

Θ2
lm(θ) senθ dθ e ||Φm(φ)||2 =

∫ 2π

0

Φ2
m(φ) dφ .
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2.6 Ausência de Autovalores Negativos
Nesta seção, provamos que nenhum dos autovalores de um problema de Sturm-Liouville é negativo quando

as condições de fronteira forem aquelas em (2.27), exceto a CF-3, e, na EDO (2.24), u(x) ≥ 0 e v(x) ≤ 0
para x ∈ (µ, ν). Note que essas condições para as funções u e v encontram-se satisfeitas nos problemas de
Sturm-Liouville já mencionados.

Para o operador L em (2.22), temos que

−⟨ψ,Lψ⟩ =

∫ ν

µ

ψ∗

w

[
(uψ′)′ + vψ

]
w dx =

∫ ν

µ

ψ∗(uψ′)′dx+

∫
m

uνψ∗vψ dx

=
[
ψ∗(uψ′)

]ν
µ︸ ︷︷ ︸

0

−
∫ ν

µ

ψ∗′uψ′dx+

∫ ν

µ

v|ψ|2dx ,

onde o primeiro termo se anula por causa das condições de fronteira consideradas: CF-1,2,4,5,6. Logo,

⟨ψ,Lψ⟩ =
∫ ν

µ

|u| |ψ|2dx+

∫ ν

µ

|v| |ψ|2dx ≥ 0 ,

pois u(x) ≥ 0 e v(x) ≤ 0 no intervalo (µ, ν).
Mas

⟨ψ,Lψ⟩ = ⟨ψ, λψ⟩ = λ ⟨ψ,ψ⟩ = λ ||ψ||2 ,
onde, ⟨ψ,Lψ⟩ ≥ 0, de acordo com o resultado anterior, e ||ψ||2 > 0. Está provado, portanto, que λ ≥ 0 sob as
condições estabelecidas.

De acordo com esse resultado, não havia necessidade, na seção 2.3, ter suposto λ = −k2 na busca dos
autovalores, mas negligenciamos o que acabamos de provar por considerarmos instrutiva a análise desse caso,
tanto que, mais adiante, pela mesma razão, continuaremos considerando a hipótese λ = −k2, ainda que já
cientes da inexistência de autovalores negativos.

44



Capítulo 3

Aplicações das Séries de Fourier
Trigonométricas na Resolução de
EDPs

- Ref. [5] , seç. 12.3, 12.5 e 12.8

- Ref. [8] , seç. 12.7 (Exemplo 2) e 12.8

- Ref. [6] , cap. 2

3.1 Equações do Calor e da Onda nas Coordenadas Cartesianas
em Mais De Uma Dimensão

O estudo desta seção deve ser precedido de uma revisão das equações unidimensionais do calor e da onda
empreendido nas seções 6.2 e 6.3 da Apostila de Cálculo 4. Aqui resolveremos tais problemas em duas ou três
dimensões.

Exemplo 3.1.1. Cálculo da temperatura T (x, y, t) na placa retangular mostrada na figura, de bordas
submetidas a 0◦ e inicialmente à temperatura T0(x, y).

Vamos primeiramente proceder à chamada separação espaço-temporal: ad-
mitimos que

T (x, y, t) ≡ ψ(x, y) τ(t) , (3.1)

isto é, que a solução T (x, y, t) é produto da função só das coordenadas espaciais
ψ(x, y, z) pela função só do tempo τ(t) (a parte espacial e a parte temporal
da solução, respectivamente), e então substituímos essa expressão de T na
equação do calor:

∇2T (x, y, t) =
1

α

∂T

∂t
. (3.2)

Obtemos

∇2(ψτ) =
1

α

∂

∂t
(ψτ) ⇒ τ∇2ψ =

1

α
ψτ ′ ⇒ ∇2ψ

ψ
=

τ ′

ατ
≡ −λ (constante)

⇒

{
∇2ψ + λψ(x, y) = 0 .................... EDP espacial (equação de Helmholtz)

τ ′ + λατ(t) = 0 ............................. EDO temporal .
(3.3)

Além disso, como consequência de (3.1), as condições de fronteira desse problema de calor – dadas por
T (x, y, t) = 0 se (x, y) for um ponto na borda da placa –, por serem homogêneas, se transferem para a
parte espacial ψ(x, y):

T (x, y, t) = ψ(x, y) τ(t)︸︷︷︸
̸= 0

= 0 ⇒ ψ(x, y) = 0 para todo (x, y) na borda da placa. (3.4)

Portanto, como nos problemas unidimensionais, a parte espacial da solução deve ser solução de um problema
de autovalor formado pela chamada equação de Helmholtz apresentada em (3.3) e pelas condições de fronteira
em (3.4), isto é, {

∇2ψ + λψ(x, y) = 0 no domínio D = {(x, y) ∈ R2 , x ∈ (0, ℓ) , y ∈ (0, h)}
ψ(x, y) = 0 na fronteira de D .

(3.5)
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Esse é um problema de autovalor bidimensional, possuindo autofunções ψ(x, y) correspondentes aos auto-
valores de λ. Para resolvê-lo, realizamos outra separação, a das variáveis x e y:

ψ(x, y) ≡ X(x)Y (y) . (3.6)

A substituição dessa equação na EDP espacial em (3.3) fornece( ∂2

∂x2
+

∂2

∂y2

)
XY + λXY = X ′′Y +XY ′′ + λXY = 0

÷ XY

=⇒ X ′′

X︸︷︷︸
−µ

+
Y ′′

Y︸︷︷︸
−ν

+ λ = 0 , (3.7)

uma forma que apresenta dois termos separados que dependem de apenas uma variável e que, portanto, devem
ser constantes; acima foram igualados às constantes de separação (−µ) e (−ν). Assim surgem as EDOs

X ′′ + µX(x) = 0 e Y ′′ + νY (y) = 0 ,

que, para serem resolvidas, é necessário considerar as condições de fronteira para X(x) e Y (y) que podem ser
deduzidas daquelas para ψ, na equação (3.4), usando a equação (3.1):

ψ(x0, y) = X(x0)Y (y)︸ ︷︷ ︸
̸= 0

= 0 ⇒ X(x0) = 0 se x0 = 0 ou ℓ , (3.8)

ψ(x0, y) = X(x)︸ ︷︷ ︸
̸= 0

Y (y) = 0 ⇒ Y (y0) = 0 se y0 = 0 ou h . (3.9)

Como consequência, as partes X e Y da expressão de T (= XY τ) devem ser autofunções de problemas
de autovalor (unidimensionais), sendo ambos, no caso, do mesmo tipo do Prob. (i) resolvido na seção 2.3.
Escrevamo-los juntamente com as soluções:{

X ′′ + µX(x) = 0 , x ∈ (0, ℓ)
X(0) = X(ℓ) = 0

⇒
{
µm = (mπ/ℓ)2 (m = 1, 2 · · · )
Xm(x) = sen(mπx/ℓ)

{
Y ′′ + νY (y) = 0 , y ∈ (0, h)
Y (0) = Y (h) = 0

⇒
{
νn = (nπ/h)2 (n = 1, 2 · · · )
Yn(y) = sen(nπy/h)

Desses resultados obtemos as soluções do problema de autovalor bidimensional formulado em (3.5). Como
λ = µ+ ν [cf. (3.7)] e ψ = XY , podemos escrever:

∇2 + λψ(x, y) = 0 , (x, y) ∈ (0, ℓ)× (0, h)

ψ = 0 se x = 0 ou x = ℓ

ψ = 0 se y = 0 ou y = h

⇒


λmn = (mπ/ℓ)2 + (nπ/h)2

ψmn(x, y) = sen
mπx

ℓ
sen

nπy

h
m, n = 1, 2, 3 · · ·

(3.10)

Agora calculamos a solução τmn(t) da EDO temporal separada em (3.3), com λ dado em (3.7):

τ ′mn + λmnτmn(t) = 0 ⇒ τmn(t) = e−λmnαt . (3.11)

Vale ressaltar que, para resolver o problema de autovalor bidimensional, convertemo-lo em dois problemas
de autovalor unidimensionais usando o método de separação de variáveis. Além disso, observe que a enume-
ração dos autovalores e das autofunções acima é feita com dois índices. No último exemplo deste capítulo,
tridimensional, veremos que três índices são necessários. Mas isso não é regra geral, havendo, por exemplo,
problemas tridimensionais cujos autovalores são enumerados por meio de dois índices.

Estão determinadas, portanto, tanto a parte espacial da solução, dadas pelas autofunções ψmn(x, y), quanto
a temporal, dada por (3.11). A solução geral é a combinação linear das soluções Tmn(x, y, t) = ψmn(x, y)τmn(t),
isto é,

T (x, y, t) =

∞∑
m=1

∞∑
n=1

Amn sen
mπx

ℓ
sen

nπy

h
e−λmnαt , λmn =

(mπ
ℓ

)2

+
(nπ
h

)2

. (3.12)

Nota: Chamamos de "solução geral" a solução que se obtém na forma de uma série infinita pelo
método de separação de variáveis e que satisfaz todas as condições de fronteira homogêneas. Na
verdade, deveríamos nos referir a ela como a solução mais geral que esse procedimento fornece,
pois não se provou que ela é de fato a solução geral. Ela se torna a solução específica do problema
físico quando os coeficientes da série são determinados a partir das condições não homogêneas, tais
como, por exemplo, as condições iniciais, que é o próximo passo dessa resolução.

46



Para determinar os coeficientes Amn da solução geral, impomos que ela satisfaça a condição inicial do
problema:

T (x, y, 0) =
∞∑
m=1

∞∑
n=1

Amn sen
mπx

ℓ
sen

nπy

h
= T0(x, y) .

Essa equação, de acordo com as equações (2.38) e (2.39), mostra que

Amn =

∫ h

0

∫ ℓ

0

T0(x, y) sen
mπx

ℓ
sen

nπy

h
dx dy

|| senmπx
ℓ
||2︸ ︷︷ ︸

ℓ/2

|| sen nπy
h
||2︸ ︷︷ ︸

h/2

, (3.13)

onde os valores da normas quadráticas indicados são os das autofunções do Prob. (i) na seção 2.3.
A solução do problema é dada pelos resultados quadriculados: equações (3.12) e (3.13). Observe o correto

comportamento assintótico no tempo: T (x, y, t→∞) = 0 .

Exemplo 3.1.2. Cálculo da deflexão z(r⃗, t) = z(x, y, t) de uma membrana retangular de bordas fixas
(v. figura), largada inicialmente com a forma dada por z = z0(x, y) e as velocidade de seus pontos dadas por
∂z/∂t = v0(x, y).

a) FORMULAÇÃO:

∇2z =
1

c2
∂2z

∂t2
(x, y, t) , (x, y) ∈ (0, ℓ)× (0, h)

z(r⃗, t) = 0 se r⃗ ∈ bordas (condições de fronteira)

z(r⃗, 0) = z(x, y, 0) = z0(x, y)

∂z

∂t
(r⃗, 0) =

∂z

∂t
(x, y, 0) = v0(x, y)

 (condições iniciais)

b) SEPARAÇÃO ESPAÇO-TEMPORAL:

z(x, y, t) ≡ ψ(x, y)τ(t) ⇒ ∇2(ψτ) =
1

c2
∂2ψτ

∂t2
⇒ τ∇2ψ =

1

c2
ψτ ′′

⇒ ∇2ψ

ψ
=

1

c2
τ ′′

τ
≡ −λ (constante)⇒

{
∇2ψ + λψ(x, y) = 0 (Eq. de Helmholtz)

τ ′ + λc2τ(t) = 0 (EDO temporal) .

Observe que, como no problema de calor do exemplo anterior, também a parte espacial ψ da solução da
equação da onda deve satisfazer a equação de Helmholtz. A diferença entre este exemplo (onda) e o anterior
(calor) reside na parte temporal. Ao final deste capítulo listaremos as similaridades e as diferenças nas soluções
das equações da onda e do calor.

c) PROBLEMA DE AUTOVALOR PARA A PARTE ESPACIAL:

As condições de fronteira para ψ(x, y) são deduzidas a partir daquelas para z(x, y, t) de modo análogo ao
feito na equação (3.4), similarmente obtendo-se ψ = 0 nos pontos das bordas em x = 0, x = ℓ, y = 0 e y = h
da membrana. Ora, tais condições de fronteira e a equação de Helmholtz (separada acima) formam o mesmo
problema de autovalor bidimensional do exemplo anterior. Ou seja, continua válido aqui o que se apresenta em
(3.10).

d) A PARTE TEMPORAL CORRESPONDENTE AO AUTOVALOR λ = λmn :

Como todos os autovalores são positivos, podemos definir

ωmn ≡ c
√
λmn = πc

√(m
ℓ

)2

+
(n
h

)2

(m,n = 1, 2, 3 · · · )

para escrever a EDO temporal e então resolvê-la como segue:

τ ′′mn + ω2
mnτmn = 0 ⇒ τmn(t) = Amn cosωmnt+Bmn senωmnt .

e) SOLUÇÃO GERAL:

Esta é a combinação linear de todas as soluções zmn(x, y, t) = ψmn(x, y)τmn(t):

z(x, y, t) =

∞∑
m=1

∞∑
n=1

(Amn cosωmnt+Bmn senωmnt) sen
mπx

ℓ
sen

nπy

h
. (3.14)
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Diga-se, de passagem, que, para cada par de valores de m e n, zmn(x, y, t) = ψmn(x, y)τmn(t) é dito um
modo de vibração, em que toda a membrana vibra harmonicamente com a frequência angular ωmn, sendo
ψmn(x, y) a amplitude da oscilação no ponto (x, y).

f) CÁLCULO DOS COEFICIENTES NA SOLUÇÃO GERAL

Impondo as condições iniciais, obtemos

z(x, y, 0) =

∞∑
m=1

∞∑
n=1

Amn sen
mπx

ℓ
sen

nπy

h
= z0(x, y)

e
∂z

∂t
(x, y, 0) =

∞∑
m=1

∞∑
n=1

ωmnBmn sen
mπx

ℓ
sen

nπy

h
= v0(x, y) .

Devemos então calcular Amn e ωmnBmn como sendo os coeficientes de uma série dupla de Fourier de z0(x, y) e
v0(x, y), respectivamente. Logo, de acordo com a seção 2.5, e já substituindo os conhecidos valores das normas
quadráticas envolvidas, temos que

Amn =
4

ℓh

∫ h

0

∫ ℓ

0

z0(x, y) sen
mπx

ℓ
sen

nπy

h
dx dy , (3.15)

ωmnBmn =
4

ℓh

∫ h

0

∫ ℓ

0

v0(x, y) sen
mπx

ℓ
sen

nπy

h
dx dy . (3.16)

As equações (3.14), (3.15) e (3.16) fornecem a solução deste problema ondulatório.

3.2 Peculiaridades das Resoluções dos Problemas de Calor e
Onda

Considere o problema de resolver, numa região R (da reta, do plano ou do espaço) de fronteira ∂R, as EDPs

∇2T =
1

α

∂T

∂t
(r⃗, t) ............................ equação do calor homogênea (3.17)

∇2u =
1

c2
∂2u

∂t2
(r⃗, t) ............................ equação da onda homogênea (3.18)

sob condições de fronteira homogêneas. Realizando a separação separação espaço-temporal, obtemos

T (r⃗, t) ≡ ψ(r⃗, t) ⇒ ∇2ψ

ψ
=

τ ′

ατ
≡ −λ ⇒

{
∇2ψ + λψ(r⃗ ) = 0
τ ′ + λατ(t) = 0

(3.19a)

e

u(r⃗, t) ≡ ψ(r⃗, t) ⇒ ∇2ψ

ψ
=

τ ′′

c2τ
≡ −λ ⇒

{
∇2ψ + λψ(r⃗ ) = 0
τ ′′ + λc2τ(t) = 0

(3.19b)

onde o uso das mesmas letras ψ, τ e λ em dois problemas distintos não causará confusão.
Nos problemas de calor e onda já resolvidos acima, observamos o seguinte:

a) Tanto no problema de calor quanto no de onda, após a separação espaço-temporal ψ(r⃗) τ(t) da
solução, verifica-se que a parte espacial ψ(r⃗ ) satisfaz a equação de Helmholtz homogênea,

∇2ψ + λψ(r⃗ ) = 0 . (3.20)

[que, em uma dimensão, torna-se ψ′′ + λψ(x) = 0, a EDO espacial obtida nos problemas unidimensionais
de calor e onda resolvidos nas seções 6.1 e 6.2 da Apostila de Cálculo 4].

b) A resolução da EDP (3.20) sob a imposição de ψ satisfazer as mesmas condições de fronteira
do problema de calor ou onda original é um problema de valor de fronteira homogêneo que constitui
um problema de autovalor. Ao solucionar este problema, obtém-se uma infinidade de soluções ψλ(r⃗ )
(autofunções) e de valores (autovalores) da constante λ originada na separação espaço-temporal.

c) Uma vez determinados tais autovalores, a EDO temporal pode ser revolvida para se determinar
completamente a parte temporal τλ(t) correspondente a cada autovalor de λ, a menos das constantes
arbitrárias que surgem na resolução dessa EDO, ainda indeterminadas neste momento.
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No caso da equação do calor, τλ(t) é solução de τ ′λ + λατλ(t) = 0, isto é,

τλ(t) = Aλe
−λαt . (3.21)

Observe, em particular, que τ0(t) = A0 (constante) é a parte temporal associada ao autovalor nulo λ0 = 0,
quando este ocorre.

No caso da equação da onda, τλ(t) é solução de τ ′′λ (t) + λc2τλ(t) = 0, isto é,

τλ(t) =

{
Aλ cosωλt+Bλ senωλt (ωλ ≡ c

√
λ) se λ > 0

A0 +B0t se λ = 0 .
(3.22)

Portanto, a solução geral da equação do calor ou onda é a combinação linear das soluções Tλ(r⃗, t) ou uλ(r⃗, t)
dadas por ψλ(r⃗ )τλ(t):

Tλ(r⃗, t) =
∑
λ

Aλ e
−λα t ψλ(r⃗ ) , (3.23)

uλ(r⃗, t) = (A0 +B0t)ψ0(r⃗ )︸ ︷︷ ︸
∗

+
∑
λ

(Aλ cosωλt+Bλ senωλt) ψλ(r⃗ ) . (3.24)

Nessas equações, entenda-se
∑
λ

como o somatório nos índices usados para enumerar os autovalores; assim,

esse somatório pode ser simples (no caso de λn), duplo (no caso de λmn) ou triplo (no caso de três índices:
λ lmn). Quanto ao termo marcado com ∗, só ocorrerá quando existir o autovalor λ0 = 0.

Analisando a estrutura dessas soluções, concluímos que, qualquer que seja o problema de calor ou onda,
a forma da parte temporal é sempre a que se apresenta acima (somente os autovalores de λ mudam). Por
outro lado, o cálculo da parte espacial, definida pelas autofunções, é elaborado: trata-se de resolver a equação
(homogênea) de Helmholtz sob condições de fronteira homogêneas, um problema de autovalor que depende do
número de dimensões e da geometria do problema.

Aplicamos o exposto acima no exemplo seguinte.

Exemplo 3.2.1. Vamos resolver as equações do calor e da onda, dadas pelas equações (3.17) e (3.18),
na região V paralelepipedal formada pelos pontos (x, y, z) ∈ (0, ℓ)×(0, h)×(0, s), sabendo que T = 0 e u = 0 na
fronteira ∂V e que, no instante inicial t = 0, são conhecidos T = T0(r⃗ ), bem como u = u0(r⃗ ) e ∂u/∂t = v0(r⃗ ).

Esses dois problemas – calor e onda –, tendo as mesmas condições de fronteira – T e u se anulam na fronteira
–, para serem solucionados, passam pela resolução do mesmo problema: da equação de Helmholtz (oriunda da
separação espaço-temporal) sob as condições de fronteira comum aos dois:{

∇2ψ + λψ(r⃗ ) = 0 , r⃗ ∈ V
ψ(r⃗ ) = 0 se r⃗ ∈ ∂V .

Resolvemos este problema de autovalor tridimensional por separação de variáveis:( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
XY Z + λXY Z = X ′′Y Z +XY ′′Z +XY Z ′′ + λXY Z = 0

÷XY Z
=⇒ X ′′

X︸︷︷︸
−µ

+
Y ′′

Y︸︷︷︸
−ν

+
Z′′

Z︸︷︷︸
−β

+λ = 0 ⇒ λ = µ+ ν + β e


X ′′ + µX(x) = 0
Y ′′ + νY (y) = 0
Z′′ + βZ(z) = 0 .

Cada uma dessas três EDOs deve ser resolvida sob as condições de fronteiras que herdam das condições de
fronteira do problema de calor ou onda original, que são deduzidas de modo análogo ao empregado na obtenção
daquelas em (3.8) e (3.8); no caso, as condição de fronteira são

X(x0) = 0 se x0 = 0 ou ℓ , Y (y0) = 0 se y0 = 0 ou h , Z(z0) = 0 se z0 = 0 ou s .

Então percebemos que as partes X, Y e Z que compõem ψ devem ser autofunções de problemas de autovalor
unidimensionais, sendo, no caso, todos os três do mesmo tipo do Prob. (i) resolvido na seção 2.3; assim,{

X ′′ + µX(x) = 0 , x ∈ (0, ℓ)
X(0) = X(ℓ) = 0

⇒
{
µl = (mπ/ℓ)2 (l = 1, 2 · · · )
Xl(x) = sen(lπx/ℓ)

{
Y ′′ + νY (y) = 0 , y ∈ (0, h)
Y (0) = Y (h) = 0

⇒
{
νm = (nπ/h)2 (m = 1, 2 · · · )
Ym(y) = sen(mπy/h)

{
Z′′ + βZ(y) = 0 , z ∈ (0, s)
Z(0) = Z(s) = 0

⇒
{
βn = (nπ/s)2 (n = 1, 2 · · · )
Zn(z) = sen(nπz/s) .
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Logo, os autovalores e as autofunções do problema na equação (3.5) são

λlmn =
( lπ
ℓ

)2

+
(mπ
h

)2

+
(nπ
s

)2 l,m,n=1,2···←−−−−−−−→ ψlmn(x, y, z) = sen
lπx

ℓ
sen

mπy

h
sen

nπz

s
. (3.25)

Usando as equações (3.23) e (3.24) [em que o somatório deve ser triplo, realizado nos três índices l, m e n,
para somar todos os termos associados a todos os autovalores], podemos escrever as soluções gerais

T (x, y, z, t) =

∞∑
l=1

∞∑
m=1

∞∑
n=1

Dlmne
−λlmnαt sen

lπx

ℓ
sen

mπy

h
sen

nπz

s
(3.26)

do problema de calor e

u(x, y, z, t) =

∞∑
l=1

∞∑
m=1

∞∑
n=1

(Almn cosωlmnt+Blmn senωlmnt) sen
lπx

ℓ
sen

mπy

h
sen

nπz

s
(3.27)

do problema de onda, onde ωlmn = c
√
λlmn , com o λlmn dado em (3.25).

As constantes na solução geral são determinadas impondo-se as condições iniciais:

T (x, y, z, 0) =

∞∑
l=1

∞∑
m=1

∞∑
n=1

Dlmn sen
lπx

ℓ
sen

mπy

h
sen

nπz

s
= T0(x, y, z) ,

u(x, y, z, 0) =

∞∑
l=1

∞∑
m=1

∞∑
n=1

Almn sen
lπx

ℓ
sen

mπy

h
sen

nπz

s
= u0(x, y, z) ,

∂u

∂t
(x, y, z, 0) =

∞∑
l=1

∞∑
m=1

∞∑
n=1

ωlmnBlmn sen
lπx

ℓ
sen

mπy

h
sen

nπz

s
= v0(x, y, z) .

Os coeficientes dessas séries triplas de Fourier em senos são calculados de acordo com a seção 2.5 ; já
substituindo os conhecidos valores das normas quadráticas envolvidas, temos que

Dlmn =
8

ℓhs

∫ s

0

∫ h

0

∫ ℓ

0

T0(x, y, z) sen
mπx

ℓ
sen

nπy

h
sen

nπz

s
dx dy dz , (3.28)

Almn =
8

ℓhs

∫ s

0

∫ h

0

∫ ℓ

0

u0(x, y, z) sen
mπx

ℓ
sen

nπy

h
sen

nπz

s
dx dy dz , (3.29)

ωlmnBlmn =
8

ℓhs

∫ s

0

∫ h

0

∫ ℓ

0

v0(x, y, z) sen
mπx

ℓ
sen

nπy

h
sen

nπz

s
dx dy dz . (3.30)

As soluções dos problemas de calor e onda são formadas pelas expressões quadriculadas nas equações (3.25)
a (3.30).

3.3 Equação de Laplace em Três Coordenadas Cartesianas
O estudo desta seção deve ser precedido da leitura, na Apostila de Cálculo 4, do preâmbulo da seção 6.4

bem como de uma revisão das resoluções da equação de Laplace apresentadas nas seções 6.4.1 e 6.4.2.1. Aqui
apenas complementamos essa categoria de problemas acrescentando um cálculo tridimensional.

Exemplo 3.3.1. Cálculo da solução da equação de Laplace no paralelepípedo da figura sob as
condições de fronteira indicadas.

A formulação desse problema é a seguinte:



∇2u(x, y, z) = 0 , (x, y, z) ∈ (0, ℓ)× (0, h)× (0, s)

u(0, y, z) = u(ℓ, y, z) = 0

∂u

∂y
(x, 0, z) = u(x, h, z) = 0

u(x, y, 0) = 0 , u(x, y, s) = f(x, y)

Realizando a separação de variáveis

u(x, y, z) = X(x)Y (y)Z(z) , (3.31)
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obtemos ( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
XY Z = X ′′Y Z +XY ′′Z +XY Z ′′ = 0

÷XY Z
=⇒ X ′′

X︸︷︷︸
−µ

+
Y ′′

Y︸︷︷︸
−ν

+
Z′′

Z
= 0 . (3.32)

Expliquemos a separação realizada acima. As condições de fronteira homogêneas nas faces em x = 0 e
x = ℓ bem com em y = 0 e y = h revelam que as partes X e Y serão provenientes de problemas de autovalor.
Daí havermos separado os dois primeiros termos acima usando as constantes independentes (cujos autovalores
resultarão de problemas independentes) −µ e −ν .

Nota – Padronização da forma da equação diferencial de um problema de autovalor :
Os sinais negativos nas constantes de separação −µ e −ν em (3.31) estão de acordo com a convenção
comumente adotada de sempre se escrever a equação diferencial de um problema de autovalor na
forma da equação de Sturm-Liouville (2.24), na qual o sinal "+" precede a constante λ .

Obtemos para X e Y respectivamente os problemas de autovalor já resolvidos nos Probs. (i) e (iv) da seção
2.3; logo, {

X ′′ + µX(x) = 0 , x ∈ (0, ℓ)
X(0) = X(ℓ) = 0

⇒
{
µm = (mπ/ℓ)2 (m = 1, 2, 3 · · · )
Xm(x) = sen(mπx/ℓ) ,

{
Y ′′ + νY (y) = 0 , y ∈ (0, h)
Y ′(0) = Y (h) = 0

⇒
{
νn = (nπ/h)2 (n = 1, 3, 5 · · · )
Yn(y) = cos(nπy/2h) .

Para determinar a parte Z de u, resolvemos a EDO Z′′ − (µ + ν)Z(z) = 0 que se obtém com a separação
do terceiro termo em (3.32), mas com µ e ν substituídos respectivamente pelos autovalores µm e νn acima,
sob a condição de fronteira homogênea que Z herda daquela que u satisfaz na face em z = 0. Esse problema é
formulado e resolvido a seguir:

Z′′
mn − (µm + νn)Zmn(z) = 0 , z ∈ (0, s) , Zmn(0) = 0 .

∴ Zmn(z) = Amn cosh(κmnz) +Bmn senh(κmnz) , onde κmn ≡
√
µm + νn ) . (3.33)

Zmn(0) = Amn = 0 ⇒ Zmn(z) = Bmn senh(κmnz) .

Logo, em vista de (3.31), a solução geral é a combinação linear de todas as soluções umn(x, y, z) =
Xm(x)Yn(y)Zmn(z), ou seja

u(x, y, z) =

∞∑
m=1

∑
n=1,3,5···

Bmn senh(κmnz) sen
mπx

ℓ
cos

nπy

2h
. (3.34)

Nesta, os coeficientes são determinados impondo a condição de fronteira não homogênea na face superior do
paralelepípedo:

u(x, y, s) =

∞∑
m=1

∑
n=1,3,5···

[
Bmn senh(κmns)

]
sen

mπx

ℓ
cos

nπy

2h
,

donde concluímos que o termo entre colchetes são os coeficientes dessa série dupla de Fourier generalizada, que
podem ser calculados segundo a seção 2.5 ; já substituindo os valores das normas quadráticas fornecidos nessa
seção, obtemos

Bmn senh(κmns) =
4

ℓh

∫ h

0

∫ ℓ

0

f(x, y) sen
mπx

ℓ
cos

nπy

2h
. (3.35)

As soluções dos problemas de calor e onda são formadas pelas expressões quadriculadas nas equações (3.33)
a (3.35).

Nota – Fronteira isolada termicamente:
A resolução da equação de Laplace ∇2u(r⃗ ) = 0 pode ser interpretada como o cálculo da temperatura
estacionária T (r⃗ ) (a temperatura independente do tempo que se estabelece num sistema em equilíbrio
térmico). Admita, então, essa interpretação para o problema que acabamos de resolver: u é a temperatura
estacionária T . A condição de fronteira T = 0 numa face do paralelepípedo é simples de entender: ela é
mantida em 0◦. Mas como entender a condição ∂T/∂y = 0 naquela face à esquerda?

O fluxo de calor é uma grandeza vetorial, denotada por q⃗ (r⃗ ), que expressa a condução de calor no ponto
r⃗ na direção de q⃗. Pela lei de Fourier, ela é dada por q⃗(r⃗ ) = −∇T (r⃗ ), onde k é a condutividade térmica
do meio. Nas coordenadas cartesianas, temos que
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q⃗ (x, y, z) = −k
(∂T
∂x

,
∂T

∂y
,
∂T

∂z

)
⇒ componentes de q⃗ : qx = −k

∂T

∂x
, qy = −k

∂T

∂y
, qz = −k

∂T

∂z
.

Assim, no problema acima, a condição de fronteira

∂T

∂y
(x, 0, z) = 0

indica que qy = 0 na face situada na ordenada y = 0; que o vetor q⃗ é paralelo a essa face; que, em qualquer
ponto dela, a corrente de calor a tangencia; que, portanto, não há passagem de calor através dela. Ora, isso
significa que essa face é isolada termicamente.

Outro exemplo: a condição
∂T

∂x
(ℓ, y, z) = 0 expressa que a face situada na abscissa x = ℓ (perpendicular ao

eixo x, obviamente) é isolada termicamente.

3.4 O Núcleo de Poisson para a Solução da Equação de Laplace
num Disco

No Exemplo 6.8 da Apostila de Cálculo 4, foi resolvida a equação de Laplace nas coordenadas polares r e θ,
∇2u(r, θ), no disco de raio b centrado na origem sob a condição de fronteira u(b, θ) = f(θ), obtendo a seguinte
solução [v. lá as equações (6.44) e (6.45)]:

u(r, θ) = C0 +

∞∑
n=1

rn(An cosnθ +Bn senθ) ,

onde os coeficientes são dados por

C0 =
1

2π

∫ 2π

0

f(θ)dθ , An =
1

πbn

∫ 2π

0

fθ) cosnθ dθ e Bn =
1

πbn

∫ 2π

0

fθ) sennθ dθ .

Embora a resolução já esteja concluída, ela pode ser expressa sem a série infinita. Conseguimos isso
substituindo essas fórmulas dos coeficientes C0, An e Bn na expressão da solução u(r, θ) acima:

u(r, θ) =
1

2π

∫ 2π

0

f(θ)dθ +

∞∑
n=1

rn
[
cosnθ

πbn

∫ 2π

0

fϕ) cosnϕdϕ+
senθ

πbn

∫ 2π

0

fϕ) sennϕdϕ

]
,

em que, antes de substituir, trocamos a letra que denota a variável de integração de θ para ϕ, para que, no
passo que realizaremos em seguida, possamos introduzir os termos cosnθ e senθ [inicialmente presentes na
expressão da solução u(r, θ) nas integrais. Fazendo isso e admitindo que o somatório de integrais é a integral
do somatório, obtemos

u(r, θ) =
1

2π

∫ 2π

0

{
1 + 2

∞∑
n=1

(r
b

)n[
cosnθ cosnϕ+ senθ sennϕ

]}
f(ϕ)dϕ

=
1

2π

∫ 2π

0

{
1 + 2

∞∑
n=1

(r
b

)n
cosn(ϕ− θ)

}
f(ϕ)dϕ . (3.36)

Definindo
z ≡ r

b
ei(ϕ−φ) =

r

b

[
cos(ϕ− φ) + i sen(ϕ− φ)

]
,

donde
zn =

(r
b

)n
ein(ϕ−φ) =

(r
b

)n[
cosn(ϕ− φ) + i senn(ϕ− φ)

]
,

podemos desenvolver o termo entre chaves em (3.36) como segue(∗):

1 + 2

∞∑
n=1

(r
b

)n
cosn(ϕ− θ) = 1 + 2

∞∑
n=1

Re zn = Re

{
1 + 2

∞∑
n=1

zn
}

= Re

{
1 + 2

[
− 1 +

∞∑
n=0

zn
]}

= Re

{
− 1 + 2

∞∑
n=0

zn
}

= Re

{
− 1 + 2

1

1− z

}
= Re

{
1 + z

1− z

}
= Re

{
1 + z

1− z
(1− z)∗

(1− z)∗
}

= Re

{
(1 + z)(1− z∗)
|1− z|2

}
(∗) Usamos os seguintes resultados

∞∑
n=0

zn =
1

1− z
se |z| < 1 série geométrica e z − z∗ = 2i Im z .

Note que, de fato, |z| = r/b < 1 no interior do disco.
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= Re
1 + (z − z∗)− |z|2

| [1− (r/b) cos(ϕ− θ) ]− i(r/b) sen(ϕ− θ) |2

= Re
1 + 2i Im z − (r/b)2

[1− (r/b) cos(ϕ− θ) ]2 + [ (r/b) sen(ϕ− θ) ]2

=
1− (r/b)2

1− 2(r/b) cos(ϕ− θ) + (r/b)2
=

b2 − r2

b2 − 2br cos(ϕ− θ) + r2
,

resultado conhecido como núcleo de Poisson. Substituindo-o em (3.36), obtemos a solução do problema na
forma da chamada integral de Poisson :

u(r, θ) =
b2 − r2

2π

∫ 2π

0

f(ϕ)dϕ

b2 − 2br cos(ϕ− θ) + r2
. (3.37)

3.5 Problemas Não Homogêneos de Calor e Onda
Num problema não homogêneo de calor ou onda, a equação, a condição de fronteira ou ambas não são

homogêneas (ignoram-se as condições iniciais, geralmente não homogêneas, nessa terminologia). Desde Cálculo
4 ainda não tratamos de tais problemas dependentes do tempo que não sejam homogêneos (ressalte-se que os
cálculos de temperatura estacionária – que consistem em resolver a equação de Laplace – sob condições de
fronteira não homogêneas que já resolvemos não envolvem a variável temporal).

Seguem técnicas simples para tratar de problemas simples, aqui apresentadas tão somente para resolver
problemas unidimensionais de calor (numa barra) e onda (numa corda). Os exemplos seguem em ordem
gradativa de complexidade:

Exemplo 3.5.1. Extremos da barra à mesma temperatura constante:



∂2T

∂x2
− 1

α

∂T

∂t
(x, t) = 0

x ∈ (0, ℓ) , t > 0

T (0, t) = T (ℓ, t) = T1 = const.

T (x, 0) = T0(x) .

Este problema não pode ser resolvido direta-
mente por separação de variáveis.

Definimos T (x, t) ≡ u(x, t) + T1 , obtendo:

∂2u

∂x2
− 1

α

∂u

∂t
(x, t) = 0

x ∈ (0, ℓ) , t > 0

u(0, t) = u(ℓ, t) = 0

u(x, 0) = T0(x)− T1 .

Este é um problema homogêneo, que já foi resolvido
por separação de variáveis.

Exemplo 3.5.2. Extremos da barra sob diferentes temperaturas constantes:
∂2T

∂x2
− 1

α

∂T

∂t
(x, t) = 0 , x ∈ (0, ℓ) , t > 0

T (0, t) = T1 = const. , T (ℓ, t) = T2 = const. , T (x, 0) = T0(x) .

Definimos T (x, t) ≡ u(x, t) + η(x) , obtendo:

∂2T

∂x2
− 1

α

∂T

∂t
(x, t) =

∂2u

∂x2
+ η′′(x)− 1

α

∂u

∂t
(x, t) = 0 , x ∈ (0, ℓ) , t > 0

T (0, t) = u(0, t) + η(0) = T1

T (ℓ, t) = u(ℓ, t) + η(ℓ) = T2

T (x, 0) = u(x, 0) + η(x) = T0(x) .

Para obter um problema homogêneo para u(x, t), devemos escolher

η′′(x) = 0 , η(0) = T1 e η(ℓ) = T2 ,

assim obtendo para η(x) um problema (formado por uma EDO de 2a
¯ ordem e duas condições de fronteira) que

é bem definido, isto é, que tem uma única solução, dada por η(x) = (T2 − T1)x/ℓ + T1 , cuja substituição no
problema de calor acima leva ao seguinte problema, que já sabemos resolver:

⋆


∂2u

∂x2
− 1

α

∂u

∂t
(x, t) = 0 , x ∈ (0, ℓ) , t > 0

u(0, t) = u(ℓ, t) = 0

u(x, 0) = T0(x)− η(x) .
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Exemplo 3.5.3. Barra com extremos sob temperaturas constantes, de condutividade térmica k
[W/m°C] e na qual a densidade de potência é dada pela função Q(x) [W/m3] :

∂2T

∂x2
− 1

α

∂T

∂t
(x, t) = −Q(x)

k
, x ∈ (0, ℓ) , t > 0

T (0, t) = T1 = const. , T (ℓ, t) = T2 = const. , T (x, 0) = T0(x) .

Definimos T (x, t) ≡ u(x, t) + η(x) , obtendo:

∂2T

∂x2
− 1

α

∂T

∂t
(x, t) =

∂2u

∂x2
+ η′′(x)− 1

α

∂u

∂t
(x, t) = −Q(x)

k
, x ∈ (0, ℓ) , t > 0

T (0, t) = u(0, t) + η(0) = T1

T (ℓ, t) = u(ℓ, t) + η(ℓ) = T2

T (x, 0) = u(x, 0) + η(x) = T0(x) .

Ao escolher
η′′(x) = −Q(x)/k , η(0) = T1 e η(ℓ) = T2 ,

formamos para η(x) um problema bem definido, cuja solução, ao ser substituída no problema de calor acima,
leva ao mesmo problema homogêneo para u(x, t) em ⋆ , obtido no Exemplo 3.5.2, mas com uma solução η(x)
diferente, evidentemente.

Exemplo 3.5.4. Corda esticada com tensão T [N/m] e submetida à carga f(x) vibrando entre
extremos fixos a diferentes alturas:

∂2y

∂x2
− 1

c2
∂2y

∂t2
= −f(x)

T
, x ∈ (0, ℓ) , t > 0

y(0, t) = y1 = const. , y(ℓ, t) = y2 = const.

y(x, 0) = y0(x) ,
∂y

∂t
(x, 0) = v0(x) .

Definimos y(x, t) ≡ u(x, t) + η(x) , obtendo:

∂2y

∂x2
− 1

c2
∂2y

∂t2
=

∂2u

∂x2
+ η′′(x)− 1

c2
∂2u

∂t2
= −f(x)

T
, x ∈ (0, ℓ) , t > 0

y(0, t) = u(0, t) + η(0) = y1

u(ℓ, t) = u(ℓ, t) + η(ℓ) = y2

y(x, 0) = u(x, 0) + η(x)

∂y

∂t
(x, 0) =

∂u

∂t
(x, 0) + η(x) = v0(x) .

Ao escolher
η′′(x) = −f(x)/T , η(0) = y1 e η(ℓ) = y2 ,

formamos para η(x) um problema bem definido, cuja solução, ao ser substituída no problema de onda acima,
leva ao seguinte problema homogêneo, que já sabemos resolver:

∂2u

∂x2
− 1

c2
∂2u

∂t2
= , x ∈ (0, ℓ) , t > 0

u(0, t) = u(ℓ, t) = 0

u(x, 0) = y0(x)− η(x) ,
∂u

∂t
(x, 0) = v0(x)− η(x) .

Por fim, ressalve-se que as técnicas de homogeneização expostas também se aplicam no caso das outras
condições de fronteira consideradas.

3.6 Exercícios

3.6.1 Enunciados
1] Resolva o seguinte problema de calor:

∇2T (x, y, t) =
1

α

∂T

∂t
, (x, y) ∈ (0, ℓ)× (0, h)

T (0, y, t) = T (ℓ, y, t) = 0

∂T

∂y
(x, 0, t) = T (x, h, t) = 0

T (x, y, 0) = T0(x, y) .
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2] Resolva o seguinte problema de membrana vibrante:

∇2z(x, y, t) =
1

c2
∂2z

∂t2
, (x, y) ∈ (0, ℓ)× (0, h)

z(0, y, t) =
∂z

∂x
(ℓ, y, t) = 0

∂z

∂y
(x, 0, t) =

∂z

∂y
(x, h, t) = 0

z(x, y, 0) = 0 ,
∂z

∂t
(x, y, 0) = v0(x, y) .

3] Resolva o seguinte problema de calor:

∇2T (x, y, z, t) =
1

α

∂T

∂t
= 0 , (x, y, z) ∈ (0, ℓ)× (0, h)× (0, s)

∂T

∂x
(0, y, z, t) =

∂T

∂x
(ℓ, y, z, t) = 0

∂T

∂y
(x, 0, z, t) =

∂T

∂y
(x, h, z, t) = 0

∂T

∂z
(x, y, 0, t) =

∂T

∂z
(x, y, s, t) = 0

T (x, y, z, 0) = T0(x, y, z) .

4] Resolva o seguinte problema:

∇2u(x, y, z) = 0 , (x, y, z) ∈ (0, ℓ)× (0,∞)× (0, s)

∂u

∂x
(0, y, z) =

∂u

∂x
(ℓ, y, z) = 0

u(x, 0, z) = f(x, z)

u(x, y, 0) =
∂u

∂z
(x, y, s) = 0 .

5] Considere uma barra reta situada entre x = 0 e x = 10 cm, de difusividade térmica α = 1 cm2/s e
condutividade térmica k = 1 W/m◦C, em que há uma geração de calor constante de 2 W/cm3. Calcule a
temperatura T (x, t) na barra sabendo que seus extremos esquerdo e direito são mantidos em 20◦C e 10◦C,
respectivamente, e que, T (x, 0) = 9x− x2 [◦C] .

3.6.2 Soluções
1

T (x, y, t) ≡ ψ(x, y)τ(t) ⇒ ∇2ψ

ψ
=

1

α

τ ′

τ
≡ −λ (constante) .∇2ψ + λψ =

∂2ψ

∂x2
+
∂2ψ

∂y2
+ λψ(x, y) = 0

ψ sob as mesmas condições de fronteira que T .

ψ(x, y) ≡ X(x)Y (y) ⇒ X ′′

X︸︷︷︸
−µ

+
Y ′′

Y︸︷︷︸
−ν

+λ = 0 .

{
X ′′ + µX(x) = 0 , x ∈ (0, ℓ)
X(0) = X(ℓ) = 0

⇒
{
µm = (mπ/ℓ)2 (m = 1, 2, 3 · · · )
Xn(x) = sen(mπx/ℓ) .{

Y ′′ + νY (y) = 0 , y ∈ (0, h)
Y ′(0) = Y (h) = 0

⇒
{
νn = (nπ/2h)2 (n = 1, 3, 5 · · · )
Yn(y) = cos(nπy/2h) .

τ ′mn + λmnατmn(t) = 0 [λmn = µm + νn] ⇒ τmn(t) = e−λmnα t .

T (x, y, t) =

∞∑
m=1

∑
n=1,3,5···

Cmn e
−λmnα t sen

mπx

ℓ
cos

nπy

2h
.

T (x, y, 0) =

∞∑
m=1

∑
n=1,3,5···

Cmn sen
mπx

ℓ
cos

nπy

2h
= T0(x, y) .
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Cmn =

∫ h

0

∫ ℓ

0

T0(x, y) sen
mπx

ℓ
cos

nπy

2h
dx dy∫ ℓ

0

sen2mπx

ℓ
dx︸ ︷︷ ︸

ℓ/2

∫ h

0

cos2
nπy

2h
dy︸ ︷︷ ︸

h/2

.

2

z(x, y, t) ≡ ψ(x, y)τ(t) ⇒ ∇2ψ

ψ
=

1

c2
τ ′′

τ
≡ −λ (constante) .∇2ψ + λψ =

∂2ψ

∂x2
+
∂2ψ

∂y2
+ λψ(x, y) = 0

ψ sob as mesmas condições de fronteira que z .

ψ(x, y) ≡ X(x)Y (y) ⇒ X ′′

X︸︷︷︸
−µ

+
Y ′′

Y︸︷︷︸
−ν

+λ = 0 .

{
X ′′ + µX(x) = 0 , x ∈ (0, ℓ)
X(0) = X ′(ℓ) = 0

⇒
{
µm = (mπ/2ℓ)2 (m = 1, 3, 5 · · · )
Xn(x) = sen(mπx/2ℓ) .{

Y ′′ + νY (y) = 0 , y ∈ (0, h)
Y ′(0) = Y ′(h) = 0

⇒
{
νn = (nπ/h)2 (n = 0, 1, 2 · · · )
Yn(y) = cos(nπy/h) .

τ ′′mn + λmnc
2τmn(t) = 0 [λmn = µm + νn ] .

τmn(t) = Amn cosωmnt+Bmn senωmnt [ωmn ≡ c
√
λmn ] .

z(x, y, 0) = ψ(x, y)τ(0) = 0 ⇒ τ(0) = 0 ⇒ τmn(0) = Amn = 0 ⇒ τmn(t) = Bmn senωmnt .

z(x, y, t) =
∑

m=1,3,5···

∞∑
n=0

Bmn senωmnt sen
mπx

2ℓ
cos

nπy

h
.

∂z

∂t
(x, y, 0) =

∑
m=1,3,5···

∞∑
n=0

ωmnBmn sen
mπx

2ℓ
cos

nπy

h
= v0(x, y) .

ωmnBmn =

∫ h

0

∫ ℓ

0

v0(x, y) sen
mπx

2ℓ
cos

nπy

h
dx dy∫ ℓ

0

sen2mπx

2ℓ
dx︸ ︷︷ ︸

ℓ/2

∫ h

0

cos2
nπy

h
dy︸ ︷︷ ︸{

h/2 se n ̸=0
h se n=0

.

3

T (x, y, z, t) ≡ ψ(x, y, z)τ(t) ⇒ ∇2ψ

ψ
=

1

α

τ ′

τ
≡ −λ (constante) .∇2ψ + λψ =

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ λψ(x, y, z) = 0

ψ sob as mesmas condições de fronteira que T .

ψ(x, y, z) ≡ X(x)Y (y)Z(z) ⇒ X ′′

X︸︷︷︸
−µ

+
Y ′′

Y︸︷︷︸
−ν

+
Z′′

Z︸︷︷︸
−β

+λ = 0 .

{
X ′′ + µX(x) = 0 , x ∈ (0, ℓ)
X ′(0) = X ′(ℓ) = 0

⇒
{
µm = (mπ/ℓ)2 (m = 0, 1, 2 · · · )
Xm(x) = cos(mπx/ℓ) .{

Y ′′ + νY (y) = 0 , y ∈ (0, h)
Y ′(0) = Y ′(h) = 0

⇒
{
νn = (nπ/h)2 (n = 0, 1, 2 · · · )
Yn(y) = cos(nπy/h) .{

Z′′ + βZ(y) = 0 , z ∈ (0, s)
Z′(0) = Z′(s) = 0

⇒
{
βj = (jπ/h)2 (j = 0, 1, 2 · · · )
Zj(z) = cos(jπz/s) .

τ ′mnj + λmnj α τmnj(t) = 0 [λmnj = µm + νn + βj ] ⇒ τmnj(t) = e−λmnjα t .

T (x, y, z, t) =

∞∑
m=0

∞∑
n=0

∞∑
j=0

Cmnj e
−λmnjα t cos

mπx

ℓ
cos

nπy

h
cos

jπz

s
.
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T (x, y, z, 0) =

∞∑
m=0

∞∑
n=0

∞∑
j=0

Cmnj cos
mπx

ℓ
cos

nπy

h
cos

jπz

s
= T0(x, y, z) .

Cmnj =

∫ s

0

∫ h

0

∫ ℓ

0

T0(x, y, z) cos
mπx

ℓ
cos

nπy

h
cos

jπz

s
dx dy dz∫ ℓ

0

cos2
mπx

ℓ
dx︸ ︷︷ ︸{

ℓ/2 se m ̸=0
ℓ se m=0

∫ h

0

cos2
nπy

h
dy︸ ︷︷ ︸{

h/2 se n ̸=0
h se n=0

∫ s

0

cos2
jπz

s
dz︸ ︷︷ ︸{

s/2 se j ̸=0
s se j=0

.

Nota:
Uma vez que λ000 = 0, então, denotando pela mesma letra V tanto a região (x, y, z) ∈ (0, ℓ) × (0, h) × (0, s)
quanto o volume V = ℓhs dessa região, temos que

T (x, y, z, t) = C000 +
∑
m

∑
n

∑
j︸ ︷︷ ︸

m̸=0,n ̸=0,j ̸=0

e
−λmnjα t

ψmnj(x, y, z) .

T (x, y, z, t → ∞) = C000 =

∫ s

0

∫ h

0

∫ ℓ

0

T0(x, y, z)dx dy dz

ℓhs

=
1

V

∫
V

T0(r⃗ )dV : média da temperatura inicial em V.

Esse é o resultado assintótico no tempo que se espera nessa região V de fronteiras isoladas termicamente: que
toda a energia térmica inicial tenda a se distribuir uniformimente na região V .

4

u(x, y, z) = X(x)Y (y)Z(z) ⇒ X ′′

X︸︷︷︸
−µ

+
Y ′′

Y
+
Z′′

Z︸︷︷︸
−ν

= 0

{
X ′′ + µX(x) = 0 , x ∈ (0, ℓ)
X ′(0) = X ′(ℓ) = 0

⇒
{
µm = (mπ/ℓ)2 (m = 0, 1, 2 · · · )
Xm(x) = cos(mπx/ℓ) .{

Z′′ + νZ(y) = 0 , z ∈ (0, s)
Z(0) = Z′(s) = 0

⇒
{
νn = (nπ/2s)2 (n = 1, 3, 5 · · · )
Zn(y) = sen(nπz/2s) .

Y ′′
mn − (µm + νn)︸ ︷︷ ︸

≡ κ2mn

Ymn(y) = 0 ⇒ Ymn(y) = Amn e
−kmny +Bmn e

kmny ( κmn ≡
√
µ2
mn + ν2mn ) .

Ymn(y →∞) finito ⇒ Bmn = 0 ⇒ Ymn(y) = Amn e
−kmny .

u(x, y, z) =

∞∑
m=0

∑
n=1,3,5···

Amn e
−kmny cos

mπx

ℓ
sen

nπz

2s
.

u(x, 0, z) =

∞∑
m=0

∑
n=1,3,5···

Amn cos
mπx

ℓ
sen

nπz

2s
= f(x, z) .

Amn =

∫ s

0

∫ ℓ

0

f(x, z) cos
mπx

ℓ
sen

nπz

2s
dx dz∫ ℓ

0

cos2
mπx

ℓ
dx︸ ︷︷ ︸{

ℓ/2 se m ̸=0
ℓ se m=0

∫ s

0

sen2 nπz

2s
dz︸ ︷︷ ︸

s/2

.
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5

Equação do calor não homogênea: Txx −
1

α
Tt =

−Q(x, t)

k

α=k=1 , Q(x,t)=2−−−−−−−−−−−→ Txx − Tt = −2 .
Txx − Tt = −2 , x ∈ (0, 1) , t > 0
T (0, t) = 20 , T (10, t) = 0
T (x, 0) = 9x− x2 .

T (x, t) ≡ u(x, t) + η(x)

uxx + η′′(x)− ut = −2 ⇒ η′′(x) = −2
T (0, t) = u(0, t) + η(0) = 20 ⇒ η(0) = 20
T (10, t) = u(10, t) + η(10) = 10 ⇒ η(10) = 10

 ⇒ η(x) = −x2 + 9x+ 20 .

T (x, 0) = u(x, 0) + η(x) = 9x− x2 ⇒ u(x, 0) = 9x− x2 − η(x) ⇒ u(x, 0) = −20 .
uxx − ut = 0 , x ∈ (0, 1) , t > 0
u(0, t) = u(10, t) = 0
u(x, 0) = −20 .

A solução u(x, t) deste problema homogêneo pode ser calculada por separação de variáveis (omitimos os detalhes,

já conhecidos):

u(x, t) =

∞∑
n=1

Bn e
−(nπ/10)2t sen

nπx

10
·

u(x, 0) =

∞∑
n=1

Bn sen
nπx

10
= −20 .

Bn =
2

10

∫ 10

0

(−20) sen nπx
10

dx =
4(10)

nπ
cosnπx

∣∣∣10
0

=
40

nπ
( cosnπ︸ ︷︷ ︸

(−1)n

−1) = 40

nπ
·
{
−2 se n = 1, 3, 5 · · ·
0 se n = 2, 4, 6 · · ·

u(x, t) =

∞∑
n=1

−80
nπ

e−(nπ/10)2t sen
nπx

10
·

T (x, t) = η(x) + u(x, t) = −x2 + 9x+ 20 +

∞∑
n=1

−80
nπ

e−(nπ/10)2t sen
nπx

10
■
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Capítulo 4

Método de Frobenius e Funções
Especiais

- Ref. [4] , seç. 5.1 a 5.6

- Ref. [7, seç. 6.2 a 6.5] e Ref. [8, Ap. I]

- Ref. [6] , cap. 4, 6 e 7

4.1 Método de Frobenius
Pré-requisito ao estudo do método exposto nesta seção é o Cap. 2 da apostila de Cálculo 4, à qual fazemos

referência usando a abreviatura Ap-Calc4.

4.1.1 Parte 1 (Frobenius I)
Os pontos singulares de uma EDO, já definidos e explicados na seção 2.1 da Ap-Calc4, são, por sua vez,

classificados em regulares e irregulares como segue: Dizemos que um ponto singular da EDO

A(x)y′′ +B(x)y′ + C(x)y(x) = 0 (4.1)

é um ponto singular regular (ou uma singularidade regular) se, ao reescrevermos essa EDO na forma dada por

y′′ + p(x)y′ + q(x)y(x) = 0 , (4.2)

[obtida dividindo (4.1) por A(x)] constatamos que (x−x0)p(x) e (x−x0)2q(x) ou suas extensões contínuas são
funções analíticas em x0.

O ponto singular que não é regular é chamado de ponto singular irregular (ou singularidade irregular).
Novamente, para evitar a análise de analiticidade de funções, fornece-se a seguinte receita , válida no caso

de EDO cujos coeficientes são polinômios:

Considere (4.1) com coeficientes polinomiais, e escreva essa EDO como em (4.2), mas com p(x) e q(x)
na forma de um quociente irredutível de polinômios completamente fatorados em monômios. Se o fator
(x− x0) aparece nos denominadores de p(x) e q(x) com multiplicidades mp e mq, respectivamente, então
x = x0 é um ponto singular
• regular se mp ≤ 1 e mq ≤ 2
• irregular se mp > 1 ou mq > 2

Assim, por exemplo:

i) Os pontos x = 1 e x = ±2 são pontos singulares da EDO (x− 1)(x2 − 4)2y′′ + (x− 1)(x− 2)y′ + y = 0
(sem fator comum nos coeficientes polinomiais). Reescrevendo essa equação na forma

y′′ +
1

(x+ 2)2(x− 2)
y′ +

1

(x− 1)(x+ 2)2(x− 2)2
y = 0 ,

verificamos, de acordo com a receita acima, que x = −2 é um ponto singular irregular ; já x = 1 e x = 2 são
pontos singulares regulares.

ii) A EDO x2(x+ 1)2y′′ + (x2 − 1)y′ + 2y(x) = 0, ou

y′′ +
x− 1

x2(x+ 1)
y′ +

2

x2(x+ 1)2
y = 0 ,
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tem, em x = 0, um ponto singular irregular e, em x = −1, um ponto singular regular.

iii) (1− x2)︸ ︷︷ ︸
(x+1)(x−1)

y′′ − 2xy′ + 30y = 0 ⇒ x = ±1 são pontos singulares regulares.

iv) x3y′′ − 2xy′ + 5y = 0 ⇒ y′′ − 2

x2
y′ +

5

x3
y = 0 ⇒ x = 0 é ponto singular irregular.

v) 8xy′′ − 2x2y′ + 5xy = 0, ou (cancelando o fator comum x) 8y′′ − 2xy′ + 5y = 0 ⇒ a EDO não tem
ponto singular (somente pontos ordinários).

vi) (x2+9)y′′−3xy′+(1−x)y = 0 ⇒ y′′− 3xy

(x− 3i)(x+ 3i)
y′+

1− x
(x− 3i)(x+ 3i)

y = 0 ⇒ x = ±3i

são pontos singulares regulares.

A seguir estudamos o chamado método de Frobenius, usado para se obter solução em série de EDO linear
em torno de ponto singular regular. Antes de explicar esse método, convém apresentar dois fatos que motivam
esse método:

• y1 = x2 e y2 = x2 lnx são soluções de x2y′′ − 3xy′ + 4y = 0 para x ∈ (0,∞). Essa EDO tem um ponto
singular regular em x = 0, em torno do qual, se intentássemos uma série de potências

∑
anx

n como
solução, só obteríamos y1 = x2, pois o fator lnx na solução y2 não tem série de Taylor em torno de x = 0.

• A EDO 6x2y′′ + 5xy′ + (x2 − 1)y = 0 tem um ponto singular regular em x = 0, mas não possui solução
alguma na forma da série

∑
anx

n (centrada em x = 0). Pelo método de Frobenius, podemos obter duas

soluções em série com as formas y1 =
∞∑
n=0

anx
n+1/2 e y2 =

∞∑
n=0

bnx
n+1/3.

Pois bem, considere o problema de resolver a EDO (4.1), isto é,

A(x)y′′ +B(x)y′ + C(x)y = 0 ,

em torno de um ponto singular regular x = x0. Aqui, por questão de simplicidade, supomos sempre que
x0 = 0(∗). Pelo chamado método de Frobenius, é sempre possível encontrar uma solução na forma da série
(relativa a x0 = 0)

y = xr
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r = a0x

r + a1x
r+1 + a2x

r+2 + · · · , com a0 ̸= 0 . (4.3)

Não permitindo que a0 se anule, impomos que esse coeficiente seja o primeiro da série. Faz parte da resolução
determinar:

1. Os valores de r para os quais a EDO tem solução na forma da série em (4.3). Esses valores surgem da
resolução de uma equação algébrica do 2o

¯ grau (do 3o
¯ grau se a EDO fosse de 3a

¯ ordem e assim por
diante), denominada equação indicial, cujas soluções r1 e r2 são as chamadas raízes indiciais.

2. A relação de recorrência para os coeficientes an.

3. O intervalo de convergência da solução em série obtida.

Os detalhes do método(†) serão apresentados através de exemplos, nos quais x = 0 é o ponto singular
regular em torno do qual se deseja a solução. Conforme as raízes indiciais, três casos importantes devem ser
considerados (não consideraremos raízes indiciais imaginárias):

4.1.1.1 Caso de raízes indiciais que não diferem por um inteiro: r1 − r2 /∈ Z

Neste caso, o método de Frobenius sempre fornece duas soluções linearmente independentes.

Exemplo 4.1.1. 3xy′′ + y′ − y = 0

y =

∞∑
n=0

anx
n+r ⇒ y′ =

∞∑
n=0

(n+ r)anx
n+r−1 ⇒ y′′ =

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−2

3x

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−2 +

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=0

anx
n+r = 0

∞∑
n=0

3(n+ r − 1)(n+ r)anx
n+r−1 +

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=1

an−1x
n+r−1 = 0

(∗)Isso não significa perda de generalidade, pois, mediante a mudança de variável t = x−x0, sempre podemos transformar
uma EDO com ponto singular regular em x = x0 noutra para a qual esse ponto singular regular é dado por t = 0.

(†)Consulte as seções 4.3 a 4.6 da referência: Hildebrand, F. B. Advanced Calculus for Applications, Prentice-Hall,
Englewood Gliffs, New Jersey, 1976.
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[3(r − 1)r + r]a0x
r−1 +

∞∑
n=1

{ [
3(n+ r − 1)(n+ r) + (n+ r)

]︸ ︷︷ ︸
(3n+3r−2)(n+r)

an − an−1

}
xn+r−1 = 0

(3r − 2)r︸ ︷︷ ︸
0

a0x
r−1 +

∞∑
n=1

[
(3n+ 3r − 2)(n+ r)an − an−1

]︸ ︷︷ ︸
0

xn+r−1 = 0

∴


(3r − 2)r = 0 (equação indicial) ⇒ r = 0 ou 2/3 (raízes indiciais)

(3n+ 3r − 2)(n+ r)an − an−1 = 0 (relação de recorrência dependente da raiz indicial)

As relações de recorrência específicas para cada raiz indicial são dadas por
r = 0 ⇒ an =

an−1

n(3n− 2)
ou

r =
2

3
⇒ an =

an−1

n(3n+ 2)

∣∣∣∣∣∣∣∣∣
n≥ 1

A essas duas relações de recorrência correspondem duas séries distintas, nas quais a0 permanece arbitrário:

A série correspondente a r = 0:

a1 =
a0

(1)(1)
= a0

a2 =
a1

(2)(4)
=
a0
8

a3 =
a2

(3)(7)
=
a0/8

21
=

a0
168

a4 =
a3

(4)(10)
=
a0/168

40
=

a0
6720

...

∴ y1(x) = x0(a0 + a1︸︷︷︸
a0

x+ a2︸︷︷︸
a0
8

x2 + a3︸︷︷︸
a0
168

x3 + a4︸︷︷︸
a0

6720

x4 + · · · ) = a0
(
1 + x+

x2

8
+

x3

168
+

x4

6720
+ · · ·

)
.

A série correspondente a r = 2/3:

a1 =
a0

(1)(5)
=
a0
5

a2 =
a1

(2)(8)
=
a0/5

16
=
a0
80

a3 =
a2

(3)(11)
=
a0/80

33
=

a0
2640

a4 =
a3

(4)(14)
=
a0/2640

56
=

a0
147840

...

∴ y2(x) = x2/3(a0 + a1︸︷︷︸
a0
5

x+ a2︸︷︷︸
a0
80

x2 + a3︸︷︷︸
a0

2640

x3 + a4︸︷︷︸
a0

147840

x4 + · · · )

= a0x
2/3

(
1 +

x

5
+
x2

80
+

x3

2640
+

x4

147840
+ · · ·

)
.

Assim, obtemos duas soluções, cuja combinação linear é a solução geral: y(x) = y1(x)+y2(x) (considerando
o a0 que multiplica cada uma delas como sendo duas constantes arbitrárias independentes).
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4.1.1.2 Caso de raízes indiciais iguais

Neste caso só se consegue uma única solução na forma da série em (4.3), na qual r é igual ao único valor
da raiz indicial.

Exemplo 4.1.2. xy′′ + y′ − 4y = 0

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−1 +

∞∑
n=0

(n+ r)anx
n+r−1 − 4

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−1 +

∞∑
n=0

(n+ r)anx
n+r−1 − 4

∞∑
n=1

an−1x
n+r−1 = 0

[(r − 1)r + r]a0x
r−1 +

∞∑
n=1

{[
(n+ r − 1)(n+ r) + (n+ r)︸ ︷︷ ︸

(n+r)2

]
an − 4an−1

}
xn+r−1 = 0

r2︸︷︷︸
0

a0x
r−1 +

∞∑
n=1

[
(n+ r)2an − 4an−1

]︸ ︷︷ ︸
0

xn+r−1 = 0 .

Vemos que r = 0 é o único valor da raiz indicial e que

an =
4an−1

(r + n)2
para n ≥ 1 . (4.4)

Essa equação, com r = 0, torna-se an = 4an−1/n
2 (n ≥ 1), donde

a1 =
4a0
12

a2 =
4a1
22

=
42a0

(1 · 2)2

a3 =
4a2
32

=
43a0

(1 · 2 · 3)2

...

an =
4na0
(n!)2

Logo, temos no máximo uma única solução linearmente:

y(x) =

∞∑
n=0

anx
n+r

∣∣∣∣∣
r= 0

= a0

∞∑
n=0

4n

(n!)2
xn = a0

(
1 + 4x+ 4x2 +

16

9
x3 + · · ·

)
. (4.5)

4.1.1.3 Caso de raízes indiciais que diferem por um inteiro positivo: r1 − r2 ∈ N∗

Nesse caso, a série em (4.3),

1. Com r1 (a maior raiz indicial), sempre fornece uma única solução.

2. Com r = r2 (a menor raiz indicial), leva a uma das seguintes ocorrências:

(a) Ela não fornece nenhuma solução.

(b) Ela fornece a solução geral (permanecendo arbitrários dois coeficientes), que inclui, portanto, a
solução correspondente à maior raiz (r1).

(c) Ela fornece uma única solução linearmente independente.

Disso concluímos que convém tentar obter primeiramente a solução correspondente à menor raiz indicial, pois,
ocorrendo 2(b), a resolução estará concluída.

Vejamos exemplos das ocorrências de 2(a) e 2(b) [não exemplificaremos a ocorrência de 2(c)]:

Exemplo 4.1.3. Ocorrência de 2(a): xy′′ + 3y′ − y = 0

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−1 +

∞∑
n=0

3(n+ r)anx
n+r−1 −

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−1 +

∞∑
n=0

3(n+ r)anx
n+r−1 −

∞∑
n=1

an−1x
n+r−1 = 0
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[(r − 1)r + 3r]︸ ︷︷ ︸
r(r+2)

a0x
r−1 +

∞∑
n=1

{ [
(n+ r − 1)(n+ r) + 3(n+ r)

]︸ ︷︷ ︸
(n+r+2)(n+r)

an − an−1

}
xn+r−1 = 0

r(r + 2)︸ ︷︷ ︸
0

a0x
r−1 +

∞∑
n=1

[
(n+ r + 2)(n+ r)an − an−1

]︸ ︷︷ ︸
0

xn+r−1 = 0

Vemos que r = −2 e r = 0 são as raízes indiciais; além disso, a relação de recorrência dependente de r é
dada por

(n+ r + 2)(n+ r)an − an−1 = 0 (n ≥ 1) . (4.6)

Se r = −2:

A relação de recorrência específica para r = −2,

n(n− 2)an = an−1 (n ≥ 1) ,

fornece

• com n = 1 : 1(−1)a1 = a0 ⇒ a1 = −a0
• com n = 2 : 2(0)a2 = a1 ⇒ 0 = a1 = −a0

Mas a0 = 0 é contrário à nossa hipótese estipulada em (4.3). Logo, não existe série associada à raiz indi-
cial r = −2. Passemos, então, ao cálculo da única solução linearmente independente associada à maior raiz
indicial, que, conforme o item 1 acima, sempre existe:

Se r = 0:

A relação de recorrência específica para r = 0,

(n+ 2)nan − an−1 = 0 ⇒ an =
an−1

n(n+ 2)
(n ≥ 1) ,

fornece

a1 =
a0

(3)(1)
=
a0
3

a2 =
a1

(4)(2)
=
a0/3

8
=
a0
24

a3 =
a2

(5)(3)
=
a0/24

15
=

a0
360

a4 =
a3

(6)(4)
=
a0/360

24
=

a0
8640

...

Temos, portanto, a única solução linearmente independente:

y(x) = x0(a0 + a1︸︷︷︸
a0
3

x+ a2︸︷︷︸
a0
24

x2 + a3︸︷︷︸
a0
360

x3 + a4︸︷︷︸
a0

8640

x4 + · · · ) = a0
(
1 +

x

3
+
x2

24
+

x3

360
+

x4

8640
+ · · ·

)
. (4.7)

Exemplo 4.1.4. Ocorrência de 2(b): x2y′′ + (x2 + x)y′ − y = 0

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r +

∞∑
n=0

(n+ r)anx
n+r+1 +

∞∑
n=0

(n+ r)anx
n+r −

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r +

∞∑
n=1

(n+ r − 1)an−1x
n+r +

∞∑
n=0

(n+ r)anx
n+r −

∞∑
n=0

anx
n+r = 0

[
(r − 1)r + r − 1

]︸ ︷︷ ︸
(r−1)(r+1) = r2−1

a0x
r +

∞∑
n=1

{ [
(n+ r − 1)(n+ r) + n+ r − 1

]︸ ︷︷ ︸
(n+r−1)(n+r+1)

an + (n+ r − 1)an−1

}
xn+r = 0

(r2 − 1)︸ ︷︷ ︸
0

a0x
r +

∞∑
n=1

{
(n+ r − 1)(n+ r + 1)an + (n+ r − 1)an−1

}
︸ ︷︷ ︸

0

xn+r = 0
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donde obtemos as raízes indiciais r = ±1 e também a seguinte relação de recorrência dep. de r :

(n+ r − 1)
[
(n+ r + 1)an + an−1

]
= 0 , para n ≥ 1 .

Se r = −1:

A relação de recorrência é (n− 2)[nan + an−1] = 0 (n ≥ 1), donde:

• Com n = 1, obtemos −[a1 + a0] = 0 ⇒ a1 = −a0 .

• Com n = 2, obtemos 0=0, significando que a2 permanece arbitrário.

• Para n ≥ 3, temos que an = −an−1/n , ou seja:

a3 = −a2
3

; a4 = −a3
4

= −−a2/3
4

=
a2
12

, a5 = −a4
5

= −a2/12
5

= −a2
60

, · · · .

Logo,

y(x) =
∞∑
n=0

anx
n+r

∣∣∣∣∣
r=−1

= x−1
[
a0 + a1︸︷︷︸

−a0

x+ a2x
2 + a3︸︷︷︸

−a2
3

x3 + a4︸︷︷︸
a2
12

x4 + a5︸︷︷︸
−a2

60

x5 + · · ·
]

= a0 x
−1(1− x)︸ ︷︷ ︸
u1(x)

+ a2 x
−1

(
x2 − x3

3
+
x4

12
− x5

60
+ · · ·

)
︸ ︷︷ ︸

u2(x)

,

que é a solução geral da EDO, pois é a combinação linear das duas funções linearmente independentes u1(x) e
u2(x) formada com as constantes arbitrárias a0 e a2.

Fica como exercício mostrar que, se fizéssemos os cálculos com a maior raiz indicial, r = 1, obteríamos
apenas a solução u2(x).

4.1.2 Parte 2 (Frobenius II)
Descrevemos aqui alguns procedimentos para o cálculo de uma segunda solução linearmente independente

y2(x) quando apenas uma solução y1(x) ≡ a0u1(x) de (4.1) na forma da série em (4.3) é obtida; a saber, quando
as raízes indiciais r1 e r2 se enquadram numa das circunstâncias:

• 1a
¯ circunstância: r1 = r2

• 2a
¯ circunstância: r1 − r2 = K ∈ N∗ e não existe solução na forma de (4.3) com r = r2 (a menor raiz)

Procedimento 1: Fazemos uso da fórmula

y2(x) = Cu1(x)

∫ [
e−

∫
p(x)dx

][ 1

u2
1(x)

]
dx , (4.8)

obtida pela técnica da redução de ordem(∗). Acima, p(x) é o coeficiente de y′ na EDO escrita na forma dada
por (4.2), e C é uma constante arbitrária.

Procedimento 2: Substituímos(†)

y2(x) = a0 u1(x) lnx+

∞∑
n=0

bnx
n+r2 , (4.9)

na EDO para determinar os coeficientes bn. Acima, r2 é o único ou o menor valor da raiz indicial, conforme a
circunstância.

Para exemplificar esses procedimentos, usemo-los para completar a resolução das EDOs dos Exemplos 4.1.2
e 4.1.3, obtendo uma segunda solução linearmente independente.

(∗) Essa fórmula é deduzida e apresentada como a equação (4) da seção 4.2 na referência: Zill, Dennis G. e Cullen,
Michael R. Equações Diferenciais, Terceira Edição, volume 1, Pearson Makron Books, São Paulo, 2001.

(†) V. seção 4.5 da referência: Hildebrand, F. B. Advanced Calculus for Applications, Prentice-Hall, Englewood Gliffs,
New Jersey, 1976.
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Uma segunda solução no Exemplo 4.1.2 : xy′′ + y′ − 4y = 0

Cálculo com o procedimento 1

Tendo em vista o uso de (4.8), expliquemos os passos necessários:

Passo 1 - Para calcular u2
1(x), usamos a fórmula (a+ b+ c+ · · · )2 = a2+ b2+ c2+ · · ·+2ab+2ac+2bc+ · · ·

(que é a soma de dois somatórios: dos quadrados de cada termo e dos dobros de cada produto de dois termos
distintos). Assim, usando (4.5), que é a expressão de u1(x) obtida no exemplo 2, e considerando apenas as
potências de até o 3o

¯ grau, temos que

u2
1(x) =

(
1+4x+4x2+

16

9
x3+ · · ·

)2

= 1+16x2+8x+8x2+
32

9
x3+32x3+ · · · = 1+8x+24x2+

320

9
x3+ · · · .

Passo 2 - Agora devemos calcular 1/u2
1(x), isto é, obter a série infinita que resulta da divisão de 1 pela série

u2
1(x) computada acima. Como neste problema u2

1(0) =
(
xr1

∞∑
n=0

anx
n
)2∣∣∣

x=0
= a20 ̸= 0, pois r1 = 0 e a0 ̸= 0,

podemos admitir que 1/u2
1(x) =

∞∑
n=0

cnx
n(∗), ou equivalentemente u2

1(x)
∞∑
n=0

cnx
n = 1, que é uma equação com

a forma apropriada para determinar os desejados coeficientes cn; substituindo nessa equação a expressão de
u2
1(x) deduzida acima, obtemos

u2
1(x)

∞∑
n=0

cnx
n =

(
1 + 8x+ 24x2 +

320

9
x3 + · · ·

) (
c0 + c1x+ c2x

2 + c3x
3 + · · ·

)
= 1 ,

donde, mantendo explícitas apenas as potências com grau até 3, obtemos

c0︸︷︷︸
1

+(c1 + 8c0)︸ ︷︷ ︸
0

x+ (c2 + 8c1 + 24c0)︸ ︷︷ ︸
0

x2 +
(
c3 + 8c2 + 24c1 +

320

9
c0
)

︸ ︷︷ ︸
0

x3 + · · · = 1 .

Logo, calculando iteradamente os valores de cn a partir das equações indicadas pelas chaves acima, obtemos:

c0 = 1 → c1 = −8 → c2 = −8c1 − 24c0 = 40 → c3 = −8c2 − 24c1 −
320

9
c0 = −1472

9
.

Assim,
1

u2
1(x)

= c0 + c1x+ c2x
2 + c3x

3 + · · · = 1− 8x+ 40x2 − 1472

9
x3 + · · · .

Passo 3 - A EDO na forma apresentada em (4.2), isto é, y′′ + (1/x)y′ − (4/x)y = 0, mostra que p(x) = 1/x
e, portanto, que

e−
∫
p(x)dx = e−

∫
(1/x) dx = e− ln x = 1/x .

Passo 4 - Logo, usando (4.8), obtemos, finalmente.

y2(x) = Cu1(x)

∫ [
e−

∫
p(x)dx

][ 1

u2
1(x)

]
dx = Cu1(x)

∫
1

x

(
1− 8x+ 40x2 − 1472

9
x3 + · · ·

)
dx

= Cu1(x)

∫ ( 1

x
− 8 + 40x− 1472

9
x2 + · · ·

)
dx

= Cu1(x)
(
lnx− 8x+ 20x2 − 1472

27
x3 + · · ·

)
[u1(x) dado por (4.5)] ■ (4.10)

(∗) Quando u1(x) = xr1
∞∑
n=0

anxn com r1 ̸= 0, calculamos 1/u21(x) como segue:

1

u21(x)
=

1

(xr1 )2
1

P 2(x)
, com P (x) ≡

∞∑
n=0

anx
n .

Uma vez que P 2(0) = a20 ̸= 0, o inverso da série P 2(x) pode ser calculado pelo modo já apresentando: admitimos que

1/P 2(x) =
∞∑
n=0

cnxn e determinamos cn conforme explicado no Passo 2. Veja um cálculo desse tipo no problema 5(d)

resolvido na seção 4.1.3.
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Cálculo com o procedimento 2

Impondo uma segunda solução para a EDO Ly = xy′′ + y′ − 4y = 0 com a forma

y2(x) = a0 u1(x) lnx︸ ︷︷ ︸
≡ f(x)

+
∞∑
n=0

bnx
n+r2

︸ ︷︷ ︸
≡ g(x)

[r2 = 0] ,

sendo u1(x) dado por (4.5), isto é,

u1(x) = 1 + 4x+ 4x2 +
16

9
x3 + · · · ,

obtemos
Ly2 = L(a0f + g) = a0Lf + Lg = 0 ⇒ Lg = −a0Lf . (I)

Mas

Lg = xg′′ + g′ − 4g = x

∞∑
n=2

n(n− 1)bnx
n−2 +

∞∑
n=1

nbnx
n−1 − 4

∞∑
n=0

bnx
n

=

∞∑
n=2

n(n− 1)bnx
n−1 +

∞∑
n=1

nbnx
n−1 −

∞∑
n=1

4bn−1x
n−1 = b1 − 4b0 +

∞∑
n=2

[n2bn − 4bn−1]x
n−1

= (b1 − 4b0) + (4b2 − 4b1)x+ (9b3 − 4b2)x
2 + · · · (II)

e

−a0Lf = −a0
[
xf ′′ + f ′ − 4f

]
= −a0

[
x
(
u′′
1 lnx+ 2u′

1
1

x
+ u1

−1
x2

)
+

(
u′
1 lnx+ u1

1

x

)
− 4u1 lnx

]
= −a0

[
(lnx) (xu′′

1 + u′
1 − 4u1)︸ ︷︷ ︸

0

+2u′
1

]
= −2a0

(
4 + 8x+

16

3
x2 + · · ·

)
= −8a0 − 16a0x−

32a0
3

x2 + · · · . (III)

Logo, em vista dos resultados em (II) e (III), a equação (I) fornece

b1 − 4b0 = −8a0 ⇒ b1 = 4b0 − 8a0

4b2 − 4b1 = −16a0 ⇒ b2 = b1 − 4a0 = 4b0 − 12a0

9b3 − 4b2 = −32a0
3

⇒ b3 =
4

9
b2 −

32

27
a0 =

4

9

(
4b0 − 12a0

)
− 32

27
a0 =

16

9
b0 −

176

27
a0

Finalmente,

y2(x)= a0 u1(x) lnx+ b0 + b1x+ b2x
2 + b3x

3 + · · ·

= a0 u1(x) lnx

+ b0 + (4b0 − 8a0)x+ (4b0 − 12a0)x
2 +

(16
9
b0 −

176

27
a0

)
x3 + · · · (IV)

= b0
(
1 + 4x+ 4x2 +

16

9
x3 + · · ·︸ ︷︷ ︸

u1(x)

)
+ a0

(
u1(x) lnx− 8x− 12x2 − 176

27
x3 + · · ·

)

= b0 u1(x) + a0
(
u1(x) lnx− 8x− 12x2 − 176

27
x3 + · · ·︸ ︷︷ ︸

≡ u2(x)

)
■ (4.11)

que é, na verdade, a solução geral, haja vista as duas constantes arbitrárias a0 e b0, bem com as duas soluções
linearmente independentes u1(x), já deduzida, e u2(x), aqui obtida.
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Uma segunda solução no Exemplo 4.1.3 : xy′′ + 3y′ − y = 0

Cálculo com o procedimento 1

xy′′ + 3y′ − y = 0 ⇒ y′′ +
3

x︸︷︷︸
p(x)

y′ − 1

x
y = 0 ⇒ e−

∫
p(x)dx = e−

∫
(3/x) dx = e−3 ln x = 1/x3 .

Usando (4.7), que é a expressão de u1(x) obtida no exemplo 3, temos que

∴ u2
1(x) =

(
1 +

x

3
+
x2

24
+

x3

360
+ · · ·

)2
= 12 +

(x
3

)2

+ 2(1)
x

3
+ 2(1)

x2

24
+ 2(1)

x3

3360
+ 2

(x
3

)(x2
24

)
+ · · ·

= 1 +
2

3
x+

7

36
x2 +

x3

30
+ · · ·

1

u2
1(x)

≡
∞∑
n=0

cnx
n ⇒

(
c0 + c1x+ c2x

2 + c3x
3 + · · ·

) (
1 +

2

3
x+

7

36
x2 +

x3

30
+ · · ·

)
= 1

⇒ c0︸︷︷︸
1

+
(
c1 +

2c0
3

)
︸ ︷︷ ︸

0

x+
(
c2 +

2c1
3

+
7c0
36

)
︸ ︷︷ ︸

0

x2 +
(
c3 +

2c2
3

+
7c1
36

+
c0
30

)
︸ ︷︷ ︸

0

x3 + · · · = 1

⇒ c0 = 1 → c1 = −2

3
→ c2 = −2c1

3
− 7c0

36
=

1

4
→ c3 = −2c2

3
− 7c1

36
− c0

30
= − 19

270

⇒ 1

u2
1(x)

= 1− 2

3
x+

x2

4
− 19

270
x3 + · · · .

y2(x) = Cu1(x)

∫ [
e−

∫
p(x)dx

][ 1

u2
1(x)

]
dx = Cu1(x)

∫
1

x3

(
1− 2

3
x+

x2

4
− 19

270
x3 + · · ·

)
dx

= Cu1(x)

∫ (
x−3 − 2x−2

3
+
x−1

4
− 19x

270
+ · · ·

)
dx

= Cu1(x)
(
− x−2

2
+

2x−1

3
+

1

4
lnx− 19x

270
+ · · ·

)
dx

= Cu1(x)
(1
4
lnx− 1

2x2
+

2

3x
− 19x

270
+ · · ·

)
[u1(x) dado por (4.7)] ■ (4.12)

Cálculo com o procedimento 2

Impondo uma segunda solução para a EDO Ly = xy′′ + 3y′ − y = 0 com a forma

y2(x) = a0 u1(x) lnx︸ ︷︷ ︸
≡ f(x)

+

∞∑
n=0

bnx
n+r2

︸ ︷︷ ︸
≡ g(x)

[r2 = −2] ,

com u1(x) dado por (4.7), isto é,

u1(x) = 1 +
x

3
+
x2

24
+

x3

360
+ · · · ,

obtemos
Ly2 = L(a0f + g) = a0Lf + Lg = 0 ⇒ Lg = −a0Lf . (I)

Mas

Lg = xg′′ + 3g′ − g = x

∞∑
n=0

(n− 2)(n− 3)bnx
n−3 + 3

∞∑
n=0

(n− 2)bnx
n−3 −

∞∑
n=0

bnx
n−2

=

∞∑
n=0

(n− 2)(n− 3)bnx
n−2 +

∞∑
n=0

3(n− 2)bnx
n−3 −

∞∑
n=1

bn−1x
n−3 = ���

6b0x
−3 −���

6b0x
−3

+

∞∑
n=1

{ [
(n− 2)(n− 3) + 3(n− 2)

]︸ ︷︷ ︸
n(n−2)

bn − bn−1

}
xn−3 =

∞∑
n=1

{
n(n− 2)bn − bn−1

}
xn−3

= − b1 + b0
x2

− b1
x

+ (3b3 − b2) + (8b4 − b3)x+ · · · (II)
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e

−a0Lf = −a0
[
xf ′′ + 3f ′ − f

]
= −a0

[
x
(
u′′
1 lnx+ 2u′

1
1

x
+ u1

−1
x2

)
+ 3

(
u′
1 lnx+ u1

1

x

)
− u1 lnx

]
= −a0

[
(lnx) (xu′′

1 + 3u′
1 − u1)︸ ︷︷ ︸

0

+2u′
1 −

u1

x
+

3u1

x
= 2u′

1 +
2

x
u1

]

= −a0
[
2
(1
3
+

x

12
+

x2

120
+ · · ·

)
+

2

x

(
1 +

x

3
+
x2

24
+

x3

360
+ · · ·

)]
= −2a0

x
− 4a0

3
− a0x

4
− a0x

2

45
+ · · · . (III)

Logo, em vista dos resultados em (II) e (III), a equação (I) fornece

b1 + b0 = 0
−b1 = −2a0

}
⇒


b0 = −2a0

b1 = 2a0

b2 : permanece arbitrário

3b3 − b2 = −4a0
3

⇒ b3 = −4a0
9

+
b2
3

8b4 − b3 = −a0
4

⇒ b4 = −a0
32

+
b3
8

= −a0
32
− a0

18
+
b2
24

= −25a0
288

+
b2
24

Finalmente,

y2(x) = a0 u1(x) lnx+
b0
x2

+
b1
x

+ b2 + b3x+ b4x
2 + · · ·

= a0 u1(x) lnx

− 2a0
x2

+
2a0
x

+ b2 +
(
− 4a0

9
+
b2
3

)
x+

(
− 25a0

288
+
b2
24

)
x2 + · · · (4.13)

= b2
(
1 +

x

3
+
x2

24
+

x3

360
+ · · ·︸ ︷︷ ︸

u1(x)

)
+ a0

(
u1(x) lnx− 8x− 12x2 − 176

27
x3 + · · ·

)

= b2 u1(x) + a0
(
u1(x) lnx−

2

x2
+

2

x
− 4x

9
− 25x2

288
+ · · ·

)
■ (4.14)

que é a solução geral, com as duas constantes arbitrárias a0 e b0.

4.1.3 Exercícios Resolvidos

Seguem exercícios de resolução de EDOs de 2a
¯ ordem por meio da substituição y =

∞∑
n=0

anx
n+r (método

de Frobenius), em que r1 e r2 denotam as raízes indiciais, sendo r2 a menor das duas.

1] Caso em que r1 = r2 : Calcule uma solução das EDOs:

a) x2y′′ + 3xy′ + (1 + 2x)y = 0

b) 4x2y′′ + (1 + 4x)y = 0

2] Caso em que r1 − r2 ̸∈ Z : Calcule a solução geral das EDOs:

a) 2xy′′ + y′ − 6y = 0

b) 2x2y′′ − xy′ + (1 + x)y = 0

3] Caso em que r1 − r2 ∈ Z, e r2 não leva a uma solução : Calcule uma solução das EDOs:

a) xy′′ + xy′ + 3y = 0

b) 16x2y′′ − 40xy′ + (32x+ 13)y = 0

c) xy′′ − y = 0
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4] Caso em que r1 − r2 ∈ Z, e r2 leva à solução geral : Calcule uma solução geral das EDOs:

a) xy′′ + 2y′ − xy = 0

b) x2y′′ + 5xy′ − 5y = 0

c) x(x− 1)y′′ + 3y′ − 2y = 0

5] Usando o método Frobenius II, calcule uma segunda solução linearmente independente:

a) da EDO em 1(a)
b) da EDO em 1(b)
c) da EDO em 3(b)
d) da EDO em 3(c)

6] Calcule a solução geral da EDO xy′′ + y′ − 2y = 0.

RESPOSTAS COM ALGUMAS SOLUÇÕES:

[1]
a) Solução de x2y′′ + 3xy′ + (1 + 2x)y = 0 :

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r +

∞∑
n=0

3(n+ r)anx
n+r +

∞∑
n=0

anx
n+r +

∞∑
n=0

2anx
n+r+1

︸ ︷︷ ︸
∞∑

n=1
2an−1xn+r

= 0 .

[
r(r − 1) + 3r + 1︸ ︷︷ ︸
r2+2r+1= (r+1)2

]
a0x

r−1 +

∞∑
n=1

{ [
(n+ r − 1)(n+ r) + 3(n+ r) + 1︸ ︷︷ ︸

(n+r)(n+r+2)+1

]
an + 2an−1

}
xn+r = 0 .

{
(r + 1)2 = 0 ⇒ r = −1 (raiz dupla)[
(n+ r)(n+ r + 2) + 1

]
an + 2an−1 = 0 (n ≥ 1)

〉
⇒

[
(n− 1)(n+ 1) + 1︸ ︷︷ ︸

n2

]
an + 2an−1 = 0 .

an

∣∣∣
n≥1

= − 2

n2
an−1 .

a1 = −2

1
a0 = −2a0 , a2 = −2

4
a1 = −1

2
(−2a0) = a0 , a3 = −2

9
a2 = −2

9
a0 , · · · .

y(x) = a0x
−1

(
1− 2x+ x2 − 2

9
x3 + · · ·

)
■

b) r1 = r2 = 1/2 , an

∣∣∣
n≥1

= −an−1

n2
, y = a0x

1/2
(
1− x+

1

4
x2 − 1

36
x3 + · · ·

)
.

[2]
a) Solução de 2xy′′ + y′ − 6y = 0 :

∞∑
n=0

2(n+ r − 1)(n+ r)anx
n+r−1 +

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=0

6anx
n+r

︸ ︷︷ ︸
∞∑

n=1
6an−1xn+r−1

= 0 .

[
2r(r − 1) + r︸ ︷︷ ︸

r(2r−1)

]
a0x

r−1 +

∞∑
n=1

{ [
2(n+ r)(n+ r − 1) + (n+ r)︸ ︷︷ ︸

(n+r)(2n+2r−2+1)

]
an − 6an−1

}
xn+r−1 = 0 .

{
r(2r − 1) = 0 ⇒ r = 0 ou r = 1/2 raízes indiciais[
(n+ r)(2n+ 2r − 1)

]
an = 6an−1 , com n ≥ 1 (relação de recorrência dependente de r) .

• Para r = 0 a relação de recorrência é an

∣∣∣
n≥1

=
6

n(2n− 1)
an−1 , e obtemos:

a1 =
6

1(1)
a0 = 6a0 , a2 =

6

2(3)
a1 = 6a0 , a3 =

6

3(5)
a2 =

2

5
(6a0) =

12a0
5

, · · · .

y1(x) = x0
(
a0 + a1x+ a2x

2 + a4x
4 + · · · ) = a0

(
1 + 6x+ 6x2 +

12x3

5
+ · · ·︸ ︷︷ ︸

u1(x)

)
■
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• Para r = 1/2 a relação de recorrência é an

∣∣∣
n≥1

=
6

n(2n+ 1)
an−1 , e obtemos:

a1 =
6

1(3)
a0 = 2a0 , a2 =

6

2(5)
a1 =

3

5
(2a0) =

6a0
5

, a3 =
6

3(7)
a2 =

2

7

(6a0
5

)
=

12a0
35

, · · · .

y2(x) = a0x
1/2

(
1 + 2x+

6x2

5
+

12x3

35
+ · · ·︸ ︷︷ ︸

u2(x)

)
■

Obtivemos duas soluções linearmente independentes, nas quais o coeficiente a0 em cada uma delas deve ser
considerado como duas constantes arbitrárias independente, digamos c1 e c2. Logo, a solução geral é dada por
y = c1u1(x) + c2u2(x) ■

b) y = c1x
(
1− x

3
+
x2

30
− x3

630
+ · · ·

)
+ c2x

1/2
(
1− x+

x2

6
− x3

90
+ · · ·

)
■

[3]
a) Solução de xy′′ + xy′ + 3y = 0 :

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−1 +

∞∑
n=0

(n+ r)anx
n+r

︸ ︷︷ ︸
∞∑

n=1
(n+r−1)an−1xn+r−1

+
∞∑
n=0

3anx
n+r

︸ ︷︷ ︸
∞∑

n=1
3an−1xn+r−1

= 0 .

(r − 1)ra0x
r−1 +

∞∑
n=1

{
(n+ r − 1)(n+ r)an + (n+ r − 1 + 3)an−1

}
xn+r−1 = 0 .

{
(r − 1)r = 0 ⇒ r = 0 ou 1

(n+ r − 1)(n+ r)an + (n+ r + 2)an−1 = 0 (n ≥ 1) .

• Verifiquemos primeiramente a menor raiz r = 0 :

A relação de recorrência é n(n− 1)an + (n+ 2)an−1 = 0 (n ≥ 1) .

Essa relação com n = 1 toma a forma 3a0 = 0, o que contradiz a hipótese a0 ̸= 0 . Logo, não obtemos solução
com a menor raiz indicial.

• Vamos calcular a solução associada à maior raiz r = 1 :

A relação de recorrência é (n+ 1)nan + (n+ 3)an−1 = 0 ⇒ an

∣∣∣
n≥1

= − n+ 3

n(n+ 1)
an−1 .

a1 =
−4
1(2)

a0 = −2a0 , a2 =
−5
2(3)

a1 =
−5
6

(−2a0) =
5

3
a0 , a3 =

−6
3(4)

a2 =
−1
2

(5
3
a0

)
=
−5a0
6

, · · · .

y(x) = a0x
1
(
1− 2x+

5x2

3
− 5x3

6
+ · · ·

)
■

b) Solução de 16x2y′′ − 40xy′ + (32x+ 13)y = 0 :

∞∑
n=0

16(n+ r − 1)(n+ r)anx
n+r −

∞∑
n=0

40(n+ r)anx
n+r +

∞∑
n=0

32anx
n+r+1

︸ ︷︷ ︸
∞∑

n=1
32an−1xn+r

+

∞∑
n=0

13anx
n+r = 0 .

[
16r(r − 1)− 40r + 13︸ ︷︷ ︸

16r2−56r+13

]
a0x

r +

∞∑
n=1

{ [
16(n+ r − 1)(n+ r)− 40(n+ r) + 13

]
an + 32an−1

}
xn+r = 0 .

{
16r2 − 56r + 13 = 0 ⇒ r = 1/4 ou 13/4

16(n+ r − 1)(n+ r)− 40(n+ r) + 13
]
an + 32an−1 = 0 (n ≥ 1) .

• Verifiquemos primeiramente a menor raiz r = 1/4 . A relação de recorrência é[
16

(
n− 3

4

)(
n+

1

4

)
− 40

(
n+

1

4

)
+ 13

]
an + 32an−1 = 0 ⇒ 16n(n− 3)an = −32an−1 (n ≥ 1) .

Substituindo n = 1, 2, · · · , obtemos

n = 1 : −32a1 = −32a0 ⇒ a1 = a0 ;

n = 2 : −32a2 = −32a1 = −32a0 ⇒ a2 = a0 ;
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n = 3 : 0 · a3 = −32a2 = −32a0 ⇒ a0 = 0 : contradição com a hipótese a0 ̸= 0 .

Vemos assim que não existe solução correspondente à menor raiz indicial.

• Calculemos a solução associada à maior raiz r = 13/4 . A relação de recorrência é[
16

(
n+

9

4

)(
n+

13

4

)
− 40

(
n+

13

4

)
+ 13

]
an + 32an−1 = 0 ⇒ an

∣∣∣
n≥1

= − 2an−1

(n+ 3)n
.

a1 = −a0
2
, a2 = −a1

5
=
a0
10

, a3 = −a2
9

= −a0
90

, · · · .

y(x) = a0x
13/4

(
1− x

2
+
x2

10
− x3

90
+ · · ·

)
■

c) r = 0 ou 1 . Com r = 1 obtém-se y = a0x
(
1 +

x

2
+
x2

12
+

x3

144
+ · · ·

)
.

[4]
a) Solução de xy′′ + 2y′ − xy = 0 :

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−1 +

∞∑
n=0

2(n+ r)anx
n+r−1 −

∞∑
n=0

anx
n+r+1

︸ ︷︷ ︸
∞∑

n=2
an−2xn+r−1

= 0 .

[
(r − 1)r + 2r︸ ︷︷ ︸

r(r+1)

]
a0x

r−1 +
[
r(r + 1) + 2(r + 1)︸ ︷︷ ︸

(r+1)(r+2)

]
a1x

r

+

∞∑
n=2

{ [
(n+ r − 1)(n+ r) + 2(n+ r)︸ ︷︷ ︸

(n+r)(n+r+1)

]
an − an−2

}
xn+r = 0 .

{
r(r + 1) = 0 ⇒ r = 0 ou − 1

(n+ r)(n+ r + 1)an = an−2 (n ≥ 2) .

• Verifiquemos primeiramente a menor raiz r = −1 :

O 2o
¯ termo da série: (r + 1)(r + 2)a1 = 0

r=−1−−−−−→ 0 = 0 ⇒ a1 permanece arbitrário.

(n+ r)(n+ r + 1)an = an−2 (n ≥ 2)
r=−1−−−−−→ an

∣∣∣
n≥2

=
an−2

n(n− 1)
.

Assim,

a2 =
a0
2
, a4 =

a2
12

=
a0
24

, · · · a3 =
a1
6
, a5 =

a3
20

=
a1
120

, · · · .

Finalmente,

y = x−1

[
a0

(
1 +

1

2
x2 +

1

24
x4 + · · ·

)
+ a1

(
x+

1

6
x3 +

1

120
x5 + · · ·

)]
(a0 e a1 arbitrários) ■

Uma vez que duas constantes (a0 e a1) permanecem arbitrárias, a solução que se obtém é a geral.

b) Solução de x2y′′ + 5xy′ − 5y = 0 :

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r +

∞∑
n=0

5(n+ r)anx
n+r −

∞∑
n=0

5anx
n+r = 0 .

[
(r − 1)r + 5r − 5︸ ︷︷ ︸

r2+4r−5

]
a0x

r +

∞∑
n=1

[
(n+ r − 1)(n+ r) + 5(n+ r)− 5

]
an x

n+r = 0 .

{
r2 + 4r − 5 = 0 ⇒ r = 1 ou − 5[
(n+ r − 1)(n+ r) + 5(n+ r)− 5

]
an = 0 (n ≥ 1) .

• Verifiquemos primeiramente a menor raiz r = −5 . Obtemos

[
(n+ r − 1)(n+ r) + 5(n+ r)− 5

]
an

∣∣∣
r=−5

=
[
(n− 6)(n− 5) + 5(n− 5)− 5

]
an = 0

⇒ n(n− 6)an

∣∣∣
n≥1

= 0 ⇒ an

∣∣∣
n ̸=6

= 0 e a6 permanece arbitrário (tal qual ) a0 .

71



Uma vez que duas constantes (a0 e a6) permanecem arbitrárias, a solução que se obtém é a geral.

Resposta: y = x−5(a0 + a6x
6) = a0x

−5 + a6x ■

Acabamos de resolver uma EDO de Euler-Cauchy; obviamente ela também pode ser resolvida de modo mais
simples pelos métodos analíticos que o aluno já aprendeu.

c) y = x0
[
a0

(
1 +

2

3
x+

1

3
x2

)
+ a4

(
x4 + 2x5 + 3x6 + 4x7 + · · ·

)]
(a0 e a4 arbitrários) ■

[5]
a) Cálculo de uma segunda solução de x2y′′ + 3xy′ + (1 + 2x)y = 0 :[
Convém reler o procedimento descrito no rodapé (∗) da pág. 65.

]
u1(x) =

1

x

(
1− 2x+ x2 − 2x3

9
+ · · ·︸ ︷︷ ︸

≡ P (x)

)
.

u2
1(x) =

1

x2

(
1 + 4x2 − 4x+ 2x2 − 4x3

9
− 4x3 + · · ·

)
=

1

x2

(
1− 4x+ 6x2 − 40x3

9
+ · · ·︸ ︷︷ ︸

P2(x)

)
.

1

P 2(x)
=

∞∑
n=0

cnx
n ⇒ P 2(x)

∞∑
n=0

cnx
n =

(
1− 4x+ 6x2 − 40x3

9
+ · · ·

)
(c0 + c1x+ c2x

2 + c3x
3 + · · · ) = 1 .

c0︸︷︷︸
1

+(c1 − 4c0︸ ︷︷ ︸
0

)x+ (c2 − 4c1 + 6c0︸ ︷︷ ︸
0

)x2 +
(
c3 − 4c2 + 6c1 −

40c0
9︸ ︷︷ ︸

0

)
x3 + · · · = 1 .

c0 = 1 ,

c1 = 4c0 = 4 ,

c2 = 4c1 − 6c0 = 16− 6 = −10 ,

c3 = 4c2 − 6c1 +
40c0
9

= −40− 24 +
40

9
= −536

9
.

1

u2
1(x)

=
1

(1/x2)P 2(x)
= x2(c0 + c1x+ c2x

2 + c3x
3 + · · · ) = x2

(
1 + 4x− 10x2 − 536x3

9
+ · · ·

)
.

x2y′′+3xy′+(1+2x)y = 0 ⇒ y′′+(3/x)︸ ︷︷ ︸
p(x)

y′+
1 + 2x

x2
y = 0 ⇒ e−

∫
p(x)dx = e−

∫
(3/x)dx = e−3 ln x =

1

x3
.

y2(x) = y1(x)

∫ [
e−

∫
p(x)dx︸ ︷︷ ︸

1/x3

] 1

u2
1(x)

dx = y1(x)

∫
1

x3
· x2

(
1 + 4x− 10x2 − 536x3

9
+ · · ·

)
dx

= y1(x)

∫ ( 1

x
+ 4− 10x− 536x2

9
+ · · ·

)
dx

= y1(x)
(
lnx+ 4x− 5x2 − 536x3

27
+ · · ·

)
⇝ segunda solução ■

b) y2(x) = y1(x)
(
lnx+ 2x+

5

4
x2 +

23

27
x3 + · · ·

)
⇝ segunda solução ■

c) y2(x) = y1(x)
(
− 1

3
x−3 − 1

2
x−2 − 11

20
x−1 +

2

9
lnx+ · · ·

)
⇝ segunda solução ■

d) Cálculo de uma segunda solução de xy′′ − y = 0 :[
Convém reler o procedimento descrito no rodapé (∗) da pág. 65.

]
u1(x) = x

(
1 +

x

2
+
x2

12
+

x3

144
+ · · ·︸ ︷︷ ︸

≡ P (x)

)
.

u2
1(x) = x2

(
1 +

x2

4
+ x+

x2

6
+
x3

72
+
x3

12
+ · · ·

)
= x2

(
1 + x+

5x2

12
+

7x3

22
+ · · ·︸ ︷︷ ︸

P2(x)

)
.

1

P 2(x)
=

∞∑
n=0

cnx
n ⇒ P 2(x)

∞∑
n=0

cnx
n =

(
1 + x+

5x2

12
+

7x3

22
+ · · ·

)
(c0 + c1x+ c2x

2 + c3x
3 + · · · ) = 1 .
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c0︸︷︷︸
1

+(c1 + c0︸ ︷︷ ︸
0

)x+
(
c2 + c1 +

5c0
12︸ ︷︷ ︸

0

)
x2 +

(
c3 + c2 +

5c1
12

+
7c0
12︸ ︷︷ ︸

0

)
x3 + · · · = 1

c0 = 1 ,

c1 = −c0 = −1 ,

c2 = −c1 −
5c0
12

= 1− 5

12
=

7

12
,

c3 = −c2 −
5c1
12
− 7c0

12
= − 7

12
+

5

12
− 7

12
= − 9

12
.

1

u2
1(x)

=
1

x2
1

P 2(x)
=

1

x2
(c0 + c1x+ c2x

2 + c3x
3 + · · · ) =

1

x2

(
1− x+

7x2

12
− 9x3

12
+ · · ·

)
.

xy′′ − y = 0 ⇒ y′′ + 0 y′ − y

x
= 0

p(x)≡ 0−−−−−−−→ e−
∫
p(x)dx = const. = 1 (sem perda de generalidade) .

y2(x) = y1(x)

∫ [
e−

∫
p(x)dx︸ ︷︷ ︸
1

] 1

u2
1(x)

dx = y1(x)

∫
1 · 1

x2

(
1− x+

7x2

12
− 9x3

12
+ · · ·

)
dx

= y1(x)

∫ ( 1

x2
− 1

x
+

7

12
− 9x

12
+ · · ·

)
dx

= y1(x)
(
− 1

x
− lnx+

7x

12
− 9x2

24
+ · · ·

)
⇝ segunda solução ■

[6]
Solução de xy′′ + y′ − 2y = 0 :

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−1 +

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=0

2anx
n+r

︸ ︷︷ ︸
∞∑

n=1
2an−1xn+r−1

= 0 .

[
(r − 1)r + r︸ ︷︷ ︸

r2

]
a0x

r−1 +

∞∑
n=1

{ [
(n+ r − 1)(n+ r) + (n+ r)︸ ︷︷ ︸

(n+r)2

]
an − 2an−1

}
xn+r−1 = 0 .

{
r2 = 0 ⇒ r = 0 (raiz dupla)[
(n+ r)2

]
an − 2an−1 = 0 (n ≥ 1)

〉
⇒ an

∣∣∣
n≥1

=
2

n2
an−1 ⇒ a1 = 2a0 , a2 =

2

4
a1 = a0 , · · · .

y = y1(x) = a0x
0
(
1 + 2x+ x2 + · · ·︸ ︷︷ ︸

u1(x)

)
⇝ primeira solução ■

Cálculo de uma segunda solução linearmente independente usando a fórmula

y2(x) = Cu1(x)

∫ [
e−

∫
P (x)dx

][ 1

u2
1(x)

]
dx :

xy′′ + y′ − 2y = 0 ⇒ y′′ + (1/x︸︷︷︸
P (x)

) y′ − (2/x)y = 0 .

e−
∫
P (x)dx = e−

∫
dx/x = e− ln x =

1

x
.

u2
1(x) = (1 + 2x+ x2 + · · · )2 = 1 + 4x2 + 4x+ 2x2 + · · · = 1 + 4x+ 6x2 + · · ·
1

u2
1(x)

≡ c0 + c1x+ c2x
2 + · · · .

(c0 + c1x+ c2x
2 + · · · )u2

1(x) = 1 ⇒ (c0 + c1x+ c2x
2 + · · · )(1 + 4x+ 6x2 + · · · ) = 1 .

c0︸︷︷︸
1

+ x(c1 + 4c0︸ ︷︷ ︸
0

) + x2(c2 + 4c1 + 6c0︸ ︷︷ ︸
0

) + · · · = 1 ⇒ c0 = 1 , c1 = −4c0 = −4 , c2 = −4c1 − 6c0 = 10 .

1

u2
1(x)

= 1− 4x+ 10x2 + · · · .

y2(x) = Cu1(x)

∫
1

x
(1− 4x+ 10x2 + · · · )dx = Cu1(x)︸ ︷︷ ︸

y1(x)

∫ ( 1

x
− 4 + 10x+ · · · )dx .

y2(x) = y1(x)(lnx− 4x+ 5x2 + · · · ) ⇝ segunda solução ■
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4.2 Funções de Legendre

4.2.1 Soluções da Equação de Legendre
Na seção 2.4 falamos sobre o problema de autovalor formado com a equação (2.37) (sobre o qual convém

se releia a pequena discussão que se encontra após essa equação), isto é,

(1− x2)ψ′′ − 2xψ′ + λψ(x) = 0 , x ∈ (−1, 1) , (4.15)

que agora passamos a resolver. Como x = 0 é um ponto ordinário dessa equação, podemos obter a solução na
forma da série de MacLaurin ψ(x) =

∑∞
j=0 ajx

j , cuja substituição nela fornece

(1− x2)
∞∑
j=2

j(j − 1)ajx
j−2 − 2x

∞∑
j=1

jajx
j−1 + λ

∞∑
j=0

ajx
j = 0 ,

ou
∞∑
j=2

j(j − 1)ajx
j−2

︸ ︷︷ ︸∑∞
j=0(j+2)(j+1)aj+2xj

−
∞∑
j=2

j(j − 1)ajx
j −

∞∑
j=1

2jajx
j + λ

∞∑
j=0

ajx
j ,

ou ainda

∞∑
j=2

≡ Aj︷ ︸︸ ︷[
(j + 2)(j + 1)aj+2 −

[
j(j − 1) + 2j − λ

]
aj︸ ︷︷ ︸

j(j+1)−λ

]
xj + 2a2 + 6a3x− 2a1x+ λa0 + λa1x︸ ︷︷ ︸[

6a3−(2−λ)a1
]
x+(2a2+λ)=A1x+A0

= 0

onde indicamos que, usando Aj para denotar o coeficiente genérico de qualquer potência, todos os termos da
série podem ser incluídos num único somatório que começa com j = 0 , isto é,

∞∑
j=0

[
(j + 2)(j + 1)aj+2 −

[
j(j + 1)− λ

]
aj
]
xj = 0 .

Logo, igualando a zero o termo entre colchetes, obtemos a equação

aj+2 =
j(j + 1)− λ
(j + 2)(j + 1)

aj , (j = 0, 1, 2 · · · ) . (4.16)

Esta é uma relação de recorrência, que permite calcular a2, a4, a6, · · · em termos de a0, bem como a3, a5,
a7, · · · em termos de a1, permanecendo arbitrários os valores de a0 e a1. É evidente que a solução geral é dada
por

ψ(x) = ψP (x) + ψI(x) , (4.17)

onde
ψP (x) ≡

∑
j=0,2,4···

ajx
j e ψI(x) ≡

∑
j=1,3,5···

ajx
j , (4.18)

ou seja, ψP é uma série de potências pares apresentando a constante arbitrária a0, e ψI é uma série de potências
ímpares apresentando a constante arbitrária a1. As paridades distintas dessas duas séries garantem que sejam
linearmente independentes. Além disso, é fácil verificar que as duas séries convergem em (−1, 1) – isto é, nos
pontos interiores do intervalo do problema – por meio do critério da razão:

lim
j→∞

|aj+2x
j+2

ajxj
| = |x2| lim

j→∞
| j(j + 1)− λ
(j + 2)(j + 1)

|︸ ︷︷ ︸
1

< 1 ⇒ |x| < 1 .

Façamos uma análise da convergência nos pontos extremos do intervalo (nos pontos x = ±1). Primeira-
mente, notamos que a relação de recorrência (4.16) tem um consequência importante: Na série par, se um
coeficiente se anular, digamos a6 = 0, então todos os posteriores também se anulam (a8 = a10 = · · · = 0), ou
seja, a série ψP termina, tornando-se um polinômio par, mas – demonstra-se! – a outra série, a ímpar, não
terminando, diverge. Analogamente, na série ímpar, se um coeficiente se anular, digamos a5 = 0, então todos
os posteriores também se anulam (a7 = a9 = · · · = 0), ou seja, a série ψI termina, tornando-se um polinômio
ímpar, mas – demonstra-se! – a outra série, a par, não terminando, diverge. Portanto, ao verificar se a condição
em (2.26) é satisfeita, constatamos que só existem soluções com limites finitos quando x→ −1+ e x→ 1− se
uma das duas séries terminar.

E quais são os valores (ou, melhor, autovalores) de λ que levam a essas soluções polinomiais? Olhando a
relação de recorrência (4.16), notamos polinômios são obtidos quando λ tiver um dos valores dados por λ l ≡
l(l + 1) com l = 0, 1, 2, 3, · · · . De fato, nesse caso, passando a relação de recorrência a ser

aj+2 =
j(j + 1)− l(l + 1)

(j + 2)(j + 1)
aj , (j = 0, 1, 2 · · · ) , (4.19)
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concluímos, para j = l, que o coeficiente al+2 e, por conseguinte, também os coeficientes al+4, al+6, al+8, · · · ,
ou seja, uma das duas séries termina, tornando-se um polinômio de grau l (pois aj ̸= 0 apenas para j ≤ l); esse
polinômio é denotado por Pl(x). Conforme l seja par ou ímpar, a série que termina é a ψP = (a0× polinômio
par) ou a ψI = (a1× polinômio ímpar).

Os polinômios Pl(x) (l = 0, 1, 2, 3, · · · ) assim gerados (correspondentes às series que terminam) são
as autofunções correspondentes aos autovalores λ l ≡ l(l + 1) do problema de autovalor em (4.15). Esses
polinômios só recebem a denominação de polinômios de Legendre quando os coeficientes a0 e a1 (arbitrários
até agora), são escolhidos conforme a normalização adotada, explicada adiante, na seção 4.2.2.

Para a EDO em (4.15) com λ = l(l + 1)(l ∈ N), a outra solução linearmente independente é a série
que não termina, denotada por Ql(x), que não é autofunção do problema, pois não satisfaz a condição de
finitude em todo o domínio (diverge quando x→ −1+ e x→ 1−), e a solução geral é, então,

ψl(x) = clPl +Ql(x) . (4.20)

4.2.2 Polinômios de Legendre (As Funções de Legendre de 1a
¯ Espécie)

Os coeficientes a0 e a1 podem ser colocados em evidência nas expressões das soluções. Note que a0 aparece
em Pl com l par e Ql ímpar; já a1 aparece em Pl ímpar e em Ql com l par. Esses dois coeficiente, até agora
livres, têm seus valores fixados de modo a padronizar as expressões das soluções polinomiais Pl e das séries
infinitas Ql.

A padronização de Pl é estabelecida pela condição de normalização

Pl(1) = 1 (l = 0, 1, 2, 3, · · · ) , (4.21)

que acarreta nas seguintes expressões para aqueles dois coeficientes:

a0 =
(−1)

l/2
l!

2l
( l
2
!
)2

∣∣∣∣∣∣∣
l par

e a1 =
(−1)

(l−1)/2
l!

2(l−1)
( l − 1

2
!
)2

∣∣∣∣∣∣∣
l ímpar

. (4.22)

O polinômio Pl(x) assim normalizado – i.e., satisfazendo (4.21) – é o l-ésimo polinômio de Legendre ou a l-ésima
função de Legendre de 1a

¯ espécie e – demonstra-se! – tem sua expressão fornecida pela conhecida fórmula de
Rodrigues:

Pl(x) =
1

l! 2l
d l

dxl
(x2 − 1)l . (4.23)

a) Propriedades usadas na definição:

• Pl(x) é um polinômio de grau l

• Pl(x) só apresenta potências pares ou ímpares, conforme l seja par ou ímpar: Pl(−x) = (−1)lPl(x).

• Pl(1) = 1; logo, pela propriedade anterior, Pl(−1) = (−1)l.
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b) Função geradora dos polinômios de Legendre

A função

G(x, t) ≡
√

1− 2xt+ t2 =

∞∑
l=0

Pl(x) t
l , com |t| < 1 . (4.24)

é denominada função geradora (ou geratriz) dos polinômios de Legendre.

c) Relação de ortonormalidade

Essa relação é dada por ∫ 1

−1

Pl(x)Pm(x)dx =
2

2l + 1
δlm , (4.25)

que tanto expressa a ortogonalidade dos polinômios de Legendre,∫ 1

−1

Pl(x)Pm(x)dx =
2

2l + 1
= 0 se l ̸= m , (4.26)

quanto fornece as normas deles, fazendo l = m,

||Pl(x)||2 =

∫ 1

−1

[
Pl(x)

]2
dx =

2

2l + 1
...................... norma quadrática (4.27)

Para deduzir essa norma quadrática, usamos a fórmula de Rodrigues Pl(x) =
[
(x2 − 1)l

](l)
/ (l! 2l), dada por (4.23);

observe:

||Pl(x)||2 =

∫ 1

−1
P 2
l (x)dx =

∫ 1

−1

[
(x2 − 1)l

](l)
l! 2l

[
(x2 − 1)l

](l)
l! 2l

dx .

Realizando l integrações por partes, obtemos

(l! 2l)2||Pl(x)||2 =
[[
(x2 − 1)l

](l)[
(x2 − 1)l

](l−1)
]1
−1︸ ︷︷ ︸

0

−
∫ 1

−1

[
(x2 − 1)l

](l+1)[
(x2 − 1)l

](l−1)

= · · · = (−1)l
∫ 1

−1

[
(x2 − 1)l

](2l)︸ ︷︷ ︸
(2l)!

[
(x2 − 1)l

](0)︸ ︷︷ ︸
(x2−1)l

= (2l)! (−1)l
∫ 1

−1
(x2 − 1)ldx . [ I ]

Essa última integral pode ser calculada por meio de l integrações por partes por meio das quais o grau polinômio no
integrando seja sempre reduzido:∫ 1

−1
(x2 − 1)ldx =

[
x · (x2 − 1)l

]1
−1︸ ︷︷ ︸

0

−2l

∫ 1

−1
x2(x2 − 1)l−1dx = (−1)2

22 l(l − 1)

3

∫ 1

−1
x4(x2 − 1)l−2dx

= (−1)3
23 l(l − 1)(l − 2)

1 · 3 · 5

∫ 1

−1
x6(x2 − 1)l−3dx = · · · = (−1)l

2l l(l − 1)(l − 2) · · · 1
1 · 3 · 5 · · · (2l − 1)

∫ 1

−1
x2ldx

=
(−1)l (2l l!)

1 · 3 · 5 · · · (2l − 1)

[ x2l

2l + 1

]1
−1

=
(−1)l (2l l!)

1 · 3 · 5 · · · (2l − 1)

2

2l + 1

= 2(−1)l(l! 2l)
(2.1) · (2.2) · (2.3) · · · (2l)
1 · 2 · 3 · 4 · · · (2l)(2l + 1)

= 2(−1)l(l! 2l)
2l l!

(2l + 1)!
=

2(−1)l(l! 2l)2

(2l + 1)!
.

Finalmente, substituindo esse resultado em [ I ], obtemos

(l! 2l)2||Pl(x)||2 = (2l)! (−1)l
2(−1)l(l! 2l)2

(2l + 1)!
=

2 (l! 2l)2

2l + 1
⇒ ||Pl(x)||2 =

2

2l + 1
✓

d) Relações de recorrência

Seguem algumas equações envolvendo polinômios de Legendre diferentes, conhecidas por relações de recor-
rência (note que uma tal equação envolvendo o mesmo polinômio de Legendre é a própria equação de Legendre).
Elas são úteis para integrar esses polinômios, gerar os de graus mais elevados a partir dos de menor grau, etc.

(l + 1)Pl+1(x)− (2l + 1)xPl(x) + lPl−1(x) = 0 (4.28)

P ′
l (x)− 2xP ′

l−1(x) + P ′
l−2(x) = Pl−1(x) (4.29)

P ′
l+1(x)− xP ′

l (x) = (l + 1)Pl(x) (4.30)

P ′
l+1(x)− P ′

l−1(x) = (2l + 1)Pl(x) (4.31)

xP ′
l (x)− P ′

l−1(x) = lPl(x) (4.32)

Vamos deduzir as duas primeiras relações de recorrência acima a partir de (4.24).
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• Dedução de (4.28) :

Por um lado, temos que

∂G

∂t
= −

1

2
(1− 2xt+ t2)−3/2(−2x+ 2t) =

x− t

1− 2xt+ t2
G(x, t) ⇒ (x− t)G(x, t) = (1− 2xt+ t2)

∂G

∂t
.

Por outro, substituindo nesse resultado a expressão de G(x, t) em série dada por (4.24), obtemos

(x− t)

∞∑
l=0

Pl(x)t
l = (1− 2xt+ t2)

∞∑
l=1

lPl(x)t
l−1

⇒
∞∑
l=0

xPl(x)t
l −

∞∑
l=0

Pl(x)t
l+1 =

∞∑
l=1

lPl(x)t
l−1 −

∞∑
l=1

2xlPl(x)t
l +

∞∑
l=1

lPl(x)t
l+1

⇒
∞∑
l=0

xPl(x)t
l −

∞∑
l=1

Pl−1(x)t
l =

∞∑
l=0

(l + 1)Pl+1(x)t
l −

∞∑
l=1

2xlPl(x)t
l +

∞∑
l=2

(l − 1)Pl−1(x)t
l

⇒
∞∑
l=2

[
xPl(x)− Pl−1(x)− (l + 1)Pl+1(x) + 2xlPl(x)− (l − 1)Pl−1(x)

]
tl

+ xP0(x) + xP1(x)t− P0(x)t− P1(x)− 2P2(x)t+ 2xP1(x)t = 0

⇒
∞∑
l=2

[
(2l + 1)xPl(x)− lPl−1(x)− (l + 1)Pl+1(x)︸ ︷︷ ︸

0

]
tl

+ xP0(x)− P1(x)︸ ︷︷ ︸
0

+
[
3xP1(x)− P0(x)− 2P2(x)︸ ︷︷ ︸

0

]
t = 0 ,

onde igualamos três termos a zero, obtendo três equações: a terceira é a primeira no caso particular em que l = 1, a
segunda é obviamente verdadeira, e a primeira, válida para l ≥ 2 e também l = 1, é a relação de recorrência (4.28).
CQD.

• Dedução de (4.29) :

∂G

∂x
= −

1

2
(1− 2xt+ t2)−3/2(−2t) =

t

1− 2xt+ t2
G(x, t) ⇒ (1− 2xt+ t2)

∂G

∂x
= tG(x, t)

(1− 2xt+ t2)

∞∑
l=0

P ′
l (x)t

l = t

∞∑
l=0

Pl(x)t
l

⇒
∞∑
l=0

P ′
l (x)t

l −
∞∑
l=0

2xP ′
l (x)t

l+1 +

∞∑
l=0

P ′
l (x)t

l+2 =

∞∑
l=0

Pl(x)t
l+1

⇒
∞∑
l=0

P ′
l (x)t

l −
∞∑
l=1

2xP ′
l−1(x)t

l +

∞∑
l=2

P ′
l−2(x)t

l =

∞∑
l=1

Pl−1(x)t
l

⇒
∞∑
l=2

P ′
l (x)t

l −
∞∑
l=2

2xP ′
l−1(x)t

l +

∞∑
l=2

P ′
l−2(x)t

l −
∞∑
l=2

Pl−1(x)t
l

+ P ′
0(x)︸ ︷︷ ︸
0

−2xP ′
0(x)︸ ︷︷ ︸
0

t+ P ′
1(x)t− P0(x)t︸ ︷︷ ︸

t−t = 0

= 0

⇒
∞∑
l=2

[
P ′
l (x)− 2xP ′

l−1(x) + P ′
l−2(x)− Pl−1(x)︸ ︷︷ ︸

0

]
= 0 ,

onde, ao se igualar a zero o termo geral do somatório (para l ≥ 2), obtém a relação de recorrência (4.29). CQD.
As demais relações de recorrência são deduzidas a partir dessas duas.

4.2.3 As Funções de Legendre de 2a
¯ Espécie

A padronização das funções Ql(x) é estabelecida de modo que elas satisfaçam as mesmas relações de recorrência dos
polinômios de Legendre. Isso elimina a arbitrariedade dos coeficientes a0 e a1 de suas séries infinitas, que então passam
a ser dados por

a1 =
(−1)

l/2
2l

( l
2
!
)2

l!

∣∣∣∣∣∣∣
l par

e a0 =
(−1)

(l−1)/2
2(l−1)

( l − 1

2
!
)2

l!

∣∣∣∣∣∣∣
l ímpar

. (4.33)

Como exemplo, vamos determinar a expressão expressão das duas primeiras funções de Legendre de 2a¯ espécie, Q0(x)
e Q1(x), desenvolvendo explicitamente as séries que as definem usando a1 = 1 e a0 = −1 [deduzidos de (4.33)]. Nessa
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tarefa, é mais fácil usar a relação de recorrência (4.19) nesta outra forma deduzida a seguir:

aj+2

∣∣∣∣
j=0,1,2···

=
j(j + 1)− l(l + 1)

(j + 2)(j + 1)
aj =

j2 + j − l2 − l

(j + 2)(j + 1)
aj

=
(j − l)(j + l) + (j − l)

(j + 2)(j + 1)
aj =

(j − l)(j + l + 1)

(j + 2)(j + 1)
aj

⇒ aj

∣∣∣∣
j=2,3,4···

=
(j − l − 2)(j + l − 1)

j(j − 1)
aj−2 . (4.34)

Pois bem, calculando Q0(x) ≡
∑

j=1,3,5···
ajx

j com aj =
j − 2

j
aj−2 [que é (4.34) com l = 0], obtemos

a3 =
1

3
a1 , a5 =

3

5
a3 =

1

5
a1 , a7 =

5

7
a5 =

1

7
a1 , · · · , aj =

1

j
a1 ;

logo,

Q0(x) = a1︸︷︷︸
1

∑
j=1,3,5···

xj

j

(†)
=

1

2
ln

1 + x

1− x
= arctanhx (|x| < 1) ■ (4.35)

onde, na passagem (†), usamos o seguinte resultado:

ln(1 + x) = −
∞∑
j=1

(−1)j
xj

j

ln(1− x) = −
∞∑
j=1

xj

j

〉
⇒ ln

1 + x

1− x
= ln(1 + x)− ln(1− x) =

∞∑
j=1

xj

j
= 2

∑
j=1,3,5···

xj

j
.

Calculemos agora a função Q1(x) ≡
∑

j=0,2,4···
ajx

j com aj =
j − 3

j
aj−1 [que é (4.34) com l = 1] :

a2 = −a0 , a4 =
1

3
a2 = −

1

3
a0 , a6 =

3

5
a4 = −

1

5
a0 , · · · , aj = −

1

j − 1
a0 ;

logo,

Q1(x) ≡ −a0︸︷︷︸
1

∑
j=0,2,4···

xj

j − 1
= −1 +

∑
j=2,4,6···

xj

j − 1
= −1 +

∑
j=1,3,5···

xj+1

j
= −1 + x

∑
j=1,3,5···

xj

j︸ ︷︷ ︸
Q0(x)

,

ou seja,
Q1(x) = xQ0(x)− 1 (|x| < 1) ■ (4.36)

Um bom modo de se deduzirem Q1(x), Q1(x), · · · é usando a relação de recorrência em (4.28), escrevendo-a na
forma:

Ql+1(x) =
2l + 1

l + 1
xQl(x)−

l

l + 1
Ql−1(x) .

Se l = 1:

Q2(x) =
3

2
xQ1(x)−

1

2
Q0(x) =

3

2
x(xQ0 − 1)−

1

2
Q0 =

P2︷ ︸︸ ︷
1

2
(3x2 − 1)Q0 −

1

2
Q0

= P2(x)Q0(x)−
3x

2
■

Se l = 2:

Q3(x) =
5

3
xQ2(x)−

2

3
Q1(x) =

5

3
x

[
P2Q0 −

3x

2

]
−

2

3
(xQ0 − 1)

=
5

3
x

[(3x2 − 1

2

)
Q0 −

3x

2

]
−

2

3
(xQ0 − 1) =

[
(5x3 − 3x)/2]︸ ︷︷ ︸

P3

Q0 −
5

2
x2 +

2

3

= P3(x)Q0(x)−
5

2
x2 +

2

3
■

E assim por diante.

4.3 Funções de Bessel

4.3.1 Função Gama
Veremos que a função gama está ligada ao estudo das funções de Bessel. Ela é assim definida:

Γ (x) ≡
∫ ∞

0

e−ttx−1dt (x > 0) , (4.37)
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onde a restrição para valores de x positivos é necessária para evitar que a integral divirja. Em particular,
note que

Γ (1) =

∫ ∞

0

e−tdt = −e−t
∣∣∣∣∞
0

= 0− (−1) = 1 . (4.38)

Efetuemos a integral em (4.37) uma vez por partes, mas com x substituído pos x+ 1:

Γ (x+ 1) =

∫ ∞

0

e−ttxdt = −e−ttx
∣∣∣∣∞
0︸ ︷︷ ︸

0

+ x

∫ ∞

0

e−ttx−1dt︸ ︷︷ ︸
Γ(x)

,

isto é,
Γ (x+ 1) = xΓ (x) . (4.39)

Essa é a propriedade mais importante da função gama.
Usando (4.39) repetidamente, obtemos

Γ (2) = 1Γ (1) = 1 ,

Γ (3) = 2Γ (2) = 2 · 1 ,
Γ (4) = 3Γ (3) = 3 · 2 · 1 ,

...
Γ (n+ 1) = n! (n = 0, 1, 2, 3 · · · ) . (4.40)

Esse resultado foi a motivação para a função gama; por meio dele faz-se a generalização do fatorial
para número que não seja natural. Assim, define-se

x! ≡ Γ (x+ 1) (x > −1) . (4.41)

Embora a integral em (4.37) não convirja para
x ≤ 0, demonstra-se por definições alternativas
a possibilidade de estender a função gama para
todo z complexo, com exceção de z = −n com z ∈
N, e ainda valendo (4.39): Γ (z + 1) = zΓ (z). No
que segue estamos interessado apenas na função
Γ (x), de variável real x, cujo gráfico é mostrado
na figura à direita. Note, que o gráfico está de
acordo com a fórmula (4.40):

Γ (1) = 0!

Γ (2) = 1!

Γ (3) = 2!
...

Um valor particular da função gama de certo
interesse é

Γ (1/2) =
√
π , (4.42)

que é assim calculado:

Γ (1/2) =

∫ ∞

0

e−tt−1/2dt
t = u2

= 2

∫ ∞

0

e−u
2

du =

∫ ∞

−∞
e−u

2

du =

√(∫ ∞

−∞
e−x2dx

)(∫ ∞

−∞
e−y2dy

)

=

√∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dx dy =

√∫ 2π

0

∫ ∞

0

e−r2r dr dθ =

√
2π

[
− 1

2
e−r2

]∞
0

=
√
π ✓

Os valores de Γ (x) são geralmente tabelados para 1 ≤ x < 2 (como na tabela acima), a partir
dos quais todos os demais podem ser calculados usando, repetidamente se for necessário, a fórmula
Γ (x+ 1) = xΓ (x), dada por (4.39). Vejamos um exemplo com x ≥ 2 :

Γ (5, 82) = 4, 82Γ (4, 82) = 4, 82(3, 82)Γ (3, 82)

= · · · = 4, 82(3, 82)(2, 82)(1, 82)Γ (1, 82)︸ ︷︷ ︸
tabelado

= 4, 82(3, 82)(2, 82)(1, 82)(0, 93685) .

79



Agora um exemplo com x < 1; neste caso, usamos (4.39) na forma Γ (x) = Γ (x + 1)/x , repetida-
mente se for necessário:

Γ (−5, 8) = Γ (−4, 8)
(−5, 8)

=
Γ (−3, 8)

(−5, 8)(−4, 8)
= · · · =

tabelado︷ ︸︸ ︷
Γ (1, 2) [= 0, 91817 ]

(−5, 8)(−4, 8)(−3, 8)(−2, 8)(−1, 8)(−0, 8)(0, 2)
.

Além disso, os valores de Γ (x) para x = ±1/2 , ±3/2 , ±5/2 , · · · podem ser calculados a partir
do valor Γ (1/2) =

√
π usando (4.39), repetidamente se for necessário, na forma Γ (x + 1) = xΓ (x)

quando x = 3/2 , 5/2 , 7/2 , · · · e Γ (x) = Γ (x+ 1)/x quando x = −3/2 , −5/2 , −7/2 , · · · :

Γ (7/2) =
5

2

3

2

1

2
Γ (1/2) =

15

8

√
π ;

Γ (−5/2) = Γ (−3/2)
(−5/2)

=
Γ (−1/2)

(−5/2)(−3/2)
=

Γ (1/2)

(−5/2)(−3/2)(−1/2)
= −

√
π

15/8
.

Exercícios:

1] Calcule, usando a tabela quando necessário:

(a) (4, 5)! (b) Γ (3, 2)

(c) (−3, 2)! (d) Γ (3/2)Γ (−1/2)

(e) (−5, 5)! /Γ (−7/2) (f) Γ (11/7) /Γ (4/7)

x Γ (x)

1,2 0,918
1,4 0,887
1,6 0,894
1,8 0,931

2] Se Γ (x+ n+ 1) = a e Γ (x− 1) = b , onde x ∈ R− {· · · − 2,−1, 0, 1} e n ∈ N ,

calcule o valor de P =
n∏
j=0

(x+ j) em termos de a, b e x .

3] Mostre que

(a)
∫ ∞

0

e−x
4

dx = (1/4)Γ (1/4) (b)
∫ ∞

0

x4e−x
2

dx = 3
√
π/8 .

4.3.2 Solução Geral da Equação de Bessel
A equação de Bessel de ordem ν ≥ 0 é a seguinte:

x2y′′ + xy′ + (x2 − ν2)y(x) = 0 . (4.43)
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O ponto x = 0 é singular regular, o que enseja aplicar o método de Frobenius para resolvê-la. Substi-

tuindo y =
∞∑
k=0

akx
k+r nessa EDO, obtemos

∞∑
k=0

(k + r)(k + r − 1)akx
k+r +

∞∑
k=0

(k + r)akx
k+r +

∞∑
k=0

akx
k+r+2

︸ ︷︷ ︸
∞∑

k=2

ak−2xk+r

−
∞∑
k=0

ν2akx
k+r = 0 .

[r(r − 1)a0 + ra0 − ν2a0]xr + [(r + 1)ra1 + (r + 1)a1 − ν2a1]xr+1

+

∞∑
k=2

{
[(k + r)(k + r − 1) + (k + r)− ν2]ak + ak−2

}
xk+r = 0 .

a0 (r
2 − ν2)︸ ︷︷ ︸

0

xr + a1(r
2 + 2r + 1− ν2)︸ ︷︷ ︸

0

xr+1 +

∞∑
k=2

{
[k2 + 2rk + r2 − ν2]ak + ak−2︸ ︷︷ ︸

0

}
xk+r = 0 ,

donde três equações emergem:

• r2 − ν2 = 0 (equação indicial)

• ak
∣∣∣
k≥2

= − ak−2

k2 + 2rk + r2 − ν2
(relação de recorrência dependente de r)

• a1(r2 + 2r + 1− ν2) = 0

As raízes indiciais são r = ±ν. Prossigamos os cálculos com r = ν :

ak

∣∣∣
k≥2

= − ak−2

k(k + 2ν)

k → 2k−−−−−−−→ a2k

∣∣∣
k≥1

= − 1

22(k)(ν + k)
a2k−2 .

a1(2ν + 1) = 0 ⇒ a1 = 0 ⇒ a3 = a5 = a7 = · · · = 0 .

a2 = − a0
22(ν + 1)

a4 = − 1

22(2)(ν + 2)
a2 = − 1

22(2)(ν + 2)
a2

−a0
22(ν + 1)

=
(−1)2a0

24(2)(ν + 1)(ν + 2)
.

a6 = − 1

22(3)(ν + 3)
a4 = − 1

22(3)(ν + 3)

(−1)2a0
24(ν + 1)(ν + 2)

=
(−1)3a0

26(2 · 3)(ν + 1)(ν + 2)(ν + 3)
.

...

a2k =
(−1)ka0

22k(2 · 3 · · · k)(ν + 1)(ν + 2) · · · (ν + k)
.

Mas

Γ (ν + 1)(ν + 1)(ν + 2) · · · (ν + k) = Γ (ν + 1)(ν + 1)︸ ︷︷ ︸
Γ(ν+2)

(ν + 2)(ν + 3) · · · (ν + k − 1)(ν + k)

= Γ (ν + 2)(ν + 2)︸ ︷︷ ︸
Γ(ν+3)

(ν + 3) · · · (ν + k − 1)(ν + k)

= Γ (ν + 3)(ν + 3)︸ ︷︷ ︸
Γ(ν+4)

· · · (ν + k)

...
= Γ (ν + k + 1) ,
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donde
(ν + 1)(ν + 1)(ν + 2) · · · (ν + k) =

Γ (ν + k + 1)

Γ (ν + 1)
.

Substituindo esse resultado na expressão de a2k acima e escolhendo o valor da constante arbitrária a0
de modo que a02

νΓ (ν + 1) = 1 para padronizar a solução, obtemos

a2k =
(−1)k [

1︷ ︸︸ ︷
a02

νΓ (ν + k) ]

2ν+2k k! Γ (ν + k + 1)
=

(−1)k

2ν+2k k! Γ (ν + k + 1)
.

A substituição dessa expressão dos coeficientes na equação de Bessel (4.43) leva à seguinte solução
particular dessa EDO:

Jν(x) = xν
∞∑
k=0

(−1)kx2k

2ν+2k k! Γ (ν + k + 1)
=

∞∑
k=0

(−1)k(x/2)2k+ν

k! Γ (k + ν + 1)
(ν ≥ 0) . (4.44)

Realizando agora os cálculos com a outra raiz indicial r = −ν, mas com ν 6∈ N, obtemos a segunda
solução de (4.43), que, se igualmente padronizada, é dada por

J−ν(x) = x−ν
∞∑
k=0

(−1)kx2k

2−ν+2k k! Γ (−ν + k + 1)
=

∞∑
k=0

(−1)k(x/2)2k−ν

k! Γ (k − ν + 1)
(ν ≥ 0) , (4.45)

que nada mais é que (4.44) com ν substituído por −ν. Note que o argumento da função gama acima
nunca se anula por causa da restrição de ν nunca ser um número natural.

Para ν 6∈ N, (4.44) e (4.45) são duas soluções linearmente independentes da equação de Bessel, o
que se constata facilmente pelo primeiro termo delas (obtido com k = 0), sendo, portanto, y(x) =
c1Jν(x) + c2J−ν(x) a solução geral. Mas, para ν = n ∈ N, a raiz indicial r = −ν = −n não leva a uma
segunda solução, caso em que se deve aplicar os procedimentos prescritos pelo método de Frobenius
[ descritos na seç. 4.1.2 ] para o cálculo dessa segunda solução linearmente independente que falta.
Esses cálculos são elaborados, e sua omissão aqui não afeta os objetivos deste texto, sendo suficiente
resumir os resultados que nos interessam.

A segunda solução linearmente independente a Jν(x) é padronizada para todo ν real considerando
dois fatos (que podem ser demonstrados):

1) Quando ν 6∈ N, Jν(x) e a função definida por

Nν(x) ≡
Jν(x) cos νπ − J−ν(x)

senνπ
(ν 6∈ N) (4.46)

são duas soluções linearmente independentes da equação de Bessel de ordem ν, o que nos leva a concluir
que, nesse caso de ν diferente de um número natural, y(x) = c1Jν(x)+c2Nν(x) é outra forma da solução
geral dessa EDO.

2) Embora (4.45) não possa ser usado com n = 1, 2, 3, · · · , é útil ter uma definição para J−n(x),
que pode ser construída de modo que J−n(x) = (−1)nJn(x) a partir de (4.44) com ν = −n como segue:

J−n(x) ≡
∞∑
k=0

(−1)k(x/2)2k−n

k! Γ (k − n+ 1)

(∗)
=

∞∑
k=n

(−1)k(x/2)2k−n

k! Γ (k − n+ 1)
=

∞∑
k=0

(−1)k+n(x/2)2(k+n)−n

(k + n)! Γ (k + 1)

= (−1)n
∞∑
k=0

(−1)k(x/2)2k+n

Γ (k + n+ 1) k!
= (−1)nJn(x) ✓

Acima, na passagem (∗), escrevemos o somatório começando com k = n porque se anulam os termos
com k ≤ n− 1; de fato, nesse caso k − n+ 1 ≤ 0 ⇒ |Γ (k − n+ 1)| → ∞ ⇒ 1/Γ (k − n+ 1)→ 0 . Nas
passagens seguintes, mudamos o índice do somatório e usamos a propriedade (4.41) de Γ (x).

3) Quando ν ∈ N, Jn(x) e a função definida por

Nn(x) ≡ lim
ν→n

Nν(x) (ν ∈ N) (4.47)

são duas soluções linearmente da equação de Bessel de ordem ν = n.
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Assim, para todo ν ≥ 0, a solução geral da EDO (4.43) com x ∈ (0,∞) pode ser escrita como

y = c1Jν(x) + c2Nν(x) , (4.48)

onde Nν(x) é dado por (4.46) ou (4.47) .

A série infinita que expressa Nν(x) pode ser obtida inserindo (4.44) e (4.45) em (4.46) (havendo-se
de, no caso em que ν ∈ N, efetuar o limite de quando ν tende a um natural n). Não há necessidade de
exibir neste texto a expressão genérica da série que representa Nν(x).

A nomenclatura para as funções em (4.48) é a seguinte: Jν(x) é a função de Bessel de ordem
ν, e Nν(x) (também denotada por Yν(x), principalmente por matemáticos) é a função de Neumann
de ordem ν, sendo ambas também chamadas de funções de Bessel de ordem ν de 1a

¯ e 2a
¯ espécie,

respectivamente.
Assim como a solução geral da equação y′′ + y(x) = 0 pode ser escrita na forma y(x) = c1 cosx+

c2 senx ou na forma y(x) = c1e
ix + c2e

−ix, pois eix = cosx+ i senx e e−ix = cosx− i senx, a solução
geral da equação de Bessel também pode ser expressa na forma

y = c1H
(1)
ν (x) + c2H

(2)
ν (x) (4.49)

mediante a definição das funções

H(1)
ν (x) ≡ Jν(x) + iNν(x) e H(2)

ν (x) ≡ Jν(x)− iNν(x) , (4.50)

respectivamente denominadas primeira e segunda função de Hankel de ordem ν (ou primeira e segunda
função de Bessel de 3a

¯ espécie de ordem ν.
Na literatura, as funções Jν(x), Nν(x), H

(1)
ν (x) e H(2)

ν (x) são definidas com x e ν complexos, mas
estamos aqui interessados apenas nos valores dessas funções para x e ν reais e não negativos.

4.3.3 Solução Geral da Equação de Bessel Modificada
A equação de Bessel modificada de ordem ν ≥ 0 é a seguinte:

x2y′′ + xy′ − (x2 + ν2)y(x) = 0 . (4.51)

Um modo de se obter a solução y(x) dessa EDO consiste em convertê-la na equação de Bessel (cuja
solução já nos é conhecida). Isso é feito mediante a trasformação de variável t ≡ ix [v. Nota (1)
abaixo]:

x2y′′ + xy′ − (x2 + ν2)y(x) = 0
t ≡ ix−−−−−−−−−−−−−→

y(x) = y(x(t)) ≡ y(t)
t2y′′(t) + ty′(t) + (t2 − ν2)y(t) = 0 ;

logo,
y = c1Jν(t) + c2Nν(t) = c1Jν(ix) + c2Nν(ix) ,

mostrando que a solução da equação de Bessel modificada é formada pelas funções Jν e Nν com
argumento imaginário puro [v. Nota (2) abaixo]. Mas não são essas funções que são usadas, e sim as
que são definidas a seguir:

i−νJν(ix) ≡ Iν(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . função de Bessel modificada de 1a
¯ espécie de ordem ν

(π/2) iν+1
[
Jν(ix) + iNν(ix)

]
≡ Kν(x) . . . . . . . . . função de Bessel modificada de 2a

¯ espécie de ordem ν

Vemos que as funções Iν(x) e Kν(x) definidas acima: (a) são combinações lineares das soluções
Jν(ix) e Nν(ix) da equação de Bessel modificada e, portanto, também são soluções dessa equação, e
(b) são linearmente independentes; logo, elas formam a solução geral da equação de Bessel modificada:

y = c1Iν(x) + c2Kν(x) . (4.52)
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Nota 1 – Conversão de uma equação de Bessel modificada numa equação de Bessel :

A EDO (4.43), se tiver sua variável x mudada para t = ix, passa a exibir, na variável t, a forma da EDO
(4.51). A seguir mostramos isso, denotando as funções envolvidas nessa conversão como mostra a figura
acima. Uma vez que y(x) é a função composta y(t(x)), usamos a regra da cadeia para calcular a sua
derivada y′(x).

y′(x) =
dy

dx
=
dy

dt

dt

dx︸︷︷︸
i

= y′(t) i ,

y′′(x) =
d

dx
y′(x) =

d

dx

[
y′(t) i

]
=

d

dt

[
y′(t) i

] dt

dx︸︷︷︸
i

= i2
d

dt
y′(t)= −y′′(t) .

∴ x2y′′(x) + xy′(x)− (x2 + ν2)y(x) = −t2[−y′′(t)] + (−it)[y′(t) i]− (−t2 + ν2)y(t)

= t2y′′(t) + ty′(t) + (t2 − ν2)y(t) ■

Nota 2 – Compare o que se fez acima para se obter a solução da equação de Bessel modificada a partir da
solução da equação de Bessel com o que se faz abaixo para se obter a solução da equação y′′ − y(x) = 0 a
partir da solução da equação y′′ + y(x) = 0 (são usados os resultados quadriculados deduzidos na Nota 1,
pois a mesma mudança de variáveis t = ix é efetuada):

y′′(x)− y(x) = 0
t ≡ ix−−−−−−−−−−→

y(x) = y(t(x))
[−y′′(t)]− y(t) = 0 ⇒ y′′(t) + y(t) = 0

⇒ y = c1 cos t+ c2 sen t = c1 cos ix+ c2 sen ix .

Mas são definidas as funções [v. item (2) da seção 1.13]

cos ix ≡ coshx e − i sen ix ≡ senhx ,

em termo das quais
y = d1 coshx+ dx senhx .

Essa semelhança entre a construção das funções Iν e Kν a partir das funções Jν e Nν e a construção de
cosh e senh a partir de cos e sen enseja chamar Iν e Kν de funções de Bessel hiperbólicas.

4.3.4 Propriedades das Funções de Bessel
4.3.4.1 Gráficos

Em sentido amplo, as funções Jν , Nν , H
(1)
ν , H(2)

ν , Iν e Kν são todas chamadas funções de Bessel
(de ordem ν). Na página seguinte são mostrados seus gráficos para alguns valores de ν (exceto as de
Hankel). Convém que o aluno sempre se lembre destas propriedades, haja vista sua importância na
resolução de EDPs:

Quanto à variação :

As funções de Bessel oscilam (sem serem periódicas, exceto para x → ∞), e as funções de Bessel
modificadas são monótonas.

Na origem (x = 0) :

As funções de 1a
¯ espécie são finitas:

{
J0(0) = I0(0) = 1 (ν = 0)
Jν(0) = Iν(0) = 0 (ν > 0)

As funções de 2a
¯ espécie são infinitas:

{
Nν(x→ 0)→ −∞
Kν(x→ 0)→ ∞

Assintoticamente (x→∞) :
{
Jν(x→∞) = Nν(x→∞) = Kν(x→∞) = 0
Iν(x→∞)→∞

Quanto à apresentação de zeros :

As soluções da equação de Bessel Jν eNν , oscilatórias, apresentam uma infinidade de zeros positivos.
O mesmo acontece com as suas derivadas J ′

ν e N ′
ν (cujos zeros localizam-se nas abscissas de máximo e

mínimo de Jν e Nν). Já as soluções da equação de Bessel modificada Iν e Kν , monótonas, não exibem
zeros.
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Nota: Observamos algo similar quando comparamos as soluções

• cosx e senx da equação y′′ + y(x) = 0 → oscilatórias e apresentando uma infinidade de zeros

com as soluções

• ex e e−x (ou coshx e senhx) da equação modificada y′′ − y(x) = 0 → monótonas e sem zeros.

Na figura abaixo são apresentados alguns gráficos dessas funções para ajudar a visualizar as citadas
propriedades.

4.3.4.2 Fórmulas de Recorrência

Uma vez que, de acordo com (4.44),

Jν(x) =

∞∑
k=0

(−1)kx2k+ν

2ν+2k k! Γ (1 + k + ν)
(ν ≥ 0) ,

temos que

d

dx

[
x−νJν(αx)

]
=

d

dx

[
x−ν

∞∑
k=0

(−1)k(αx)2k+ν

2ν+2k k! Γ (1 + k + ν)

]
=

d

dx

[ ∞∑
k=0

(−1)kα2k+νx2k

2ν+2k k! Γ (1 + k + ν)

]

=

∞∑
k=1

(−1)kα2k+ν2k x2k−1

2ν+2k k! Γ (1 + k + ν)
=

∞∑
k=1

(−1)kα2k+νx2k−1

2ν+2k−1 (k − 1)! Γ (1 + k + ν)

=

∞∑
k=0

(−1)k+1α2(k+1)+νx2(k+1)−1

2ν+2(k+1)−1 k! Γ (1 + k + 1 + ν)
= −αx−ν

∞∑
k=0

(−1)k(αx)2k+ν+1

2ν+2k+1 k! Γ (1 + k + ν + 1)
,

donde
d

dx

[
x−νJν(αx)

]
= −αx−νJν+1(αx) . (4.53)

De modo análogo, deduz-se que

d

dx

[
xνJν(αx)

]
= αxνJν−1(αx) . (4.54)
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Efetuando as derivadas no primeiro membro desses dois resultados, obtemos respectivamente os
dois seguinte:

d

dx
Jν(αx) = −αJν+1(αx) +

ν

x
Jν(αx) (4.55)

e
d

dx
Jν(αx) = αJν−1(αx)−

ν

x
Jν(αx) . (4.56)

Adicionando e subtraindo essas duas últimas equações, também obtemos

2

α

d

dx
Jν(αx) = αJν−1(αx)− Jν+1(αx) (4.57)

e
Jν−1(αx) + Jν+1(αx) =

2ν

αx
Jν(αx) . (4.58)

As equações enumeradas acima constituem as fórmulas de recorrência mais usadas (frequentemente
com α = 1). Elas também são válidas para as funções Nν , H(1)

ν e H(1)
ν . As funções Iν e Kν satisfazem

essas fórmulas com poucas modificações (um sinal ou outro), para as quais pode ser consultada a seção
4.9 da Ref. [3].
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Capítulo 5

A Série de Fourier-Bessel e sua
Aplicação na Resolução de EDPs

- Ref. [4, seç. 5.8] e [5, seç. 12.9]

- Ref. [8] , seç. 11.5.1 e 13.2

- Ref. [6] , cap. 6

5.1 Funções de Bessel como Autofunções
Nosso objetivo nesta seção é resolver problemas de autovalor formados com a EDO

ρ2R′′ + ρR′ + (λρ2 − ν2)R(ρ) = 0 , (5.1)

que surge na separação de variáveis das EDPs do calor, da onda e de Laplace nas coordenadas cilíndricas
(ρ, φ e z) sob as condições de fronteira mais corriqueiras.(†) Uma vez que, na busca dos autovalores,
há a necessidade de resolver a EDO (5.1) com λ = 0, λ = −k2 (negativo) e λ = k2 (positivo), nosso
primeiro passo é escrever a solução dessa EDO nesses três casos.

a) Com λ = 0, (5.1) é a equação de Euler ρ2R′′ + ρR′ − ν2R(ρ) = 0, com a conhecida solução (v.
seção 6.7.4 da Apostila de Cálculo 4):

R(ρ) =

{
c1 + c2 ln ρ
c1ρ

ν + c2/ρ
ν .

b) Com λ = k2 (k > 0), (5.1) torna-se

ρ2R′′ + ρR′ + (k2ρ2 − ν2)R(ρ) = 0 . (5.2)

Mudando da variável ρ para a nova variável x ≡ kρ, essa EDO toma a forma (v. a Nota 1 abaixo para
os detalhes dessa transformação)

x2R′′ + xR′ + (x2 − ν2)R(x) = 0 ,

que, de acordo com (4.43), é a equação de Bessel de ordem ν, cuja solução geral, segundo (4.48), é
R = c1Jν(x) + c2Nν(x), a qual, voltando para a variável ρ original, se torna na solução geral de (5.2):

R = c1Jν(kρ) + c2Nν(kρ) . (5.3)

Nota 1 – Transformação da EDO (5.2) na forma da EDO (4.43):

(†)Esta seção tem uma exposição análoga à seção 2.3, onde resolvemos problemas de autovalor com a EDO ψ′′+λψ(x) =
0, que surge na separação de variáveis dessas mesmas EDPs, só que nas coordenadas cartesianas.
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Nessa transformação, usamos a notação descrita na figura acima. Uma vez que R(ρ) é a função composta
R(x(ρ)), usamos a regra da cadeia para calcular a sua derivada R ′(ρ).

R ′(ρ) =
dR

dρ
=
dR

dx

dx

dρ︸︷︷︸
k

= R ′(x) k ,

R ′′(ρ) =
d

dρ
R ′(ρ) =

d

dρ

[
R ′(x) k

]
=

d

dx

[
R ′(x) k

] dx
dρ︸︷︷︸
k

= k2
d

dx
R ′(x)= k2R ′′(x) .

∴ ρ2R ′′(ρ) + ρR ′(ρ) + (k2ρ2 − ν2)R(ρ) =
(x
k

)2
[k2R ′′(x)] +

x

k
[R ′(x) k] + (x2 − ν2)R(x)

= x2R ′′(x) + xR ′(x) + (x2 − ν2)R(x) ■

c) Com λ = −k2 (k > 0), (5.1) torna-se

ρ2R′′(ρ) + ρR′(ρ)− (k2ρ2 + ν2)R = 0 . (5.4)

Para resolver essa EDO, novamente fazemos a mudança de variável x = kρ, substituímos nela os
resultados R′′(ρ) = k2R′′(x) e R′(ρ) = kR′(x) já deduzidos na Nota 1 acima, e a obtemos na forma(x

k

)2
k2R′′(x) +

(x
k

)
kR′(x)− (x2 + ν2)R(x) = x2R′′ + xR′ − (x2 + ν2)R(x) = 0 ,

que é a equação de Bessel modificada de ordem ν (4.51), cuja solução, de acordo com (4.52), é dada
por R = c1Iν(x) + c2Kν(x); logo, voltando para a variável ρ, obtemos a solução geral de (5.4):

R = c1Iν(kρ) + c2Kν(kρ) . (5.5)

Escrevamos, então, essas soluções num único quadro:

ρ2R′′ + ρR′ + (λρ2 − ν2)R(ρ) = 0

⇓
Se λ = 0 :

ρ2R′′ + ρR′ − ν2R(ρ) = 0 ⇒ R(ρ) =

{
c1 + c2 ln ρ (ν = 0)

c1ρ
ν + c2/ρ

ν (ν > 0)
(5.6a)

Se λ = −k2 (k > 0) :

ρ2R′′ + ρR′ − (k2ρ2 + ν2)R(ρ) = 0 ⇒ R(ρ) = c1Iν(kρ) + c2Kν(kρ) (5.6b)

Se λ = k2 (k > 0) :

ρ2R′′ + ρR′ + (k2ρ2 − ν2)R(ρ) = 0 ⇒ R(ρ) =


c1Jν(kρ) + c2Nν(kρ)

ou
c1H

(1)
ν (kρ) + c2H

(2)
ν (kρ)

(5.6c)

Agora que já temos essas soluções da EDO (5.1), já podemos resolver problemas de autovalores
formado com essa EDO. Mas, antes, vejamos como é a relação de ortogonalidade entre as autofunções
originadas de tais problemas:

A EDO (5.1) escrita na forma da equação de Sturm-Liouville (2.24) é dada por

d

dρ

(
ρ
dR

dρ

)
+
(
λρ− ν2

ρ

)
R = 0 , (5.7)

mostrando que as funções u, v e w em (2.24) são, no caso, dadas por u(ρ) = 1, v(ρ) = −ν2/ρ e w(ρ) = ρ.
Assim, as autofunções Rk(ρ) do problema de autovalor formado pela EDO (5.1), com ρ ∈ I ⊂ R, e por
uma condição CF-n (v. pág. 37) nos extremos de I são ortogonais com respeito ao produto escalar de
função peso w(ρ) = ρ, isto é, se m e n são dois valores quaisquer do índice k em Rk(ρ), então∫

I

Rm(ρ)Rn(ρ)ρ dρ = 0 se m 6= n . (5.8)

88



Neste texto, apenas dois problemas de autovalor baseados na EDO (5.1) são considerados, em que
essa EDO é resolvida para ρ ∈ (0, b) em ambos. Eles diferem apenas no tipo da condição no extremo
ρ = b desse intervalo: CF-1 (Dirichlet) no primeiro e CF-2 (Neumann) no segundo. Nenhuma condição
de fronteira é imposta no extremo ρ = 0 de (0, b) porque, em (5.7), a função u(ρ) = ρ se anula nesse
extremo, indicando a ocorrência da condição CF-4, que suprime a necessidade de qualquer condição
na fronteira ρ = 0. No que segue, primeiramente resumimos os principais resultados – autovalores,
autofunções, normas quadráticas, e série de Fourier generalizada – dos dois problemas de autovalor;
depois apresentamos a resolução deles.

Problema de autovalor (i){
ρ2R′′ + ρR′ + (λρ2 − ν2)R(ρ) = 0

ρ ∈ (0, b) , R(b) = 0 (Dirichlet)
⇒

λn =
(ζνn
b

)2 n=1,2,3···←−−−−−−→ Rn(ρ) = Jν

(ζνnρ
b

)
ζνn : n-ésimo zero positivo de Jν , i.e., Jν(ζνn) = 0 .

(5.9)

• Relação de ortogonalidade:
∫ b

0

Jν

(ζνmρ
b

)
Jν

(ζνnρ
b

)
ρ dρ = 0 se m 6= n .

• Normas quadráticas: ||Jν
(ζνnρ

b

)
||2 =

∫ b

0

J2
ν

(ζνnρ
b

)
ρ dρ

(∗)
=

b2

2
J2
ν+1(ζνn) . (5.10)

(∗) Esse resultado é deduzido no final desta seção 5.1

• Série de Fourier generalizada (dita série de Fourier-Bessel) de f(ρ):

f(ρ) =

∞∑
n=1

AnJν

(ζνnρ
b

)
, com An =

〈
Jν

(ζνnρ
b

)
, f

〉
||Jν

(ζνnρ
b

)
||2

=

∫ b

0

f(ρ)Jν

(ζνnρ
b

)
ρ dρ∫ b

0

J2
ν

(ζνnρ
b

)
ρ dρ

. (5.11)

Problema de autovalor (ii){
ρ2R′′ + ρR′ + (λρ2 − ν2)R(ρ) = 0

ρ ∈ (0, b) , R ′(b) = 0 (Neumann)
⇒


λ0 = 0 ←→ R0(ρ) = 1 se ν = 0 (resultado extra)

λn =
(ζνn
b

)2 n=1,2,3···←−−−−−−→ Rn(ρ) = Jν

(ζνnρ
b

)
ζνn : n-ésimo zero positivo de J ′

ν , i.e., J ′
ν(ζνn) = 0 .

(5.12)

• Relação de ortogonalidade (abaixo, m e n podem ter qualquer valor natural não nulo):

Para todo ν ≥ 0 :

∫ b

0

Jν

(ζνmρ
b

)
Jν

(ζνnρ
b

)
ρ dρ = 0 se m 6= n .

Mas, se ν = 0, há de se considerar o resultado extra, acrescentando a relação de ortogonalidade
entre a autofunção constante R0(ρ) = 1 e as demais autofunções J0(ζ0nρ/b) :∫ b

0

J0

(ζ0nρ
b

)
ρ dρ = 0 (n = 1, 2, 3 · · · ) , onde ζ0n é o n-ésimo zero de J ′

0 , i.e., J ′
0(ζ0n) = 0 .

• Normas quadráticas:

||Jν
(ζνnρ

b

)
||2 =

∫ b

0

J2
ν

(ζνnρ
b

)
ρ dρ

(∗)
=

b2

2

[
1− ν2

ζ 2
νn

]
J2
ν (ζνn) ; (5.13)

(∗) Esse resultado é deduzido no final desta seção 5.1.

||R0(ρ)︸ ︷︷ ︸
1

||2 =

∫ b

0

12ρ dρ =
b2

2
(resultado extra a se considerar quando ν = 0) .
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• Série de Fourier generalizada (dita série de Fourier-Bessel) de f(ρ):

f(ρ) = A0 +
∞∑

n = 1

AnJν

(ζνnρ
b

)
,

onde

An
∣∣
n≥1

=

〈
Jν

(ζνnρ
b

)
, f

〉
||Jν

(ζνnρ
b

)
||2

=

∫ b

0

f(ρ)Jν

(ζνnρ
b

)
ρ dρ∫ b

0

J2
ν

(ζνnρ
b

)
ρ dρ

,

e A0 só está presente (i.e., difere de zero) se ν = 0, quando então é dado por

A0 =
〈R0, f〉
||R0(ρ)||2

=

∫ b

0

f(ρ)ρ dρ∫ b

0

12ρ dρ

=
2

b2

∫ b

0

f(ρ)ρ dρ .

Resolução do problema de autovalor (i) :

A solução da EDO deste problema de autovalor é dada por (5.6), onde notamos que todas as funções
que se encontram multiplicadas pela constante c2 tornam-se infinitas quando ρ → 0, o que nos leva a
fazer c2 = 0 para descartar tais funções, assim satisfazendo a condição de finitude das soluções. Logo,

R(ρ) =



{
c1 (ν = 0)

c1ρ
ν (ν > 0)

〉
se λ = 0

c1Iν(kρ) se λ = −k2 (k > 0)

R = c1Jν(kρ) se λ = k2 (k > 0) .

(5.14)

Agora buscamos autofunções conforme o sinal de λ.

Para λ = 0 : R(ρ) =

{
c1 (ν = 0)

c1ρ
ν (ν > 0)

∴ R(b) =

{
c1 = 0 ⇒ c1 = 0 (ν = 0)

c1b
ν = 0 ⇒ c1 = 0 (ν > 0)

〉
⇒ R(ρ) ≡ 0 (solução trivial) : não há o autovalor nulo.

Para λ = −k2 (k > 0) : R(ρ) = c1Iν(kρ)

∴ R(b) = c1 Iν(kb)︸ ︷︷ ︸
nunca
se anula

= 0 ⇒ c1 = 0 ⇒ R(ρ) ≡ 0 (solução trivial) : não há autovalores negativos.

Para λ = k2 (k > 0) : R(ρ) = c1Jν(kρ)

∴ R(b) = c1Jν(kb) = 0
admite-se c1 ̸= 0
−−−−−−−−−−−−→

para evitar a
solução trivial

Jν(kb) = 0 ⇒ kb = ζνn ⇒ k = kn = ζνn/b ,

onde ζνn é o n-ésimo zero positivo de Jν .
Logo, λ = λn = (ζνn/b) (n = 1, 2, 3 · · · ) são os autovalores, e Rn(ρ) = Jν(ζνn/b) são as autofunções

correspondentes ■

Resolução do problema de autovalor (ii) :

Como única diferença entre este problema de autovalor e o anterior é a condição de Neumann em
ρ = b, devemos buscar soluções da mesma forma exibida em (5.14):
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Para λ = 0 : R(ρ) =

{
c1 (ν = 0)

c1ρ
ν (ν > 0)

∴ R ′(b) =

{
0 ⇒ R ′(b) = 0 é possível para qualquer valor de c1 se ν = 0

c1νb
ν−1 = 0 ⇒ c1 = 0 ⇒ R(ρ) ≡ 0 : solução trivial se ν > 0

Para λ = −k2 (k > 0) : R(ρ) = c1Iν(kρ)

∴ R ′(b) = c1 k︸︷︷︸
̸=0

I ′
ν(kb)︸ ︷︷ ︸

nunca
se anula

= 0 ⇒ c1 = 0 ⇒ R(ρ) ≡ 0 (solução trivial) : não há autovalores negativos.

Para λ = k2 (k > 0) : R(ρ) = c1Jν(kρ)

∴ R(b) = c1 k︸︷︷︸
k ̸=0

J ′
ν(kb) = 0

admite-se c1 ̸= 0
−−−−−−−−−−−−→

para evitar a
solução trivial

J ′
ν(kb) = 0 ⇒ kb = ζνn ⇒ k = kn = ζνn/b ,

onde ζνn é o n-ésimo zero positivo de J ′
ν .

Logo, λ = λn = (ζνn/b) (n = 1, 2, 3 · · · ) são os autovalores, e Rn(ρ) = J ′
ν(ζνn/b) são as autofunções

correspondentes, havendo de se acrescentar, no caso em que ν = 0, o autovalor λ0 = 0 e a respectiva
autofunção R0(ρ) = 1 ■

Vamos agora deduzir as normas quadráticas em (5.10) e (5.13) das autofunções Rn(ρ) = Jν(ζνnρ/b) (n = 1, 2, 3 · · · )
dos problemas de autovalor (i) e (ii) definidos em (5.9) e (5.12). As autofunções do prob. (i) diferem das do prob. (ii)
apenas por serem ζνn os zeros de Jν no primeiro e os de J ′

ν no segundo. Por causa disso podemos provar (5.10) e (5.13)
num único cálculo, apresentado a seguir.

Essas autofunções são soluções da EDO exibidas em (5.9) e (5.12). Logo, tomando essa EDO na forma de Sturm-
Liouville, dada por (5.7), podemos escrever

(ρR′
n)

′ + (λnρ− ν2/ρ)Rn(ρ) = 0 .

Multiplicando essa equação por 2ρR′
n, obtemos

2ρR′
n(ρR

′
n)

′ + (λnρ
2 − ν2)2Rn(ρ)R

′
n = 0 ,

que, usando a fórmula 2F (ρ)F ′ = dF 2/dρ com F = ρR′
n no primeiro termo e F = Rn no segundo, toma a forma

d

dρ
(ρR′

n)
2 + (λnρ

2 − ν2)
d

dρ
R2
n = 0 .

Integremos essa equação uma vez por partes no intervalo [0, ρ] :[
(ρR′

n)
2
]b
0
+

[
(λnρ

2 − ν2)R2
n

]b
0
− 2λn

∫ b

0
ρR2

ndρ = 0 ,

donde [
bR′

n(b)
]2

+ (λnb
2 − ν2)R2

n(b) +
[
νRn(0)

]2 − 2λn||Rn(ρ)||2 = 0 .

Mas

νRn(0) = νJν(ζνnρ/b)
∣∣
ρ=0

= νJν(0) =

{
(0)(1) = 0 se ν = 0
(ν)(0) = 0 se ν > 0

= 0 ;

logo, substituindo λn = (ζνn/b2)2, obtemos

||Rn(ρ)||2 =
b2

2ζ2νn

{
b2
[
R′
n(b)

]2
+ (ζ2νn − ν2)

[
Rn(b)

]2}
.

Uma vez que Rn(b) = 0 no prob. (i) e R′
n(b) = 0 no prob. (ii), temos que

||Rn(ρ)||2 =


b4

2ζ2n

[
R′
n(b)

]2
. . . . . . . . . . . . . . . . . . prob. (i)

b2

2

(
1−

ν2

ζ2νn

)[
Rn(b)

]2
. . . . . . . . . prob. (ii) .

[ I ]

• Para o prob. (ii), a norma quadrática em (5.13) é imediatamente obtida com a substituição em [ I ] de
[
Rn(b)

]2
=[

Rn(b)Jν(ζνnρ/b)
]2∣∣

ρ=b
= J2

ν (ζνn) ✓

• Para o prob. (i), ainda temos de calcular R′
n(b), o que realizamos usando a fórmula de recorrência (4.55) com

x = ρ e α = ζνn/b :

d

dρ
Jν

( ζνnρ
b

)
︸ ︷︷ ︸
Rn(ρ)

= R′
n(ρ) = −

ζνn

b
Jν+1

( ζνnρ
b

)
+
ν

ρ
Jν

( ζνnρ
b

)

ρ=b−−−−→ R′
n(b) = −

ζνn

b
Jν+1(ζνn) +

ν

b
Jν(ζνn)︸ ︷︷ ︸

0

= −
ζνn

b
Jν+1(ζνn) .

A substituição desse resultado em [ I ] fornece a norma quadrática em (5.10) ✓
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5.2 Aplicação da Série de Fourier-Bessel na Resolução de EDPs
Exemplo 5.2.1. Cálculo da temperatura T (r, θ, t) (coordenadas polares) na placa circular

mostrada na figura, de bordas submetidas a 0◦ e inicialmente à temperatura T = T0(ρ).

Note que a temperatura inicial na placa não depende do ângulo θ :
há uma simetria angular. Como não há razão para que essa sime-
tria se desfaça com o decorrer do tempo, a temperatura mantém-se
independente de θ: T = T (r, t). Assim, devemos resolver a equação
do calor sob a condição de fronteira T (b, t) = 0 e a condição inicial
T (r, 0) = T0(r), com r ∈ (0, b), isto é,∇2T (r, θ, t) =

1

α

∂T

∂t
, r ∈ (0, b) , θ ∈ [0, 2π) , t > 0

T (b, t) = 0 , T (r, 0) = T0(r) .

(5.15)

Com a separação espaço-temporal T (r, t) = ψ(r)τ(t), e lembrando que ψ herda a condição de
fronteira imposta a T ; logo,

∇2ψ

ψ
=

1

α

τ ′

τ
= −λ ⇒

{
∇2ψ + λψ = 0 (eq. de Helmholtz), sob a condição ψ(b) = 0 .
τ ′ + λατ(t) = 0 (EDO temporal) .

No caso, uma vez que ∂ψ/∂θ = 0 por causa da simetria angular, a equação Helmholtz toma a forma

∇2ψ + λψ =
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2︸︷︷︸
0

+λψ(r) = 0
× r2−−−−→ r2ψ′′ + rψ′ + λr2ψ(r) = 0 ,

que é a EDO de Bessel de ordem zero. Ou seja, o problema de autovalor que se obtém é aquele em
(5.9) com ν = 0 :{

ρ2R′′ + ρR′ + λρ2R(ρ) = 0

ρ ∈ (0, b) , R(b) = 0
⇒


λn = (ζ0n/b)

2 n=1,2,3···←−−−−−−→ Rn(ρ) = J0

(ζ0nρ
b

)
ζ0n : n-ésimo zero positivo de J0 .

A solução da EDO temporal não apresenta novidade: τ ′n + λnατn(t) = 0 ⇒ τn(t) = An e
−λnαt .

Podemos agora escrever a expressão para a solução geral:

T (r, t) =

∞∑
n=1

An e
−λnα tJ0

(ζ0nr
b

)
.

Impondo a condição inicial, temos a série de Fourier-Bessel

T (r, 0) =

∞∑
n=1

An J0

(ζ0nr
b

)
= T0(r) ,

cujos coeficientes são calculados usando (5.11):

An =

∫ b

0

T0(r)J0

(ζ0nρ
b

)
r dr∫ b

0

J2
0

(ζ0nr
b

)
r dr

.

A solução T (r, t) do problema consiste no que, acima, se encontra delimitado por retângulos.

Exemplo 5.2.2. Resolvemos agora a equação do calor em co-
ordenadas polares sem a simetria angular do Exemplo 1. O intuito é
perceber quais mudanças nos cálculos a quebra dessa simetria acarreta.
A placa onde se deseja calcular a temperatura T (r, θ, t) tem a forma de
um setor circular, como mostra a figura à direita, cujas bordas são todas
mantidas em 0◦, sendo a temperatura inicialmente nela agora dependente
da variável angular, dada por T0(r, θ).
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No que segue, a numeração 1], 2], · · · refere-se às etapas em que foram divididas a resolução deste
problema.

1] O problema de calor a ser resolvido é assim formulado:∇2T (r, θ, t) =
1

α

∂T

∂t
, r ∈ (0, b) , θ ∈ (0, γ) , t > 0

T (r, 0, t) = T (r, γ, t) = T (b, θ, t) = 0 , T (r, θ, 0) = T0(r, θ) .

(5.16)

2] Realizemos a separação espaço-temporal:

T (r, θ, t) = ψ(r, θ)τ(t) ⇒ ∇2ψ

ψ
=

1

α

τ ′

τ
= −λ

⇒
{
∇2ψ + λψ = 0 (eq. de Helmholtz), sob as mesmas condições de fronteira que T .
τ ′ + λατ(t) = 0 (EDO temporal) .

3] A parte espacial ψ é solução do seguinte problema de autovalor (em duas variáveis, r e θ):
∇2ψ + λψ(r, θ) =

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+ λψ(r, θ) = 0

r ∈ (0, b) , θ ∈ (0, γ) , t > 0

ψ(r, 0) = ψ(r, γ) = ψ(b, θ) = 0 .

(5.17)

Agora, em vez de uma EDO, temos uma EDP, a qual, para resolvê-la, usamos uma nova separação
de variáveis: ψ(r, θ) = R(r)Θ(θ). Substituindo essa expressão na equação de Helmholtz em (5.17),
obtemos( ∂2

∂r2
+

1

r

∂

∂r

)
(RΘ) +

1

r2
∂2

∂θ2
(RΘ) + λ(RΘ) =

(
R′′ +

1

r
R′
)
Θ +

1

r2
RΘ ′′ + λRΘ = 0 .

A divisão dessa EDO por RΘ fornece

R′′ + (1/r)R′

R
+

1

r2
Θ ′′

Θ︸︷︷︸
≡ −µ

+ λ = 0 .

A forma dessa equação nos permite concluir que o termo Θ ′′/Θ é constante [daí o igualarmos à
constante de separação (−µ) ], pois esse termo dependente apenas de θ pode ser isolado num dos lados
da equação, passando o outro lado a conter termos que só dependem de r. Conseguimos assim separar
as duas EDOs {

Θ ′′ + µΘ(θ) = 0 (EDO angular)

r2R′′ + rR′ + (λr2 − µ)R(r) = 0 (EDO radial) .

A EDO angular e as condições de fronteira homogêneas para Θ que se deduzem a partir das
condições ψ(r, 0) = ψ(r, γ) = 0 do problema (5.17) formam o seguinte problema de autovalor, de
solução conhecida [v. (2.30)]:{

Θ ′′ + µΘ(θ) = 0 , θ ∈ (0, γ)

Θ(0) = Θ(γ) = 0
⇒

{
µm = (mπ/γ)2 (m = 1, 2, 3, · · · )

Θm(θ) = sen(mπθ/γ) .

Já a EDO radial com µ = µm = (mπ/γ)2 e a condição de fronteira R(b) = 0 que se deduz da outra
condição, ψ(b, θ) = 0, do problema (5.17), isto é,

r2R′′ + rR′ +
[
λ r2 − (mπ/γ)2

]
R(r) = 0 , r ∈ (0, b) , R(b) = 0 ,

formam, para cada m = 1, 2, · · · , um problema de autovalor do tipo definido em (5.9) com ν = mπ/γ.
No m-ésimo desses problemas, buscam-se os autovalores λmn e as correspondentes autofunções Rmn(r)
(nessa notação com dois índices, n enumera os autovalores e autofunções do m-ésimo problema de
autovalor). No caso, sendo ν = νm ≡ mπ/γ a ordem da equação de Bessel no problema de autovalor
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acima, temos que os autovalores e as autofunções são λmn = (ζνmn/b)
2 e Rmn = Jνm(ζνmnρ/b) . No

que segue, preferimos usar a notação ζmn e Jmπ
γ

em vez de ζνmn e Jνm :

λmn =
(ζmn

b

)2 n=1,2,3···←−−−−−−→ Rmn(r) = Jmπ
γ

(ζmnr
b

)
, onde ζmn é o n-ésimo zero positivo de Jmπ

γ
.

Estão assim determinados os autovalores λmn e as autofunções ψmn(r, θ) = Rmn(r)Θm(θ) do pro-
blema de autovalor (5.17):

λmn =
(ζmn

b

)2 m,n=1,2,3···←−−−−−−−−→ ψmn(r, θ) = Jmπ
γ

(ζmnr
b

)
sen

mπθ

γ
. (5.18)

4] A solução da EDO temporal τ ′mn + λmnατmn(t) = 0 é dada por τn(t) = Amn e
−λmnαt .

5] Uma vez obtidas as soluções ψmn(r, θ) e τmn(t) das EDOs espacial e temporal, podemos formar
a solução geral deste problema de calor:

T (r, θ, t) =

∞∑
m=1

∞∑
n=1

Amn e
−λmnα tJmπ

γ

(ζmnr
b

)
sen

mπθ

γ
.

6] Impondo a condição inicial, obtemos a série dupla de Fourier generalizada

T (r, θ, t) =

∞∑
m=1

∞∑
n=1

AmnJmπγ

(ζmnr
b

)
sen

mπθ

γ
= T0(r, θ) .

Finalmente, usando (2.38) e (2.39), obtemos a fórmula que fornece os coeficientes Amn, assim finali-
zando a solução:

Amn =

∫ γ

0

∫ b

0

T0(r, θ) Jmπγ

(ζmnr
b

)
sen

mπθ

γ
r dr dθ∫ b

0

J2
mπ
γ

(ζmnr
b

)
r dr

∫ γ

0

sen2mπθ

γ
dθ︸ ︷︷ ︸

γ/2

.

A solução T (r, θ, t) do problema consiste no que, acima, se encontra delimitado por retângulos.

Exemplo 5.2.3. Considere o problema ondulatório que consiste
em calcular, no sistema de coordenadas polares, a deflexão z(r, θ, t) de uma
membrana que tem a forma de um setor circular, como mostra a figura à
direita. As bordas encontram-se presas no plano z = 0, e as condições iniciais

da membrana são dadas por z(r, θ, 0) = z0(r, θ) e
∂z

∂t
(r, θ, 0) = v0(r, θ).

1] A formulação desse problema é como segue:
∇2z(r, θ, t) =

1

c2
∂2z

∂t2
, r ∈ (0, b) , θ ∈ (0, γ) , t > 0

z(r, 0, t) = z(r, γ, t) = z(b, θ, t) = 0 , z(r, θ, 0) = z0(r, θ) ,
∂z

∂t
(r, θ, 0) = v0(r, θ) .

(5.19)

2] A separação espaço-temporal fornece

z(r, θ, t) = ψ(r, θ)τ(t) ⇒ ∇2ψ

ψ
=

1

c2
τ ′′

τ
= −λ

⇒
{
∇2ψ + λψ = 0 (eq. de Helmholtz), sob as mesmas condições de fronteira que z .
τ ′′ + λc2τ(t) = 0 (EDO temporal) .

3] Esta terceira etapa da resolução deste problema de onda é idêntica à terceira etapa da resolução
do problema de calor no Exemplo 5.2.2, pois, nesses dois problemas, o domínio espacial é o mesmo
(o setor circular nas Figuras 5.2 e 5.2), e as condições de fronteira são do mesmo tipo (condições de
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Dirichlet), o que leva a parte espacial ψ(r, θ) da solução daquele problema de calor e a deste problema
de onda resultarem de um mesmo problema de autovalor: aquele definido em (5.17). Logo, podemos
aproveitar os autovalores e as autofunções desse problema de autovalor já calculados no Exemplo 5.2.2,
listados em (5.18):

λmn = (ζmn/b
)2 m,n=1,2,3···←−−−−−−−−→ ψmn(r, θ) = Jmπ

γ

(ζmnr
b

)
sen

mπθ

γ

ζmn é o n-ésimo zero positivo de Jmπ
γ

.

4] Solução da EDO temporal τ ′′mn + λmnc
2τmn(t) = 0 (obtida no passo 2) :

τn(t) = Amn cosωmnt+Bmn senωmnt , onde ωmn ≡ c
√
λmn .

5] De posse das soluções ψmn(r, θ e τmn(t) das EDOs espacial e temporal, podemos formar a solução
geral deste problema de onda:

z(r, θ, t) =

∞∑
m=1

∞∑
n=1

(Amn cosωmn +Bmn senωmn)Jmπγ

(ζmnr
b

)
sen

mπθ

γ
.

6] Para calcular os coeficientes na solução geral, impomos as condições iniciais:

z(r, θ, 0) =

∞∑
m=1

∞∑
n=1

AmnJmπγ

(ζmnr
b

)
sen

mπθ

γ
= z0(r, θ) ,

∂z

∂t
(r, θ, 0) =

∞∑
m=1

∞∑
n=1

ωmnBmnJmπγ

(ζmnr
b

)
sen

mπθ

γ
= v0(r, θ) .

Temos aí duas séries duplas de Fourier generalizadas em senos e funções de Bessel dos dados iniciais
z0(r, θ) e v0(r, θ). Finalizamos o problema calculando os coeficientes Amn e Bmn usando (2.38) e (2.39):

Amn =

∫ γ

0

∫ b

0

z0(r, θ) Jmπγ

(ζmnr
b

)
sen

mπθ

γ
r dr dθ∫ b

0

J2
mπ
γ

(ζmnr
b

)
r dr

∫ γ

0

sen2mπθ

γ
dθ

,

e

ωmnBmn =

∫ γ

0

∫ b

0

v0(r, θ) Jmπγ

(ζmnr
b

)
sen

mπθ

γ
r dr dθ∫ b

0

J2
mπ
γ

(ζmnr
b

)
r dr

∫ γ

0

sen2mπθ

γ
dθ

.

A solução z(r, θ, t) do problema consiste no que, acima, se encontra delimitado por retângulos.

Exemplo 5.2.4. Cálculo da solução da equação de
Laplace ∇2u(ρ, φ, z) = 0 (coordenadas cilíndricas) no setor
de tronco cilíndrico ilustrado à direita, de raio b, ângulo cen-
tral γ e altura h, sob as condições de fronteira indicadas. A
formulação desse problema é a seguinte:

∇2u(ρ, φ, z) =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂θ2
+
∂2u

∂z2
(ρ, φ, z) = 0

ρ ∈ (0, b) , φ ∈ (0, γ) , z ∈ (0, h)

u(ρ, 0, z) = u(ρ, γ, z) = 0

u(ρ, φ, 0) = u(ρ, φ, h) = 0

u(b, φ, z) = f(φ, z)

Substituindo u(ρ, φ, z) = R(ρ)Φ(φ)Z(z) na EDP acima, obtemos
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( ∂2
∂ρ2

+
1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

)
(RΦZ) =

(
R′′ +

1

ρ
R′
)
ΦZ +

1

ρ2
RΦ′′Z +RΦZ ′′ = 0

÷RΦZ−−−−−−→ R′′ + (1/ρ)R′

R
+

1

ρ2
Φ′′

Φ︸︷︷︸
−µ

+
Z ′′

Z︸︷︷︸
−β

= 0 . (5.20)

As condições de fronteira homogêneas na faces horizontais [em (z = 0) e (z = h)] bem como nas
faces verticais [em (φ = 0) e (φ = γ)] evidenciam que as partes Z(z) e Φ(φ) resultam de problemas
de autovalor independentes [que devem ser resolvidos antes de determinar a parte R(r), cujo cálculo
depende dos autovalores provenientes daqueles dois problemas de autovalor]. Essa é a razão de, na
equação (5.20), termos separado EDOs para Φ(φ) e Z(z) igualando os termos sabidamente constantes
Φ′′/Φ e Z ′′/Z às constantes (−µ) e (−β) [os sinais negativos seguem o estipulado na Nota emitida
após a equação (3.32) ]. Após essas duas separações, resta a EDO para R(ρ). As três EDOs separadas
são

Z ′′ + βZ(z) = 0 , Φ′′ + µΦ(φ) = 0 e ρ2R′′ + ρR′ − (βρ2 + µ)R(ρ) = 0 . (5.21)

A EDOs para as partes Z(z) e Φ(φ) sob as condições de fronteira que essas partes devem satisfazer
[deduzidas das condições de fronteira para u(ρ, φ, z)] formam os seguintes problemas de autovalor, de
soluções conhecidas [v. (2.30)]:{

Z ′′ + βZ(z) = 0 , z ∈ (0, h)

Z(0) = Z(h) = 0
⇒

{
βl = (lπ/h)2 (l = 1, 2, 3, · · · )

Zl(z) = sen(lπz/h) .{
Φ′′ + µΦ(φ) = 0 , φ ∈ (0, γ)

Φ(0) = Φ(γ) = 0
⇒

{
µm = (mπ/γ)2 (m = 1, 2, 3, · · · )

Φm(φ) = sen(mπφ/γ) .
(5.22)

Substituindo os autovalores de β e µ já calculados na EDO para R(ρ) em (5.21), obtemos

ρ2R′′ + ρR′ − ( βl︸︷︷︸(
lπ
h

)2

ρ2 + µm︸︷︷︸
(mπγ )

2

)R(ρ) = 0 , isto é, ρ2R′′ + ρR′ −
[( lπ

h

)2
ρ2 +

(mπ
γ

)2]
R(ρ) = 0 ,

uma equação de Bessel modificada de ordem mπ/γ, cuja solução geral, de acordo com (5.6b), é

Rlm(ρ) = AlmImπγ

( lπρ
h

)
+ Blm︸︷︷︸

0

Kmπ
γ

( lπρ
h

)
,

onde deixamos indicado que devemos fazer Blm = 0 para evitar infinitude quando ρ → 0, pois as
funções Kν são singulares na origem.

Logo, já tendo determinado as três partes Rlm(ρ), Φm(φ) e Zl(z) que compõem a infinidade de
soluções ulm(ρ, φ, z) = Rlm(ρ)Φm(φ)Zl(z) que o problema, até este ponto (ainda sem impor a condição
de fronteira não homogênea) apresenta, podemos formar sua solução geral:

u(ρ, φ, z) =

∞∑
l=1

∞∑
m=1

Alm Imπγ

( lπρ
h

)
sen

mπφ

γ
sen

lπz

h
.

Agora impomos a condição de fronteira não homogênea:

u(b, φ, z) =

∞∑
l=1

∞∑
m=1

Alm Imπγ

( lπb
h

)
︸ ︷︷ ︸

∗

sen
mπφ

γ
sen

lπz

h
= f(φ, z) ,

onde percebemos que o termo marcado com ∗ são os coeficientes de uma série de Fourier dupla em
senos que são dados por

Alm Imπγ

( lπb
h

)
=

∫ h

0

∫ γ

0

f(φ, z) sen
mπφ

γ
sen

lπz

h
dφ dz∫ γ

0

sen2mπφ

γ
dφ

∫ h

0

sen2 lπz

h
dz

·
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Exemplo 5.2.5. Resolva o seguinte problema:

∇2u(ρ, φ, z) =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂φ2
+
∂2u

∂z2
(ρ, φ, z) = 0

ρ ∈ (0, b) , φ ∈ (0, γ) , z ∈ (0, h)

u(b, φ, z) = 0

u(r, 0, z) = u(r, γ, z) = 0

u(r, φ, 0) = 0 , u(r, φ, h) = f(r, φ) .

Trata-se de resolver a equação de Laplace para u(ρ, φ, z)
no sólido mostrado na figura, sob a condição de u se anular
em todas as faces desse sólido, exceto no topo (a única ha-
churada). Esse problema difere daquele no exemplo anterior
apenas quanto à única face em que u 6= 0, ocorrendo isso, no
anterior, apenas na face lá hachurada (na face curva). Por-
tanto, após a separação de variáveis u(ρ, φ, z) = R(ρ)Φ(φ)Z(z), aqui devemos resolver primeiramente
os problemas de autovalor que surgem para Φ(φ) e R(ρ) e só então proceder ao cálculo de Z(z).

Podemos aproveitar, na resolução do problema anterior, a equação (5.20), na qual havemos de
separar primeiramente a EDO para Φ(φ) usando a constante (−µ) e, depois, a EDO para R(ρ) usando
a constante (−λ), assim resultando, ao final dessas duas separações, a EDO para Z(z):

R′′ + (1/ρ)R′

R
+

1

ρ2
Φ′′

Φ︸︷︷︸
≡−µ

+
Z ′′

Z
= 0 ⇒ R′′ + (1/ρ)R′

R
− µ

ρ2︸ ︷︷ ︸
≡−λ

+
Z ′′

Z
= 0 ,

e assim obtemos as três EDOs separadas:

Φ′′ + µΦ(φ) = 0 , ρ2R′′ + ρR′ + (λρ2 − µ)R(ρ) = 0 e Z ′′ + λZ(z) = 0 . (5.23)

É claro que para a parte Φ valem os mesmos resultados em (5.22), isto é,{
Φ′′ + µΦ(φ) = 0 , φ ∈ (0, γ)

Φ(0) = Φ(γ) = 0
⇒

{
µm = (mπ/γ)2 (n = 1, 2, 3, · · · )

Φm(φ) = sen(mπφ/γ) .
(5.24)

Já a EDO para R em (5.23) com µ substituído por µm = (mπ/γ)2 produz uma EDO diferente
para cada valor de m, devendo todas satisfazer a condição de fronteira R(b) = 0 herdada do problema
original:

ρ2R′′ + ρR′ +

[
λρ2 −

(mπ
γ

)2]
R(ρ) = 0 , ρ ∈ (0, b) , R(b) = 0 (m = 1, 2, 3 · · · ) . (5.25)

Este é um problema de autovalor do tipo em (5.9) com ν = mπ/γ para cada m = 1, 2, · · · , em que,
no m-ésimo problema, buscam-se os autovalores λmn e as correspondentes autofunções Rmn(ρ) (nessa
notação com dois índices, n enumera os autovalores e autofunções do m-ésimo problema de autovalor);
logo,

λmn =
(ζmn

b

)2 n=1,2,3···←−−−−−−→ Rmn(ρ) = Jmπ
γ

(ζmnρ
b

)
, onde ζmn é o n-ésimo zero positivo de Jmπ

γ
.

Agora revolvemos a EDO para Z(z) em (5.23) com λ substituído pelo resultado λ = λmn = (ζmn/b)
2

acima e sob a condição Z(0) = 0 que se deduz da condição de fronteira u(ρ, φ, 0) = 0:

Z ′′ −
(ζmn

b

)2
Z(z) = 0 , z ∈ (0, h) , Z(0) = 0

Z(z) = c1 cosh(ζmnz/b) + c2 senh(ζmnz/b)

Z(0) = 0 ⇒ c1 = 0 ⇒ Z = Zmn(z) = senh(ζmnz/b) .
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Podemos agora formar a solução geral u(ρ, φ, z) =
∑
m,nBmnRmn(ρ)Φm(φ)Zmn(z), ou

u(ρ, φ, z) =

∞∑
m=1

∞∑
n=1

Bmn Jmπγ

(ζmnρ
b

)
sen
(mπφ

γ

)
senh

(ζmnz
b

)
. (5.26)

Usando a condição de fronteira não homogênea, temos que

u(ρ, φ, h) =

∞∑
m=1

∞∑
n=1

Bmn senh
(ζmnh

b

)
︸ ︷︷ ︸

∗

Jmπ
γ

(ζmnρ
b

)
sen
(mπφ

γ

)
.

Calculando os coeficientes (indicados pelo asterisco) dessa série dupla de Fourier generalizada usando
(2.38) e (2.39), concluímos a solução do problema:

Bmn senh
(ζmnh

b

)
=

∫ γ

0

∫ b

0

f(ρ, φ) Jmπ
φ

(ζmnρ
b

)
sen

mπφ

γ
ρ dρ dφ

||Jmπ
γ

(ζmnρ
b

)
||2 || senmπφ

γ
||2

,

onde

||Jmπ
γ

(ζmnρ
b

)
||2 =

∫ b

0

J2
mπ
γ

(ζmnρ
b

)
ρ dρ

e

|| senmπφ
γ
||2 =

∫ γ

0

sen2mπθ

γ
dθ =

γ

2
.

Exemplo 5.2.6. Resolva a equação do calor no setor de tronco
cilíndrico mostrado à esquerda, inicialmente à temperatura T0(ρ, φ, z) (co-
ordenadas cilíndricas), sabendo que a base é isolada termicamente e as
demais faces são mantidas em 0◦.

A formulação desse problema é a seguinte:

∇2T =
1

α

∂T

∂t
(ρ, φ, z, t)

ρ ∈ (0, b) , φ ∈ (0, γ) , z ∈ (0, h) , t > 0

T (b, φ, z, t) = 0

T (ρ, 0, z, t) = T (ρ, γ, z, t) = 0

∂T

∂z
(ρ, φ, 0, t) = T (ρ, φ, h, t) = 0

 cond. front.

T (ρ, φ, z, 0) = T0(ρ, φ, z) .

(5.27)

Após a separação espaço-temporal T (ρ, φ, z, t) = ψ(ρ, φ, z) τ(t), o primeiro passo é resolver o se-
guinte problema de autovalor tridimensional formado pela equação de Helmholtz sob condições de
fronteira semelhantes ao do problema de calor:

∇2ψ + λψ(ρ, φ, z) =
∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+

1

ρ2
∂2ψ

∂φ2
+
∂2ψ

∂z2
+ λψ(ρ, φ, z) = 0

ρ ∈ (0, b) , φ ∈ (0, γ) , z ∈ (0, h)

ψ(b, φ, z) = 0

ψ(ρ, 0, z) = ψ(ρ, γ, z) = 0

∂ψ

∂z
(ρ, φ, 0) = ψ(ρ, φ, h) = 0 .

(5.28)
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Fazendo ψ(ρ, φ, z) = R(ρ)Φ(φ)Z(z) para separar as EDOs como de praxe, tendo em conta que haverá
um problema de autovalor unidimensional para todas as partes R, Φ e Z,

R′′ + (1/ρ)R′

R
+

1

ρ2
Φ′′

Φ︸︷︷︸
−µ

+
Z ′′

Z︸︷︷︸
−β

+ λ = 0 ,

obtemos as seguintes EDOs separadas:

Z ′′ + βZ(z) = 0 , Φ′′ + µΦ(φ) = 0 , ρ2R′′ + ρR′ +
[
(λ− β)ρ2 − µ

]
R(ρ) = 0 .

Logo, considerando as condições de fronteira que as partes R, Φ e Z herdam das condições de
fronteira para ψ(ρ, φ, z), formamos os três problemas de autovalor unidimensionais seguintes, cujas
soluções podem ser prontamente escritas, pois já são conhecidas:

• Problema de autovalor na variável z :{
Z ′′ + βZ(z) = 0

θ ∈ (0, h) , Z ′(0) = Z(h) = 0
⇒

{
βl = (lπ/h)2 (l = 1, 3, 5, · · · )

Zl(z) = cos(lπz/2h) .

• Problema de autovalor na variável φ :{
Φ′′ + µΦ(φ) = 0 , φ ∈ (0, γ)

Φ(0) = Φ(γ) = 0
⇒

{
µm = (mπ/γ)2 (n = 1, 2, 3, · · · )

Φm(φ) = sen(mπφ/γ) .

• Problema de autovalor na variável ρ :
Para formular esse problema, é necessário substituir na EDO para R(ρ) os autovalores βl e µm

obtidos nos dois problemas de autovalor anteriores; ei-lo:

ρ2R′′ + ρR′ +

{[
λ−

( lπ
h

)2]
ρ2 −

(mπ
γ

)2}
R(ρ) = 0 , ρ ∈ (0, b) , R(b) = 0 .

Esse é um problema de autovalor para cada par (l,m) (com l = 1, 3, 5, · · · e m = 1, 2, 3, · · · ) do tipo
em (5.9), só tendo, portanto, solução R(ρ) 6≡ 0 se λ− (lπ/h)2 = (ζmn/b)

2, onde ζmn (n = 1, 2, · · · ) é o
n-ésimo zero não nulo de Jmπ

γ
. Então os autovalores de λ e as respectivas autofunções são

λ =
( lπ
h

)2
+
(ζmn

b

)2 n=1,2,3···←−−−−−−→ R(r) = Jmπ
γ

(ζmnr
b

)
, onde ζmn é o n-ésimo zero positivo de Jmπ

γ
.

Enfim podemos apresentar os autovalores de λ e as autofunções do problema de autovalor tridi-
mensional em (5.28):

λlmn =
( lπ
h

)2
+
(ζmn

b

)2 l=1,3,5···←−−−−−−−−−→
m,n=1,2,3···

ψλ = ψlmn(ρ, φ, z) = Jmπ
γ

(ζmnr
b

)
sen

mπφ

γ
cos

lπz

h

onde ζmn é o n-ésimo zero positivo de Jmπ
γ

.

Segundo (3.23), a solução geral é T (ρ, φ, z, t) =
∑
l,m,nAlmn e

−λlmnα tψlmn(ρ, φ, z), isto é,

T (ρ, φ, z, t) =
∑

l=1,3,5···

∞∑
m=1

∞∑
n=1

Almn e
−λmnα tJmπ

γ

(ζmnr
b

)
sen

mπφ

γ
cos

lπz

h
.

Impondo a condição inicial, obtemos

T (ρ, φ, z, 0) =
∑

l=1,3,5···

∞∑
m=1

∞∑
n=1

AlmnJmπγ

(ζmnr
b

)
sen

mπφ

γ
cos

lπz

h
= T0(ρ, φ, z) ,

donde, de acordo com (2.40) e (2.41), temos que
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Almn =

∫ h

0

∫ γ

0

∫ b

0

T0(ρ, φ, z) Jmπγ

(ζmnρ
b

)
sen

mπφ

γ
cos

lπz

h
ρ dρ dφ dz

||Jmπ
γ

(ζmnr
b

)
||2 || senmπφ

γ
||2 || cos lπz

h
||2

,

onde

||Jmπ
γ

(ζmnr
b

)
||2 =

∫ b

0

J2
mπ
γ

(ζmnρ
b

)
ρ dρ

|| senmπφ
γ
||2 =

∫ γ

0

sen2mπφ

γ
dφ =

γ

2

|| cos lπz
h
||2 =

∫ h

0

cos2
lπz

h
dz =

h

2
.

Exemplo 5.2.7. Resolva o seguinte problema:

∇2u =
1

c2
∂2u

∂t2
(ρ, φ, z, t)

ρ ∈ (0, b) , φ ∈ (0, γ) , z ∈ (0, h) , t > 0

u(b, φ, z, t) = 0

u(ρ, 0, z, t) = u(ρ, γ, z, t) = 0

∂u

∂z
(ρ, φ, 0, t) = u(ρ, φ, h, t) = 0

 cond. front.

u(ρ, φ, z, 0) = u0(ρ, φ, z)

∂u

∂t
(ρ, φ, z, 0) = v0(ρ, φ, z) .

(5.29)

Esse é um problema de onda no mesmo domínio espacial do problema de calor do Exemplo 5.2.6
e sob condições de fronteira semelhantes. Logo, de acordo com (3.24), a solução geral é u(ρ, φ, z, t) =∑
l,m,n(Almn cosωlmnt+Blmn senωlmn)ψlmn(ρ, φ, z) [ωlmn = c

√
λlmn ], isto é,

u(ρ, φ, z, t) =
∑

l=1,3,5···

∞∑
m=1

∞∑
n=1

(Almn cosωlmnt+Blmn senωlmn)Jmπγ

(ζmnr
b

)
sen

mπφ

γ
cos

lπz

h
.

Impondo as condições iniciais, obtemos

u(ρ, φ, z, 0) =
∑

l=1,3,5···

∞∑
m=1

∞∑
n=1

AlmnJmπγ

(ζmnr
b

)
sen

mπφ

γ
cos

lπz

h
= u0(ρ, φ, z)

e
∂u

∂t
(ρ, φ, z, 0) =

∑
l=1,3,5···

∞∑
m=1

∞∑
n=1

ωlmnBlmnJmπγ

(ζmnr
b

)
sen

mπφ

γ
cos

lπz

h
= v0(ρ, φ, z) .
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Logo,

Almn =

∫ h

0

∫ γ

0

∫ b

0

u0(ρ, φ, z) Jmπγ

(ζmnρ
b

)
sen

mπφ

γ
cos

lπz

h
ρ dρ dφ dz

||Jmπ
γ

(ζmnr
b

)
||2 || senmπφ

γ
||2 || cos lπz

h
||2

e

ωlmnBlmn =

∫ h

0

∫ γ

0

∫ b

0

v0(ρ, φ, z) Jmπγ

(ζmnρ
b

)
sen

mπφ

γ
cos

lπz

h
ρ dρ dφ dz

||Jmπ
γ

(ζmnr
b

)
||2 || senmπφ

γ
||2 || cos lπz

h
||2

,

onde

||Jmπ
γ

(ζmnr
b

)
||2 =

∫ b

0

J2
mπ
γ

(ζmnρ
b

)
ρ dρ

|| senmπφ
γ
||2 =

∫ γ

0

sen2mπφ

γ
dφ =

γ

2

|| cos lπz
h
||2 =

∫ h

0

cos2
lπz

h
dz =

h

2
.

5.3 Exercícios

5.3.1 Enunciados
1] Resolva o seguinte problema em coordenadas polares:

∇2T (r, θ, t) =
1

α

∂T

∂t
, r ∈ (0, b) , θ ∈ (0, π) , t > 0

T (b, θ, t) = 0 ,
∂T

∂θ
(r, 0, t) = T (r, π, t) = 0 , T (r, θ, 0) = T0(r, θ)

2] Resolva o seguinte problema em coordenadas cilíndricas:
∇2u(ρ, φ, z) =

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂φ2
+
∂2u

∂z2
= 0 , ρ ∈ (0, b) , φ ∈ R , z ∈ (0, h)

u(b, φ, z) = f(φ, z) , u(ρ, φ, 0) =
∂u

∂z
(ρ, φ, h) = 0

3] Resolva o seguinte problema em coordenadas cilíndricas:{∇2u(ρ, φ, z) = 0 , ρ ∈ (0, b) , φ ∈ R , z ∈ (0, h)

u(b, φ, z) = 0 , u(ρ, φ, 0) = 0 , u(ρ, φ, h) = f(ρ, φ)

4] Resolva o seguinte problema em coordenadas cilíndricas:
∇2u(ρ, φ, z) = 0 , ρ ∈ (0, b) , φ ∈ (0, γ) , z ∈ (0,∞)

∂u

∂ρ
(b, φ, z) = 0 ,

∂u

∂φ
(ρ, 0, z) = u(ρ, γ, z) = 0 , u(ρ, φ, 0) = f(ρ, φ) .

5] Resolva o seguinte problema em coordenadas cilíndricas:{∇2u(ρ, φ, z) = 0 , ρ ∈ (a,∞) , φ ∈ (0, π/2) , z ∈ (0, h)

u(a, φ, z) = f(φ, z) , u(ρ, 0, z) = u(ρ, π/2, z) = 0 , u(ρ, φ, 0) = u(ρ, φ, h) = 0 .

6] Calcule a solução T (temperatura) do seguinte problema de calor formulado nas coordenadas
cilíndricas: 

∇2T =
1

α

∂T

∂t
, ρ ∈ (0, b) , φ ∈ (0, 2π) , z ∈ (0, h) , t ≥ 0

T
∣∣∣
ρ= b

=
∂T

∂z

∣∣∣
z = 0

= T
∣∣∣
z = h

= 0 e T
∣∣∣
t= 0

= T0(ρ, z) .
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7] Calcule a solução T (temperatura) do seguinte problema de calor formulado nas coordenadas
polares: 

∇2T =
1

α

∂T

∂t
, r ∈ (a, b) , θ ∈ (0, 2π) , t ≥ 0

T
∣∣∣
r = a

= T
∣∣∣
r = b

= 0 e T
∣∣∣
t= 0

= T0(r) .

5.3.2 Soluções
1

T (r, θ, t) ≡ ψ(r, θ)τ(t) ⇒ ∇2ψ

ψ
=

1

α

τ ′

τ
= −λ ⇒

{
∇2ψ + λψ = 0
τ ′ + λατ(t) = 0 .

∇2ψ + λψ(r, θ) = 0 , r ∈ (0, b) , θ ∈ (0, π) ,
∂ψ

∂θ
(r, 0) = ψ(r, π) = 0 .

∇2ψ + λψ =
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+ λψ = 0

ψ(r,θ)=R(r)Θ(θ)−−−−−−−−−−−−→ R′′ + (1/r)R′

R
+

1

r2
Θ ′′

Θ︸︷︷︸
−µ

+λ = 0 .

{
Θ ′′ + µΘ(θ) = 0

Θ ′(0) = Θ(π) = 0
⇒


µm =

(mπ
2π

)2
=
(m
2

)2
(m = 1, 3, 5 · · · )

Θm(θ) = cos
mθ

2
.

r2R′′ + rR′ + (λr2 − µm︸︷︷︸
(m/2)2

)R(r) = 0 , r ∈ (0, b) , R(b) = 0 .

λmn =
(ζmn

b

)2 n = 1,2,3···←−−−−−−→ Rmn(r) = Jm
2

(ζmnr
b

) [
ζmn : n-ésimo zero positivo de Jm

2

]
.

T (r, θ, t) =
∑

m=1,3,5···

∞∑
n=1

Amn e
−λmnα tJm

2

(ζmnr
b

)
cos

mθ

2
■

T (r, θ, 0) =
∑

m=1,3,5···

∞∑
n=1

AmnJm
2

(ζmnr
b

)
cos

mθ

2
= T0(r, θ) .

Amn =

∫ π

0

∫ b

0

T0(r, θ)Jm
2

(ζmnr
b

)
cos

mθ

2
r dr dθ∫ b

0

J2
m
2

(ζmnr
b

)
r dr

∫ π

0

cos2
mθ

2
dθ︸ ︷︷ ︸

π/2

■

2

∇2u(ρ, φ, z) =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂φ2
+
∂2u

∂z2
= 0

u(ρ,φ,z)=R(r)Φ(φ)Z(z)−−−−−−−−−−−−−−−−→ R′′ + (1/ρ)R′

R
+

1

ρ2
Φ′′

Φ︸︷︷︸
−µ

+
Z ′′

Z︸︷︷︸
−β

= 0 .

Φ′′ + µΦ(φ) = 0
φ ∈ R
Φ(φ) = Φ(φ+ 2π)

⇒


µm =

(mπ
π

)2
= m2 (m = 0, 1, 2, 3 · · · )

Φm(φ) = am cosmφ+ bm senmφ
(b0 = 0) .{

Z ′′ + βZ(z) = 0 , z ∈ (0, h)
Z(0) = Z ′(h) = 0

⇒
{
βl = (lπ/2h)2 (l = 1, 3, 5 · · · )
Z(z) = cos(lπz/2h) .

ρ2R′′ + ρR′ − ( βl︸︷︷︸(
lπ
2h

)2

ρ2 + µm︸︷︷︸
m2

)R(ρ) = 0 ⇒ R(ρ) = Rlm(ρ) = clmIm

( lπρ
2h

)
+ dlm︸︷︷︸

0 (∗)

Km

( lπρ
2h

)

102



(∗) dlm = 0 para evitar infinitude quando ρ→ 0 , uma vez que lim
x→ 0

Km(x) =∞ .

ulm(ρ, φ, z) = Rlm(ρ)Φm(φ)Zl(z) = clmIm

( lπρ
2h

)
(am cosmφ+ bm senmφ) cos

lπz

2h
.

Denotando clmam ≡ Alm e clmbm ≡ Blm :

u(ρ, φ, z) =
∑

l=1,3,5···

∞∑
m=0

Im

( lπρ
2h

)
(Alm cosmφ+Blm senmφ) cos

lπz

2h
(Bl0 = 0) ■

u(b, φ, z) =
∑

l=1,3,5···

∞∑
m=0

Im

( lπb
2h

)
(Alm cosmφ+Blm senmφ) cos

lπz

2h
= f(φ, z)

Im

( lπb
2h

)
Alm =

∫ h

0

∫ 2π

0

f(φ, z) cosmφ cos
lπz

2h
dφdz∫ 2π

0

cos2mφdφ︸ ︷︷ ︸{
π se m ̸=0
2π se m=0

∫ h

0

cos2
lπz

2h
dz︸ ︷︷ ︸

h/2

■

Im

( lπb
2h

)
Blm

∣∣∣
m≥1

=

∫ h

0

∫ 2π

0

f(φ, z) senmφ cos
lπz

2h
dφdz∫ 2π

0

sen2mφdφ︸ ︷︷ ︸
π

∫ h

0

cos2
lπz

2h
dz︸ ︷︷ ︸

h/2

■

3

∇2u(ρ, φ, z) =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂φ2
+
∂2u

∂z2
= 0

u(ρ,φ,z)=R(r)Φ(φ)Z(z)−−−−−−−−−−−−−−−−→

R′′ + (1/ρ)R′

R
+

1

ρ2
Φ′′

Φ︸︷︷︸
−µ

+
Z ′′

Z
= 0 −−→ R′′ + (1/ρ)R′

R
− µ

ρ2︸ ︷︷ ︸
−λ

+
Z ′′

Z
= 0 .

Φ′′ + µΦ(φ) = 0
φ ∈ R
Φ(φ) = Φ(φ+ 2π)

⇒


µm =

(mπ
π

)2
= m2 (m = 0, 1, 2, 3 · · · )

Φ(φ) = am cosmφ+ bm senmφ
(b0 = 0) .


ρ2R′′ + ρR′ − (λρ2 − µm︸︷︷︸

m2

)R(ρ) = 0

ρ ∈ (0, b) , R(b) = 0
⇒


ζmn (n = 1, 2, 3 · · · ) : n-ésimo zero positivo de Jm

autovalores de λ : λmn =
(ζmn

b

)2
Rmn(ρ) = Jm

(ζmnρ
b

)
.

Z ′′ − λmn︸︷︷︸(
ζmn
b

)2

Z(z) = 0 ⇒ Z = Zmn(z) = cmn cosh
ζmnz

b
+ dmn senh

ζmnz

b
.

Zmn(0) = 0 ⇒ cmn = 0 ⇒ Zmn(z) = dmn senh
ζmnz

b
.

umn(ρ, φ, z) = Rmn(ρ)Φm(φ)Zmn(z) = Jm

(ζmnρ
b

)
(am cosmφ+ bm senmφ)dmn senh

ζmnz

b
.

Denotando amdmn ≡ Amn e bmdmn ≡ Bmn :

u(ρ, φ, z) =

∞∑
m=0

∞∑
n=1

Jm

(ζmnρ
b

)
(Amn cosmφ+Bmn senmφ) senh

ζmnz

b
(B0n = 0) ■

u(ρ, φ, h) =

∞∑
m=0

∞∑
n=1

Jm

(ζmnρ
b

)
(Amn cosmφ+Bmn senmφ) senh

ζmnh

b
= f(ρ, φ) .
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Amn senh
ζmnh

b
=

∫ 2π

0

∫ b

0

f(ρ, φ)Jm

(ζmnρ
b

)
cosmφρdρ dφ∫ b

0

J2
m

(ζmnρ
b

)
ρ dρ

∫ 2π

0

cos2mφdφ︸ ︷︷ ︸{
π se m ̸=0
2π se m=0

■

Bmn senh
ζmnh

b

∣∣∣
m≥1

=

∫ 2π

0

∫ b

0

f(ρ, φ)Jm

(ζmnρ
b

)
senmφρdρ dφ∫ b

0

J2
m

(ζmnρ
b

)
ρ dρ

∫ 2π

0

sen2mφdφ︸ ︷︷ ︸
π

■

4

∇2u(ρ, φ, z) =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂φ2
+
∂2u

∂z2
= 0

u(ρ,φ,z) = R(r)Φ(φ)Z(z)−−−−−−−−−−−−−−−−−→

R′′ + (1/ρ)R′

R
+

1

ρ2
Φ′′

Φ︸︷︷︸
−µ

+
Z ′′

Z
= 0 −−→ R′′ + (1/ρ)R′

R
− µ

ρ2︸ ︷︷ ︸
−λ

+
Z ′′

Z
= 0 .

{
Φ′′ + µΦ(φ) = 0 , φ ∈ (0, γ)

Φ′(0) = Φ(γ) = 0
⇒

{
µm = (mπ/2γ)2 (m = 1, 3, 5 · · · )

Φm(φ) = cos(mπφ/2γ) .

ρ2R′′ + ρR′ +

[
λρ2 −

(mπ
2γ

)2]
R(ρ) = 0 , ρ ∈ (0, b) , R′(b) = 0 .

λmn =
(ζmn

b

)2 n=1,2,3···←−−−−−−→ Rmn(ρ) = Jmπ
2γ

(ζmnρ
b

)
, onde ζmn é o n-ésimo zero positivo de J ′

mπ
2γ

.

Z ′′ −
(ζmn

b

)2
Z(z) = 0 , z ∈ (0,∞) ⇒ Z = Zmn(z) = Amn e

−ζmnz/b +Bmn e
ζmnz/b .

Zmn(z →∞) finito ⇒ Bmn = 0 ⇒ Z = Zmn(z) = Amn e
−ζmnz/b .

u(ρ, φ, z) =
∑

m=1,3,5···

∞∑
n=1

Amn e
−ζmnz/b Jmπ

2γ

(ζmnρ
b

)
cos

mπφ

2γ
■

u(ρ, φ, 0) =
∑

m=1,3,5···

∞∑
n=1

Amn Jmπ
2γ

(ζmnρ
b

)
cos

mπφ

2γ
= f(ρ, φ)

Amn =

∫ π

0

∫ b

0

f(ρ, φ)Jmπ
2γ

(ζmnρ
b

)
cos

mπφ

2γ
ρ dρ dφ∫ b

0

J2
mπ
2γ

(ζmnρ
b

)
ρ dρ

∫ π

0

cos2
mπφ

2γ
dφ︸ ︷︷ ︸

π/2

■
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5

R′′ + (1/ρ)R′

R
+

1

ρ2
Φ′′

Φ︸︷︷︸
−µ

+
Z ′′

Z︸︷︷︸
−β

= 0 ⇒ R′′ + (1/ρ)R′

R
− µ

ρ2
− β = 0 .

{
Z ′′ + βZ(z) = 0 , z ∈ (0, h)

Z(0) = Z(h) = 0
⇒

{
βl = (lπ/h)2 (l = 1, 2, 3, · · · )

Zl(z) = sen(lπz/h) .{
Φ′′ + µΦ(φ) = 0 , φ ∈ (0, π/2)

Φ(0) = Φ(γ) = 0
⇒

µm =
[
(mπ)/(π/2)

]2
= (2m)2 (m = 1, 2, 3, · · · )

Φm(φ) = sen(2mφ) .

ρ2R′′ + ρR′ − ( βl︸︷︷︸(
lπ
h

)2

ρ2 + µm︸︷︷︸
(2m)2

)R(ρ) = 0 ⇒ R = Rlm(ρ) = Alm︸︷︷︸
0 (∗)

I2m

( lπρ
h

)
+ BlmK2m

( lπρ
h

)
(∗) Alm = 0 para evitar infinitude quando ρ→∞ , uma vez que lim

x→ 0
I2m(x) =∞ .

u(ρ, φ, z) =

∞∑
l=1

∞∑
m=1

BlmK2m

( lπρ
h

)
sen2mφ sen

lπz

h
■

u(a, φ, z) =

∞∑
l=1

∞∑
m=1

BlmK2m

( lπa
h

)
sen2mφ sen

lπz

h
= f(φ, z) .

BlmK2m

( lπa
h

)
=

∫ h

0

∫ π/2

0

f(φ, z) sen2mφ sen
lπz

h
dφ dz∫ π/2

0

sen22mφdφ︸ ︷︷ ︸
π/4

∫ h

0

sen2 lπz

h
dz︸ ︷︷ ︸

h/2

■
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6

Este problema está ilustrado à direita. O fato de a temperatura
inicial T0(ρ, z) não depender da coordenada angular φ e a existência
de simetria na geometria do problema em relação a essa coordenada
acarretam uma solução que também não dependente de φ : T (ρ, z, t).
Note que este problema é o do Exemplo 5.2.6, mas com a tempera-
tura inicial mais simples, T0(ρ, z), e a geometria mais simétrica do
presente problema. O cálculo da solução T (ρ, z, t) deste problema é,
portanto, mais simples por causa da ausência do termo (∂2T/∂φ2)/ρ2

no laplaciano em coordenadas cilíndricas; observe:

T (ρ, z, t) = ψ(ρ, z) τ(t) ⇒ ∇2ψ

ψ
=

1

α

τ ′

τ
= −λ .

τ ′′ + λατ(t) = 0 ⇒ τ(t) = c1 e
−λαt . ∇2ψ + λψ(ρ, z) =

∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+
∂2ψ

∂z2
+ λψ(ρ, z) = 0

ψ(ρ, φ, z) sob as mesmas condições de fronteira que T (ρ, z, t) .

ψ(ρ, z) = R(ρ)Z(z) ⇒ R′′ + (1/ρ)R′

R
+ Z ′′/Z︸ ︷︷ ︸

−β

+ λ = 0 ⇒
{
Z ′′ + βZ(z) = 0
ρ2R′′ + ρR′ + (λ− β)R(ρ) = 0 .

{
Z ′′ + βZ(z) = 0 , z ∈ (0, h)

Z ′(0) = Z(h) = 0
⇒

{
βl = (lπ/h)2 (l = 1, 3, 5, · · · )

Zl(z) = cos(lπz/2h) .

 ρ2R′′ + ρR′ +
[
λ−

( lπ
h

)2]
ρ2R(ρ) = 0

ρ ∈ (0, b) : R(b) = 0 .
⇒


λ− (lπ/h)2 = (ζmn/b)

2

R(r) = Jmπ
γ

(ζmnρ/b)

ζmn : n-ésimo zero positivo de Jmπ
γ
.

τln(t) = Aln e
−λlnαt , onde λln =

( lπ
h

)2
+
(ζmn

b

)2
.

T (ρ, z, t) =
∑

l=1,3,5···

∞∑
n=1

Aln e
−λmnα tJmπ

γ

(ζmnr
b

)
cos

lπz

h
.

T (ρ, z, 0) =
∑

l=1,3,5···

∞∑
n=1

AlmnJmπγ

(ζmnr
b

)
sen

mπφ

γ
cos

lπz

h
= T0(ρ, z) .

Aln =

∫ h

0

∫ b

0

T0(ρ, z) Jmπγ

(ζmnρ
b

)
cos

lπz

h
ρ dρ dz∫ b

0

J2
mπ
γ

(ζmnρ
b

)
ρ dρ

∫ h

0

cos2
lπz

h
dz

·

7
Este problema consiste no cálculo da temperatura T em coordena-

das polares na placa em forma de arruela ilustrada à direita. Como no
Exercício 6, a independência da temperatura inicial T0(r) da coorde-
nada angular θ e a simetria geométrica implicam uma solução T (r, t)
(independente de θ). Logo,

∇2T =
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2︸ ︷︷ ︸
= 0

=
1

α

∂T

∂t
= −λ T (r,t) = R(r)τ(t)−−−−−−−−−−−−→

R′′ + (1/r)R′

R
=
τ ′′

τ
= −λ ⇒

{
τ ′ + λατ(t) = 0 ⇒ τ(t) = c1 e

−λαt

r2R′′ + rR′ + λr2R(r) = 0 .
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Essa EDO radial e as condições de fronteira para R(r) que decorrem das condições de fronteira
originais, T (a, t) = T (b, t) = 0, formam o problema de Sturm-Liouville{

r2R′′ + rR′ + λr2R(r) = 0 , r ∈ (a, b)
R(a) = R(b) = 0 (condições de Dirichlet) ,

cuja solução é como segue:

Para λ = 0: R(r) = c1 + c2 ln r

R(a) = c1 + c2 ln a = 0
R(b) = c1 + c2 ln b = 0

〉
⇒ c1 = c2 = 0 ⇒ R(r) ≡ 0 : não há o autovalor nulo.

Para λ < 0 : λ ≡ −k2 (k > 0): R(r) = c1I0(kr) + c2K0(kr)

R(a) = c1I0(ka) + c2K0(ka) = 0
R(b) = c1I0(kb) + c2K0(kb) = 0

〉
⇒ c1 = c2 = 0 ⇒ R(r) ≡ 0 : não há autovalor negativo,

pois demonstra-se que
∣∣∣∣ I0(ka) K0(ka)
I0(kb) K0(kb)

∣∣∣∣ 6= 0 ∀ k > 0 .

Para λ > 0 : λ ≡ k2 (k > 0): R(r) = c1J0(kr) + c2N0(kr)

Neste caso, o sistema algébrico formado pelas equações provenientes da imposição das condições de
fronteira R(a) = R(b) = 0,

⋆
{
R(a) = c1J0(ka) + c2N0(ka) = 0
R(b) = c1J0(kb) + c2N0(kb) = 0 ,

admite valores de c1 e c2 não simultaneamente nulos, porque o determinante dos coeficientes se anula
para uma infinidade de valores kn (n = 1, 2, 3 · · · ) de k :∣∣∣∣ J0(ka) N0(ka)

J0(kb) N0(kb)

∣∣∣∣ = J0(ka)N0(kb)− J0(kb)N0(ka) = 0 ⇒ k = kn .

Portanto, ao autovalor λn = k2n corresponde a autofunção Rn(r) = c1nJ0(knr)+c2nN0(knr). Nesta
expressão, c1n e c2n não são constantes independentes, pois estão relacionadas pelas duas equações
do sistema algébrico ⋆ com k = kn. Como essas duas equações são equivalentes (uma é múltipla da
outra pelo fato de o determinante dos coeficientes se anular), podemos usar qualquer das duas para
expressar uma delas em termo da outra: Da primeira equação, c1nJ0(kna) + c2nN0(kna) = 0, tiramos
c2n = −c1nJ0(kna)/N0(kna) para eliminar c2n, obtendo a seguinte expressão para Rn(r):

Rn(r) = c1nJ0(knr) + c2nN0(knr) = c1nJ0(knr)− c1n
J0(kna)

N0(kna)
N0(knr)

=
[ c1n
N0(kna)

]
︸ ︷︷ ︸

constante

[
J0(knr)N0(kna)− J0(kna)N0(knr)

]
.

Em resumo, os autovalores de λ e as respectivas autofunções são

λn = k2n
n= 1,2,3···←−−−−−−−−→ Rn(r) = J0(knr)N0(kna)− J0(kna)N0(knr)[

kn é a enésima raiz positiva da equação J0(ka)N0(kb)− J0(kb)N0(ka) = 0
] ■

Agora concluímos rapidamente a solução do problema:

T (r, t) =

∞∑
n=1

AnRn(r) e
−λnαt ■

T (r, 0) =

∞∑
n=1

AnRn(r) = T0(r) ⇒ An =

∫ b
a
T0(r)Rn(r) r dr∫ b
a
R2
n(r) r dr

■
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Capítulo 6

A Série de Legendre e sua Aplicação
na Resolução de EDPs

- Ref. [5] , seç. 12.10

- Ref. [8] , seç. 11.5.2 e 13.3
- Ref. [6] , cap. 7

6.1 Polinômios de Legendre como Autofunções
Nosso objetivo aqui é resolver problemas de autovalor formados com a EDO

1

senθ

d

dθ

(
senθ

dΘ

dθ

)
+ λΘ(θ) = 0 , (6.1)

que surge na separação de variáveis das equações do calor, da onda e de Laplace nas coordenadas
esféricas (r, θ e φ) sob as condições de fronteira mais corriqueiras [neste momento, é instrutivo ler, na
página 112, o início da solução do Exemplo 6.2.1, até a equação (6.30)]. Para reconhecer que EDO
é essa, vamos transformá-la efetuando a mudança de variável µ = cos θ. Denotaremos as funções
envolvidas nessa transformação como mostra o esquema da composição de funções que ocorre nela:

Eis os cálculos (basicamente o emprego da regra da cadeia):

dΘ

dθ
=
dΘ

dµ

dµ

dθ︸︷︷︸
− senθ

⇒ senθ
dΘ

dθ
= − sen2θ︸ ︷︷ ︸

1−µ2

dΘ

dµ

⇒ d

dθ

(
senθ

dΘ

dθ

)
= − d

dµ

[
(1− µ2)

dΘ

dµ

] dµ

dθ︸︷︷︸
− senθ

⇒ 1

senθ

d

dθ

(
senθ

dΘ

dθ

)
=

d

dµ

[
(1− µ2)

dΘ

dµ

]
.

Assim se transforma o primeiro termo da equação (6.1), a qual, coma substituição desse resultado,
toma a nova forma desejada:

d

dµ

[
(1− µ2)

dΘ

dµ

]
+ λΘ(µ) = 0 , (6.2)

ou, efetuando a derivada do produto,

(1− µ2)Θ ′′ − 2µΘ ′ + λΘ(µ) = 0 . (6.3)

Ora, essa EDO, de acordo com (4.15), é a equação de Legendre, cuja solução já foi calculada na
seção 4.2.1. A forma da equação (6.2) é a de Sturm-Liouville, (2.24), com as funções u, v e w dadas
por

u(µ) = 1− µ2 , v(µ) = 0 e w(µ) = 1 . (6.4)
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Multiplicando a equação (6.1) por senθ, obtemos

d

dθ

(
senθ

dΘ

dθ

)
+ (λ senθ)Θ(θ) = 0 , (6.5)

que é a forma de Sturm-Liouville da equação de Legendre na variável θ; comparando-a com (2.24),
vemos que

u(θ) = senθ , v(θ) = 0 e w(θ) = 1 . (6.6)

Uma vez identificada a equação (6.1) como uma EDO que já sabemos resolver, passamos a discu-
tir os problemas de autovalor formados com ela, buscando os autovalores do parâmetro λ aos quais
correspondam soluções não nulas que satisfaçam a condição de finitude ou alguma outra porventura
especificada. Tendo em conta que usaremos as coordenadas esféricas para resolver problemas defini-
dos tanto em esferas quanto semiesferas, será necessário buscar as soluções da EDO (6.1) tanto para
θ ∈ (0, π) quanto θ ∈ (0, π/2). Consideramos a seguir um problema de autovalor que ocorre numa
esfera e dois que ocorrem numa semiesfera.

Problema de autovalor (i)

d

dθ

(
senθ

dΘ

dθ

)
+ (λ senθ)Θ(θ) = 0 , θ ∈ (0, π) . (6.7)

Este problema ocorre quando o domínio espacial da EDP é uma esfera. Trata-se de um problema
de Sturm-Liouville com condição de fronteira do tipo CF-4 em (2.27), pois, nos pontos extremos do
intervalo (0, π) considerado neste problema de autovalor, temos, de acordo com (6.6), que u(θ) =
senθ → 0 quando θ → 0+ e θ → π−.

Vamos escrever o problema (6.7) na variável µ. Nessa variável, a EDO é dada por (6.2) ou (6.3), e
o problema (6.7) toma a forma

(1− µ2)Θ ′′ − 2µΘ ′ + λΘ(µ) = 0 , µ ∈ (−1, 1) . (6.8)

Obviamente, este é um problema de Sturm-Liouville equivalente àquele em (6.7). Note que, em vista
de (6.4), a condição CF-4 continua sendo satisfeita: u(µ) = 1 − µ2 → 0 pelas laterais dos pontos
extremos µ = ±1 do intervalo (−1, 1).

Vejamos os principais resultados deste problema de autovalor (i):

a) Autovalores e Autofunções

Foi exatamente o problema de autovalor em (6.8) que estudamos na seção 4.2.1; veja-o em (4.15).
No resumo ao final dessa seção, vemos lá listados os autovalores e as autofunções, que repetimos aqui:

autovalores λ l = l(l + 1)
l = 0,1,2,3,···←−−−−−−−−−→ autofunções Θl(µ) = Pl(µ)

ou Θl(θ) = Pl(cos θ) ,
(6.9)

onde Pl(µ) são os polinômios de Legendre (ou funções de Legendre de 1 a¯ espécie) descritos na seção
4.2.2. Podemos dizer que Θl(µ) = Pl(µ) são as autofunções do problema (6.8) e Θl(θ) = Pl(cos θ) são
as do problema (6.7).

b) Relação de Ortogonalidade

Como em (6.2) w(µ) = 1, temos que os polinômios de Legendre Pl(µ) são ortogonais com respeito
a uma função peso unitária: ∫ 1

−1

Pl(µ)Pm(µ)dµ = 0 se l 6= m . (6.10)

Por sua vez, os polinômos de Legendre com argumento cos θ, isto é, Pl(cos θ), são ortogonais com
respeito à função peso w(θ) = senθ dada em (6.6):∫ π

0

Pl(cos θ)Pm(cos θ) senθdθ = 0 se l 6= m , (6.11)
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resultado que também se obtém efetuando-se a mudança de variável µ = cos θ na integral em (6.10).
Na verdade, os resultados expressos na variável θ podem ser todos obtidos sem considerá-los como

consequências do problema de Sturm-Liouville em (6.7), bastando deduzir os resultados na variável
µ resolvendo o problema de Sturm-Liouville em (6.8) e então expressá-los na variável θ por meio da
mudança de variável µ = cos θ. Mas é instrutivo continuar considerando simultaneamente os problemas
de Sturm-Liouville em (6.7) e (6.8). Por outro lado, são especificamente os resultados na variável θ
que nos interessarão quando resolvermos EDPs mais adiante, o que justificaria obtê-los considerando
tão somente o problema (6.7). Mas, como os resultados na variável µ são amplamente divulgados por
serem importantes em muitas aplicações, prosseguiremos nesse caminho duplo.

c) Normas Quadráticas

De acordo com (4.27),

||Pl(µ)||2 =

∫ 1

−1

P 2
l (µ)dµ =

2

2l + 1
; (6.12)

logo,

||Pl(cos θ)||2 =

∫ π

0

P 2
l (cos θ) senθdθ =

2

2l + 1
. (6.13)

d) Série de Fourier Generalizada

Associada às autofunções do problema (6.8) temos a seguinte série de Fourier generalizada de uma
função f(µ), obtida usando-se a fórmula na equação (2.17):

f(µ) =

∞∑
l=0

AlPl(µ) , (6.14)

com

Al =
〈Pl, f〉
||Pl(µ)||2

=

∫ 1

−1

f(µ)Pl(µ)dµ∫ 1

−1

P 2
l (µ)dµ︸ ︷︷ ︸

2/(2l+1)

=
2l + 1

2

∫ 1

−1

f(µ)Pl(µ)dµ . (6.15)

Esta é a chamada série de Fourier-Legendre, ou, simplesmente, série de Legendre.
Similarmente, considerando o problema (6.8), temos

f(θ) =

∞∑
l=0

AlPl(cos θ) , (6.16)

com

Al =
〈Pl(cos θ), f〉 (θ)
||Pl(cos θ)||2

=

∫ π

0

f(θ)Pl(cos θ) senθ dθ∫ π

0

P 2
l (cos θ) senθ dθ︸ ︷︷ ︸
2/(2l+1)

=
2l + 1

2

∫ π

0

f(θ)Pl(cos θ) senθ dθ . (6.17)

Problema de autovalor (ii)

d

dθ

(
senθ

dΘ

dθ

)
+ (λ senθ)Θ(θ) = 0 , θ ∈

(
0,
π

2

)
, com


Θ(π/2) = 0 → prob. (ii-1)
ou
Θ ′(π/2) = 0 → prob. (ii-2)

(6.18)

[Note que agora estamos agindo em conformidade com o primeiro parágrafo após (2.27): não expli-
citamos os limites laterais nas condições de fronteira acima, isto é, não escrevemos Θ(π/2−) = 0 e
Θ ′(π/2−) = 0].
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Em (6.18) temos dois problemas de autovalor – a que faremos referência por (ii-1) e (ii-2) – que
ocorrem quando o domínio espacial da EDP é uma semiesfera, que diferem quanto à condição imposta
no ponto θ = π/2 (correspondente à base da semiesfera): no prob. (ii-1), temos a condição de Dirichlet
Θ(π/2) = 0 e, no prob. (ii-2), a de Neumann Θ ′(π/2) = 0. No outro ponto extremo desse intervalo,
θ = 0, ambos os problemas apresentam uma condição CF-4 (supressiva). São, portanto, dois problemas
com condição de fronteira mista (i.e., do tipo CF-5).

Na variável µ, (6.18) toma a forma

(1− µ2)Θ ′′ − 2µΘ ′ + λΘ(µ) = 0 , µ ∈ (0, 1) , com


Θ(0) = 0 → prob. (ii-1)
ou
Θ ′(0) = 0 → prob. (ii-2)

(6.19)

Estes também são, obviamente, problemas de condição de fronteira mista: uma condição de Dirichlet
[prob. (ii-1)] ou Neumann [prob. (ii-2)] no extremo µ = 0 do intervalo (0, 1) e uma condição supressiva
no extremo em µ = 1 (ponto em que 1− µ2 se anula).

a) Autovalores e Autofunções

Naturalmente, as autofunções Θl(µ) ainda são polinômios de Legendre Pl(µ), mas nem todos esses
são autofunções. No caso do prob. (ii-1), são autofunções apenas os polinômios de Legendre ímpares,
porque satisfazem a condição Θ(0) = 0 (a de o gráfico passar pela origem, algo que acontece com
as funções ímpares contínuas). Já no caso do prob. (ii-2), são autofunções apenas os polinômios de
Legendre pares, que satisfazem a condição Θ ′(0) = 0 (derivada nula na origem, algo característico das
funções pares diferenciáveis). Resumindo:

autovalores λ l = l(l + 1) ←−−→ autofunções Θl(µ) = Pl(µ) ou Θl(θ) = Pl(cos θ) ,

onde
{
l = 1, 3, 5, · · · no prob. (ii-1)
l = 0, 2, 4, · · · no prob. (ii-2) .

(6.20)

b) Relação de Ortogonalidade

Tal relação é aquela em (6.10) ou (6.11), mas, agora, com o intervalo de integração restrito a
µ ∈ [0, 1] ou θ ∈ [0, π/2] em ambos os problemas (ii-1) e (ii-2):∫ 1

0

Pl(µ)Pm(µ)dµ = 0 se l 6= m , (6.21)

∫ π/2

0

Pl(cos θ)Pm(cos θ) senθdθ = 0 se l 6= m . (6.22)

c) Normas Quadráticas

Usando (6.12), temos que

||Pl(cos θ)||2 = ||Pl(µ)||2 =

∫ 1

0

P 2
l (µ)dµ =

1

2

∫ 1

−1

P 2
l (µ)dµ︸ ︷︷ ︸

2/(2l+1)

=
1

2l + 1
. (6.23)

d) Série de Fourier Generalizada

Na variável µ, a série de Fourier generalizada de uma função f(µ), de acordo com (2.17), é

f(µ) =
∑

l=1,3,5···

Al Pl(µ)︸ ︷︷ ︸
prob. (ii-1)

ou
∑

l=0,2,4···

Al Pl(µ)︸ ︷︷ ︸
prob. (ii-2)

, (6.24)

nas quais, em ambos os problemas, os coeficientes são dados por

Al =
〈Pl(µ), f(µ)〉
||Pl(µ)||2

= (2l + 1)

∫ 1

0

f(µ)Pl(µ)dµ . (6.25)
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Em (6.24) temos as chamadas série de Legendre ímpar e série de Legendre par.
Na variável θ, temos

f(θ) =
∑

l=1,3,5···

Al Pl(cos θ)︸ ︷︷ ︸
prob. (ii-1)

ou
∑

l=0,2,4···

Al Pl(cos θ)︸ ︷︷ ︸
prob. (ii-2)

, (6.26)

onde, para ambas as séries, os coeficientes são dados por

Al =
〈Pl(cos θ), f(θ)〉
||Pl(cos θ)||2

= (2l + 1)

∫ π/2

0

f(θ)Pl(cos θ)dθ . (6.27)

Enfim, ressalte-se que as funções de Legendre de 2a
¯ espécie Ql(µ) são singulares nos pontos µ = ±1,

i.e., em θ = 0 e θ = π, que são respectivamente as colatitudes dos polos norte e sul de uma esfera.
Como um ou ambos os polos sempre estarão nos domínios espaciais das EDPs que resolveremos usando
as coordenadas esféricas, sempre descartaremos essas funções para evitar soluções infinitas.

6.2 Aplicação da Série de Legendre na Resolução da Equação
de Laplace
Exemplo 6.2.1. Cálculo da solução da equação de Laplace ∇2u(r, θ, φ) = 0 (coordenadas

esféricas) numa esfera de raio b centrada na origem sob a condição de fronteira u(b, θ, φ) = f(θ).

Note que a condição de fronteira u(b, θ, φ) = f(θ) [menos genérica que a
condição u(b, θ, φ) = f(θ, φ)] não depende do ângulo longitudinal φ ; a solução,
portanto, também deve independer desse ângulo: u = u(r, θ). Já desprezando,
no laplaciano, o termo contendo a derivada parcial em relação a φ, podemos
escrevera formulação do problema como segue:∇

2u(r, θ) =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 senθ

∂

∂θ

(
senθ

∂u

∂θ

)
= 0

r ∈ [0, b] , θ ∈ [0, π] , u(b, θ) = f(θ) .

(6.28)

Com a substituição de u(r, θ) ≡ R(r)Θ(θ) na equação de Laplace, separamos duas EDOs:(d2R
dr2

+
2

r

dR

dr

)
Θ +

R

r2 senθ

d

dθ

(
senθ

dΘ

dθ

)
= 0

× r2/RΘ
⇒ r2R′′ + 2rR′

R
+

1

Θ senθ

d

dθ

(
senθ

dΘ

dθ

)
︸ ︷︷ ︸

−λ

= 0

⇒


d

dθ

(
senθ

dΘ

dθ

)
+ (λ senθ)Θ(θ) = 0 , θ ∈ [0, π] . . . . . . . . .EDO angular

r2R′′ + 2rR′ − λR(r) = 0 , r ∈ [0, b] . . . . . . . . . . . . . . . . . .EDO radial

(6.29)

(6.30)

Separamos a EDO angular usando a constante (−λ) em conformidade com a nota emitida após a equa-
ção (3.32), pois a sua resolução com θ ∈ [0, π] constitui um problema de Sturm-Liouville: exatamente
aquele na equação (6.7), cujos autovalores e autofunções, como vimos, são

λ = λ l = l(l + 1)
l = 0,1,2···←−−−−−−−→ Θl(θ) = Pl(cos θ) . (6.31)

Substituindo λ = λ l = l(l + 1) na EDO radial (uma equação de Euler-Cauchy) e resolvendo-a,
obtemos

r2R′′ + 2rR′ − l(l + 1)R(r) = 0 ⇒ R = Rl(r) = Al r
l +Bl/r

l+1 . (6.32)

Podemos agora formar a solução geral u(r, θ) =
∑
lRl(r)Θl(θ), resultado que realçamos abaixo:
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Eis a solução da equação de Laplace em coordenadas esféricas em proble-
mas com simetria longitudinal (independência da coordenada φ) numa esfera
centrada na origem:

∇2u(r, θ) = 0 ⇒ u(r, θ) =

∞∑
l=0

(
Al r

l +
Bl
rl+1

)
Pl(cos θ) . (6.33)

No problema sendo resolvido, devemos fazer Bl = 0 para evitar que a solução tenda a infinito
quando r → 0; assim,

u(r, θ) =

∞∑
l=0

Al r
l Pl(cos θ) ■

Para determinar Al, exigimos que a solução satisfaça a condição de fronteira não homogênea:

u(b, θ) =

∞∑
l=0

Al b
l Pl(cos θ) = f(θ) .

Essa equação mostra que Al bl são os coeficientes da série de Legendre de f(θ) descrita por (6.16) e
(6.17):

Al b
l =

2l + 1

2

∫ π

0

f(θ)Pl(cos θ) senθ dθ ⇒ Al =
2l + 1

2b l

∫ π

0

f(θ)Pl(cos θ) senθ dθ ■

A solução é formada pelas duas equações finalizadas com um quadrado negro.

Exemplo 6.2.2. Cálculo da solução u(r, θ) da equação de Laplace na região entre duas
superfícies esféricas centradas na origem e de raios a e b (a < b) sob as condições de fronteira u(a, θ) = 0
e u(b, θ) = f(θ).

Como as condições de fronteira não dependem da longitude φ, a solução
geral é aquela dada na equação (6.33):

u(r, θ) =

∞∑
l=0

(
Al r

l +
Bl
rl+1

)
Pl(cos θ) .

Vamos impor primeiramente condição de fronteira homogênea:

u(a, θ) =

∞∑
l=0

(
Al a

l +
Bl
al+1

)
Pl(cos θ) = 0 ⇒ Al a

l +
Bl
al+1

= 0 ⇒ Bl = −a2l+1Al ,

cuja substituição na solução geral fornece

u(r, θ) =

∞∑
l=0

(
Al r

l +
−a2l+1Al
rl+1

)
Pl(cos θ) ⇒ u(r, θ) =

∞∑
l=0

Al

(
rl − a2l+1

rl+1

)
Pl(cos θ) ■

Agora impomos a outra condição de fronteira:

u(b, θ) =

∞∑
l=0

Al

(
bl − a2l+1

bl+1

)
Pl(cos θ) =

∞∑
l=0

[
Al

b2l+1 − a2l+1

bl+1

]
Pl(cos θ) = f(θ) .

Entre colchetes temos os coeficientes da série de Legendre de f(θ); usando (6.17), podemo escrever

Al
b2l+1 − a2l+1

bl+1
=

2l + 1

2

∫ π

0

f(θ)Pl(cos θ) senθ dθ ,

donde

Al =
(2l + 1)bl+1

2(b2l+1 − a2l+1)

∫ π

0

f(θ)Pl(cos θ) senθ dθ ■
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Exemplo 6.2.3. Resolva o seguinte problema em coordenadas esféricas:∇
2u(r, θ) =

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 senθ

∂

∂θ

(
senθ

∂u

∂θ

)
= 0

r ∈ [2,∞) , θ ∈ [0, π] , u(2, θ) = −2 cos θ + 6 sen2θ + 10 cos3 θ .

A figura abaixo ilustra esse problema.

De acordo com (6.33), temos que

u(r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl(cos θ) .

Mas u(r →∞, θ) deve ser finito ⇒ Al = 0 ⇒ u(r, θ) =

∞∑
l=0

Bl
rl+1

Pl(cos θ) . [ I ]

Agora impondo a condição de fronteira, obtemos

u(2, θ) =

∞∑
l=0

Bl
2l+1

Pl(cos θ) = −2 cos θ + 6 sen2θ + 10 cos3 θ
µ = cos θ

= −2µ+ 6(1− µ2) + 10µ3 ,

ou
∞∑
l=0

Bl
2l+1

Pl(µ) = 6− 2µ− 6µ2 + 10µ3 . [ II ]

Vemos que Bl/2l+1 são os coeficientes da série de Legendre do polinômio no membro direito. Ora,
qualquer polinômio pode ser escrito em termos dos polinômios de Legendre facilmente usando as
relações que expressam as potências µ0 = 1, µ, µ2, · · · em termos de Pl(µ) :

P0(µ) = 1

P1(µ) = µ

P2(µ) =
3µ2 − 1

2

P3(µ) =
5µ3 − 3µ

2
...

⇒



1 = P0(µ)

µ = P1(µ)

µ2 =
2P2(µ) + P0(µ)

3

µ3 =
2P3(µ) + 3P1(µ)

5
...

(6.34)

Podemos, portanto, escrever [ II ] na seguinte forma:

B0

21
P0(µ) +

B1

22
P1(µ) +

B2

23
P2(µ) +

B3

24
P3(µ) + · · ·

= 6P0(µ)− 2P1(µ)− 6 · 2P2(µ) + P0(µ)

3
+ 10 · 2P3(µ) + 3P1(µ)

5

= 4P0(µ) + 4P1(µ)− 4P2(µ) + 4P3(µ) ,

donde, por simples comparação, obtemos Bl = 0 para l ≥ 4 , bem como

B0

2
= 4 ,

B1

4
= 4 ,

B2

8
= −4 , B3

16
= 4 ⇒ B0 = 8 , B1 = 16 , B2 = −32 , B3 = 64 .
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Substituindo esses resultados em [ I ], obtemos a resposta:

u(r, θ) =
B0

r
P0(µ) +

B1

r2
P1(µ) +

B2

r3
P2(µ) +

B3

r4
P3(µ)

=
8

r
P0(cos θ) +

16

r2
P1(cos θ)−

32

r3
P2(cos θ) +

64

r4
P3(cos θ) ■

Alternativamente, podemos, no lado esquerdo de [ II ], substituir Pl(µ) por suas expressões em
termos de µ, assim obtendo uma série de potências de µ, cuja comparação com o polinômio no lado
direito permite calcular Bl. Mas surge a questão: é necessário substituir todos Pl(µ) (l = 0, 1, 2 · · · )
por suas respectivas expressões? A resposta é não! Sendo de 3o

¯ grau o polinômio no lado direito, basta
considerar, no lado esquerdo, apenas os polinômios de Legendre de até o 3o

¯ grau [até o P3(µ)], uma
vez que o conjunto

{
Pl(µ)

}3
l=0

, sendo linearmente independente e tendo polinômios de graus 0 até 3,
é uma base do espaço vetorial formado por todos os polinômios de até o 3o

¯ grau.
Calculemos agora Bl usando esse procedimento. Em [ II ], vamos substituir as expressões dos po-

linômios de Legendre de até o 3o
¯ grau:

B0

21
P0(µ) +

B1

22
P1(µ) +

B2

23
A2 P2(µ) +

B3

24
P3(µ)

=
B0

2
· 1 + B1

4
· µ+

B2

8
· 3µ

2 − 1

2
+
B3

16
· 5µ

3 − 3µ

2

=
(B0

2
− B2

16

)
+
(B1

4
− 3B3

32

)
µ+

3B2

16
µ2 +

5B3

32
µ3 = 6− 2µ− 6µ2 + 10µ3 ,

donde, comparando os coeficientes dos polinômios em ambos lados, obtemos

5B3

32
⇒ B3 = 64 ,

3B2

16
⇒ B2 = −32 ,

B1

4
− 3B3

32
=

B1

4
− 3(64)

32
= −2 ⇒ B1 = 16 ,

B0

2
− B2

16
=

B0

2
− −32

16
= 6 ⇒ B0 = 8 .

Esses são os mesmos valores já calculados acima, sendo a resposta a mesma, portanto.

Exemplo 6.2.4. Calcule a solução finita da equação de Laplace em coordenadas esféricas
na região V dada por x2 + y2 + z2 ≤ 9 sob a condição u(x, y, z) = x2 + y2 − z na fronteira de V .

A região V e a condição de fronteira é ilustrada na figura à direita. Esse
problema é independente da coordenada longitudinal φ? Verificamos isso es-
crevendo a condição de fronteira nas coordenadas esféricas:

u
∣∣
r = 3

=
[
x2 + y2 − z

]
r = 3

=
[
r2 sen2θ − r cos θ

]
r = 3

= 9 sen2θ − 3 cos θ . [ I ]

Uma vez que esse resultado é independente de φ, temos, de acordo com
(6.33), que

∇2u(r, θ) = 0 ⇒ u(r, θ) =

∞∑
l=0

(
Al r

l +
Bl
rl+1

)
Pl(cos θ) .

Mas u(r → 0, θ) deve ser finito ⇒ Bl = 0 ⇒ u(r, θ) =

∞∑
l=0

Alr
lPl(cos θ) , [ II ]

onde os coeficientes Al hão de ser determinados a partir da condição de fronteira em [ I ]:

u(3, θ) =

∞∑
l=0

3lAl Pl(cos θ) = 9 sen2θ − 3 cos θ ,
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ou, em termos de µ = cos θ,

u(3, θ) =

∞∑
l=0

3lAl Pl(µ) = 9(1− µ2)− 3µ = 9− 3µ− 9µ2 . [ III ]

Agora prosseguimos como no exemplo anterior, expressando o polinômio no lado direito em termos
dos polinômios de Legendre, obtendo

A0 P0(µ) + 3A1 P1(µ) + 9A2 P2(µ) + · · · = 9P0(µ)− 3P1(µ)− 9 · 2P2(µ) + P0(µ)

3

= 6P0(µ)− 3P1(µ)− 6P2(µ) ,

donde,

A0 = 6 , 3A1 = −3 ⇒ A1 = −1 , 9A2 = −6 ⇒ A2 = −2

3
, Al

∣∣
l≥ 3

= 0 .

Substituindo esses resultados em [ II ], obtemos, finalmente,

u(r, θ) = A0P0(µ) +A1rP1(µ) +A2r
2P2(µ)

= 6P0(cos θ)− rP1(cos θ)−
2

3
r2P2(cos θ) ■

Exemplo 6.2.5. Cálculo da solução u(r, θ) da equação de
Laplace na semiesfera de raio b mostrada na figura sob as condições
de fronteira:
- Na superfície plana (a base) da semiesfera: u(r, π/2) = 0
- Na superfície esférica: u(b, θ) = f(θ).

A formulação desse problema com simetria longitudinal é pa-
recida com aquela em (6.28), diferindo na variação da colatitude,
agora θ ∈ [0, π/2], e pela condição adicional u(r, π/2) = 0:∇

2u(r, θ) =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 senθ

∂

∂θ

(
senθ

∂u

∂θ

)
= 0

r ∈ [0, b] , θ ∈ [0, π/2] , u(r, π/2) = 0 , u(b, θ) = f(θ) .

(6.35)

Com a separação de variável u(r, θ) = R(r)Θ(θ), obtemos as mesmas EDOs angular e radial em
(6.29) e (6.31). Mas o problema de Sturm-Liouville que surge para Θ(θ) é o do prob. (ii)-1 (6.18),
cujos autovalores e autofunções são os fornecidos para o prob. (ii)-1 em (6.20). Então continuam as
mesmas a forma da parte radial dada por (6.32) e a forma da solução geral dada por (6.33), só devendo
os valores de l serem apenas os ímpares. Portanto a solução geral do presente problema é

u(r, θ) =
∑

l=1,3,5···

(
Al r

l +
Bl
rl+1

)
Pl(cos θ) . (6.36)

Nesta, devemos fazer Bl = 0 para evitar uma solução infinita na origem:

u(r, θ) =
∑

l=1,3,5···

Al r
l Pl(cos θ) ■

Para determinar os coeficientes Al, impomos a condição de fronteira não homogênea:

u(b, θ) =
∑

l=1,3,5···

[Alb
l]Pl(cos θ) = f(θ) , θ ∈ [0, π/2] ,

onde, entre colchetes, temos os coeficientes da série de Legendre ímpar de f(θ), os quais, de acordo
com (6.27), são dados por

Alb
l = (2l + 1)

∫ π/2

0

f(θ)Pl(cos θ) senθ dθ ,

donde

Al =
2l + 1

bl

∫ π/2

0

f(θ)Pl(cos θ) senθ dθ ■
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Exemplo 6.2.6. Resolva o problema no Exemplo 6.2.5 com esta única modificação: a condição

de fronteira na base da semiesfera agora é
∂u

∂θ
(r, π/2) = 0 .

Dessa condição de fronteira deduzimos que Θ ′(π/2) = 0, indicando que, agora, o problema de
autovalor é o prob. (ii)-2 em (6.18), cujos autovalores e autofunções são os fornecidos para o prob.
(ii)-2 em (6.20). Portanto, todo o cálculo realizado no Exemplo 6.2.5 continua válido neste exemplo,
exceto pelos valores de l, que agora devem ser os naturais pares. Assim, a solução é

u(r, θ) =
∑

l=0,2,4···

Al r
l Pl(cos θ) , com Al =

2l + 1

bl

∫ π/2

0

f(θ)Pl(cos θ) senθ dθ ■

6.3 Exercícios

6.3.1 Enunciados
1] Calcule a solução finita da equação de Laplace na região V dada por 1/4 ≤ x2 + y2 + z2 ≤ 1 sob
as seguintes condições: u(x, y, z) = z se x2 + y2 + z2 = 1/4 e u(x, y, z) = 0 se x2 + y2 + z2 = 1 .

2] Resolva o seguinte problema em coordenadas esféricas:
∇2u(r, θ) =

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 senθ

∂

∂θ

(
senθ

∂u

∂θ

)
= 0

r ∈ [a, b] , θ ∈ [0, π/2] , u(a, θ) = f(θ) , u(b, θ) = 0 ,
∂u

∂θ
(r, π/2) = 0 .

3] Calcule a solução finita da equação de Laplace na semiesfera V dada por x2+y2+z2 ≤ 9 e z ≥ 0,
sob as seguintes condições na fronteira dessa semiesfera: u = 1+ 3z2 na parte esférica e ∂u/∂θ = 0 na
parte plana.

6.3.2 Soluções
1

A região V encontra-se entre as superfícies esféricas de raios 1/2 e 1 centradas na origem.

u(r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl(cos θ) .

u(1, θ) =

∞∑
l=0

(
Al +Bl

)
Pl(cos θ) = 0 ⇒ Al +Bl = 0 ⇒ Bl = −Al .

u(r, θ) =

∞∑
l=0

Al

(
rl − 1

rl+1

)
Pl(µ) (µ = cos θ) .

u(1/2, θ) =

∞∑
l=0

Al

( 1

2l
− 2l+1

)
Pl(µ) = z

∣∣
r=1/2

= r cos θ
∣∣
r=1/2

=
1

2
µ .

A0(1− 2)︸ ︷︷ ︸
0

P0(µ) + A1

(1
2
− 4
)

︸ ︷︷ ︸
A1(−7/2) = 1/2

P1(µ) + · · · =
1

2
P1(µ) .

A0 = 0 , A1 = −1/7 , e Al = 0 para l ≥ 2 .

u(r, θ) = A1

(
r − 1

r2

)
P1(cos θ) = −1

7

(
r − 1

r2

)
cos θ ■
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2

A figura à direita ilustra o problema.

u(r, θ) =
∑

l=0,2,4···

(
Al r

l +
Bl
rl+1

)
Pl(cos θ) .

u(b, θ) =
∑

l=0,2,4···

(
Al b

l +
Bl
bl+1︸ ︷︷ ︸

∴ 0

)
Pl(cos θ) = 0 ⇒ Bl = −b2l+1Al .

u(r, θ) =
∑

l=0,2,4···

Al

(
rl +

−b2l+1

rl+1

)
Pl(cos θ) .

u(r, θ) =
∑

l=0,2,4···

Al

(r2l+1 − b2l+1

rl+1

)
Pl(cos θ) ■

u(a, θ) =
∑

l=0,2,4···

Al

(a2l+1 − b2l+1

al+1

)
Pl(cos θ) = f(θ) , θ ∈ [0, π/2] .

Al

(a2l+1 − b2l+1

al+1

)
= (2l + 1)

∫ π/2

0

f(θ)Pl(cos θ) senθ dθ .

Al =
(2l + 1) al+1

a2l+1 − b2l+1

∫ π/2

0

f(θ)Pl(cos θ) senθ dθ ■

3

A figura à direita ilustra esse problema.

u
∣∣
r = 3

=
[
1 + 3z2

]
r = 3

=
[
1 + 3(r cos θ)2

]
r = 3

µ=cos θ
= 1 + 27µ2

= P0(µ) + 27 · 2P2(µ) + P0(µ)

3
= 10P0(µ) + 18P2(µ) .

u(r, θ) =
∑

l=0,2,4···

(
Alr

l +

0(∗)

Bl
rl+1

)
Pl(µ) .[

(∗) pois u(r → 0, θ) finito ⇒ Bl = 0
]
.

u(3, θ) =
∑

l=0,2,4···

3lAlPl(µ) = A0︸︷︷︸
10

P0(µ) + 9A2︸︷︷︸
18

P2(µ) + · · · = 10P0(µ) + 18P2(µ) .

A0 = 10 , A2 = 2 .

u(r, θ) = A0r
0P0(cos θ) +A2r

2P2(cos θ) = 10P0(cos θ) + 2r2P2(cos θ) ■

ou, opcionalmente, uma vez que, P2(µ) = (3µ2 − 1)/2,

u(r, θ) = 10 + r2(3 cos2 θ − 1) .
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Capítulo 7

Resolução de EDPs em Domínios
Infinitos

- Ref. [5] , seç. 11.7, 11.8 e 12.6

- Ref. [8] , seç. 14.3 e 14.4
- Ref. [6] , cap. 5
- Ref. [2] , cap. 6

7.1 Integrais de Fourier

7.1.1 Construção das Integrais de Fourier
Cada integral de Fourier a se deduzir abaixo pode ser formalmente entendida como o limite de uma

série de Fourier quando o intervalo de expansão tende a infinito. Para mostrar isso, considere uma
função qualquer definida em todo o eixo real. Como, em geral, não podemos desenvolver essa função
em série de Fourier em todo o seu domínio (a não ser que ela seja periódica), começamos considerando
a sua série de Fourier restrita a um intervalo [−ℓ, ℓ ] com o intuito de fazer ℓ→∞:

f(x) =

∞∑
n=0

An cos
nπx

ℓ
+Bn sen

nπx

ℓ
, com


An

∣∣∣
n≥1

=
1

ℓ

∫ ℓ

−ℓ
f(x) cos

nπx

ℓ
dx , A0 =

1

2ℓ

∫ ℓ

−ℓ
f(x)dx ,

Bn =
1

ℓ

∫ ℓ

−ℓ
f(x) sen

nπx

ℓ
dx (B0 = 0) .

Mudemos o índice do somatório de n para k = nπ/ℓ para na forma

f(x) =
∑
k

Akℓ
π
cos kx+Bkℓ

π
senkx ,

onde k = 0,
π

ℓ
,
2π

ℓ
,
3π

ℓ
, · · · , que são valores que saltam de ∆k =

π

ℓ
. Multipliquemos agora o termo

geral por
ℓ

π
∆k, o que não altera o somatório, pois

ℓ

π
∆k = 1, e mudemos em seguida a notação dos

coeficientes conforme indicamos abaixo:

f(x) =
∑
k

[ ℓ
π
Akℓ
π︸ ︷︷ ︸

≡ α(k)

cos kx+
ℓ

π
Bkℓ
π︸ ︷︷ ︸

≡ β(k)

senkx
]
∆k =

∑
k

[
α(k) cos kx+ β(k) senkx

]
∆k . (7.1)

Além disso, vamos escrever α(k) e β(k) na forma

α(k) =
ℓ

π
Akℓ
π

=


ℓ

π

1

ℓ

∫ ℓ

−ℓ
f(x) cos kx dx =

1

π

∫ ℓ

−ℓ
f(x) cos kx dx se k > 0

ℓ

π

1

2ℓ

∫ ℓ

−ℓ
f(x) dx =

1

2π

∫ ℓ

−ℓ
f(x) cos kx dx =

1

2π

∫ ℓ

−ℓ
f(x) dx se k = 0 ,

β(k) =
ℓ

π
Bkℓ
π

=
ℓ

π

1

ℓ

∫ ℓ

−ℓ
f(x) senkx dx =

1

π

∫ ℓ

−ℓ
f(x) senkx dx .
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Estamos pronto para proceder ao limite de ℓ→∞ , quando também ∆k→ 0, isto é, k tende a apre-

sentar uma variação contínua e, por conseguinte, o somatório
∑
k

tende a ser uma integral
∫ ∞

0

(· · · ) dk,

o que nos leva ao resultado

f(x) =

∫ ∞

0

[
α(k) cos kx+ β(k) senkx

]
dk , com


α(k) =

1

π

∫ ∞

−∞
f(x) cos kx dx

β(k) =
1

π

∫ ∞

−∞
f(x) senkx dx ,

(7.2)

o qual compõe a chamada integral de Fourier em sentido estrito.
Se a função f(x) for ímpar, então α(k) = 0, obtendo-se, nesse caso, a integral de Fourier em senos:

f(x) =

∫ ∞

0

β(k) senkx dk , com β(k) =
2

π

∫ ∞

0

f(x) senkx dx . (7.3)

E, se f(x) for par, então β(k) = 0, e (7.2) torna-se a integral de Fourier em cossenos:

f(x) =

∫ ∞

0

α(k) cos kx dk , com α(k) =
2

π

∫ ∞

0

f(x) cos kx dx . (7.4)

Na Nota 1 abaixo demonstramos que a integral de Fourier (7.2) também tem a seguinte "forma
complexa" (ou "forma exponencial"):

f(x) =

∫ ∞

−∞
e−ikxγ(k) dk , com γ(k) =

1

2π

∫ ∞

−∞
eikxf(x) dx . (7.5)

Em sentido amplo, referimo-nos a (7.2), (7.3), (7.4) e (7.5) conjuntamente por integrais de Fourier,
sendo elas, em sentido estrito, a integral de Fourier completa, em senos, em cossenos e complexa,
respectivamente.

Nota 1 – Dedução de (7.5)

Substituindo (1.16) na integral para f(x) em (7.2), obtemos

f(x) =

∫ ∞

0

[
α(k)

eikx + e−ikx

2
+ β(k)

eikx − e−ikx

2i

]
dk

=

∫ ∞

0

α(k)− iβ(k)

2
eikxdk +

∫ ∞

0

α(k) + iβ(k)

2
e−ikxdk (7.6)

(∗)
=

∫ 0

−∞

α(−l)− iβ(−l)
2︸ ︷︷ ︸
γ(l)

e−ilxdl +

∫ ∞

0

α(l) + iβ(l)

2︸ ︷︷ ︸
γ(l)

e−ilxdl =

∫ ∞

−∞
γ(l) e−ilxdl ✓ (7.7)

onde, na passagem (∗), fizemos, na primeira integral, a mudança de variável k = −l e invertemos a ordem
de integração, mudamos, na segunda integral, a letra de k para l, e, nas integrais resultantes, usamos a
função γ na definição ⋆ abaixo . Assim demonstramos a representação integral de f(x) dada em (7.5). Para
provar a representação integral de γ(k) em (7.5), substituímos, na definição ⋆ da função γ, as expressões
de α(k) e β(k) dadas em (7.2):

γ(l)
⋆
≡


α(l) + iβ(l)

2
(l ≥ 0)

α(−l)− iβ(−l)
2

(l ≤ 0)

=
1

2


1

π

∫ ∞

−∞
f(x) cos lx dx+

i

π

∫ ∞

−∞
f(x) sen lx dx (l ≥ 0)

1

π

∫ ∞

−∞
f(x) cos(−lx) dx−

i

π

∫ ∞

−∞
f(x) sen(−lx) dx (l ≤ 0)

=
1

2π


∫ ∞

−∞
f(x)(cos lx+ i sen lx) dx se l ≥ 0∫ ∞

−∞
f(x)(cos lx+ i sen lx) dx se l ≤ 0

=
1

2π

∫ ∞

−∞
f(x) eilxdx ✓ (7.8)

Nota 2 – Cada integral de Fourier pode ser expressa por meio de uma única equação:

Em (7.2), substituindo as expressões de α(k) and β(k) na de f(x), tendo o cuidado de, antes da substituição,
denotar a variável de integração x nas expressões de α(k) and β(k) por outra letra, digamos x′, para
distingui-la da variável x presente na representação integral de f(x), obtemos

f(x) =

∫ ∞

0
dk

[(
1

π

∫ ∞

−∞
f(x′) cos kx′dx′

)
cos kx+

(
1

π

∫ ∞

−∞
f(x′) senkx′dx′

)
senkx

]
=

1

π

∫ ∞

0

∫ ∞

−∞
f(x′)

[
cos kx′ cos kx+ senkx′ senkx

]
dx′dk ,
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donde
f(x) =

1

π

∫ ∞

0

∫ ∞

−∞
f(x′) cos k(x′ − x) dx′dk . (7.9)

Usando substituições semelhantes para unificar (7.3), (7.4) e (7.5), obtemos

f(x) =
2

π

∫ ∞

0
senkx

∫ ∞

0
f(x′) senkx′dx′dk , (7.10)

f(x) =
2

π

∫ ∞

0
cos kx

∫ ∞

0
f(x′) cos kx′dx′dk , (7.11)

f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x′)e−ik(x

′−x)dx′dk . (7.12)

7.1.2 Condições Suficientes para a Validade das Integrais de Fourier
Condições suficientes para garantir a validade das integrais de Fourier (e, portanto, das transfor-

madas de Fourier) foram estabelecidas. Primeiramente exige-se que a função f(x) seja absolutamente
integrável, isto é que

∫∞
−∞ |f(x)|dx < ∞ no caso de (7.2) e (7.5) e que

∫∞
0
|f(x)|dx < ∞ nos casos de

(7.3) e (7.4). Note que, para essa condição ser satisfeita, é necessário que a função tenda a zero no
infinito: f(x → ±∞) = 0 em (7.2) e (7.5), e f(x → ∞) = 0 em (7.3) e (7.4). As demais condições
são similares às que garantem a convergência das séries de Fourier: exige-se que tanto f(x) quanto
f ′(x) sejam contínuas por partes [isto é, que f(x) seja suave por partes] em qualquer porção finita do
intervalo intervalo de integração. Sob essas condições, vale a mesma regra de convergência das séries
de Fourier: (7.9), (7.10), (7.11) e (7.12) valem com f(x) (no lado esquerdo dessas equações) substituído
por [f(x+) + f(x−)]/2. Assim, tomando (7.12) para exemplificar essa regra de convergência, temos
que

1

π

∫ ∞

0

∫ ∞

−∞
f(x′) cos k(x′ − x) dx′dk =

f(x+) + f(x−)

2
. (7.13)

Como as condições estabelecidas são suficientes, mas não necessárias, existem funções que, mesmo
não as satisfazendo, podem ser representadas por uma integral de Fourier. Esse assunto é tratado na
Ref. [2], seção 53 tendo em conta a seção 13.

7.1.3 Resolução de EDPs por Integrais de Fourier
Assim como uma série de Fourier de uma função f(x) surge como uma expansão dessa função em

autofunções oriundas de um problema de autovalor na variável x que toma valores num intervalo finito,
espera-se que uma integral de Fourier para essa função surgirá quando x tomar valores num intervalo
infinito. De fato, exemplificamos isso resolvendo a seguir, por separação de variáveis, primeiramente a
equação unidimensional do calor numa barra de difusividade térmica α [para calcular a temperatura
T em função da abscissa x e do tempo t] e, em seguida, a equação de Laplace. Admite-se que o aluno
esteja familiarizado com o exposto no Cap. 6 da Apostila de Cálculo 4.

Exemplo 7.1.1. O problema de calor numa barra semi-infinita com sua extremidade a 0◦:
∂2T

∂x2
(x, t) =

1

α

∂T

∂t
, x ∈ (0,∞) , t > 0

T (0, t) = 0 , T (x, 0) = f(x) .

(7.14)

Este é o Exemplo 6.1 na Apostila de Cálculo 4, mas com ℓ → ∞. Resolvamo-lo por passos
similares aos realizados naquele exemplo, começando por separar as variáveis, isto é, substituindo
T (x, t) = ψ(x)τ(t) e sendo λ a constante de separação. Obtemos τ(t) = e−λαt bem como o problema
de autovalor

ψ′′ + λψ(x) = 0 , x ∈ (0,∞) , ψ(0) = 0 ,

que é assim resolvido (seguindo os passos do problema de autovalor na equação (6.1) da Apostila de
Cálculo 4):

Para λ = 0: ψ(x) = c1 + c2x

c2 = 0 para evitar valor infinito de ψ(x→∞)
ψ(0) = c1 = 0

〉
⇒

{
ψ(x) = 0 (∀x)é a única solução
logo, não zero é autovalor.
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Para λ = −k2 (k > 0): ψ(x) = c1 e
−kx + c2 e

kx

c2 = 0 para evitar valor infinito de ψ(x→∞)
ψ(0) = c1 = 0

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
não há autovalores negativos.

Para λ = k2 (k > 0): ψ(x) = c1 cos kx+ c2 senkx

ψ(0) = c1 = 0 ⇒ ψ(x) = c2 senkx : esta solução é sempre finita! .

Portanto, temos os autovalores λk = k2 , (k > 0) , aos quais correspondem as autofunções ψk(x) =
senkx . Este é um caso de autovalores de espectro contínuo (em contraste aos autovalores de espectro
discreto observados anteriormente).

A solução geral é, portanto,

T (x, t) =

∫ ∞

0

B(k) senkx e−k
2α tdk ■ (7.15)

Vamos impor agora a condição inicial:

T (x, 0) =

∫ ∞

0

B(k) senkx dk = f(x) ,

e eis aí a esperada expansão de f(x) em autofunções de espectro contínuo, representada por uma
integral, em vez dos somatórios característicos das séries de autofunções de espectro discreto. Usando
(7.3), obtemos

B(k) =
2

π

∫ ∞

0

f(x) senkx dx ■ (7.16)

A resposta do problema é (7.15) com B(k) dado por (7.16).

Exemplo 7.1.2. O problema de calor numa barra semi-infinita com sua extremidade isolada
termicamente: 

∂2T

∂x2
(x, t) =

1

α

∂T

∂t
, x ∈ (0,∞) , t > 0

∂T

∂x
(0, t) = 0 , T (x, 0) = f(x) .

(7.17)

Com a separação T (x, t) = ψ(x)τ(t), obtemos τ(t) = e−λα t e o problema de autovalor

ψ′′ + λψ(x) = 0 , x ∈ (0,∞) , ψ′(0) = 0 ,

que é assim resolvido:

Para λ = 0: ψ(x) = c1 + c2x ⇒ ψ′(x) = c2

ψ′(0) = c2 = 0
〉
⇒

{
ψ(x) = c1 (∀x)é solução finita não nula;
logo, zero é autovalor.

Para λ = −k2 (k > 0): ψ(x) = c1 e
−kx + c2 e

kx ⇒ ψ′(x) = −kc1 e−kx + kc2 e
kx .

c2 = 0 para evitar valor infinito de ψ(x→∞)
ψ′(0) = −kc1 = 0 ⇒ c1 = 0

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
não há autovalores negativos.

Para λ = k2 (k > 0): ψ(x) = c1 cos kx+ c2 senkx ⇒ ψ′(x) = −kc1 senkx+ kc2 cos kx .

ψ′(0) = kc2 = 0 ⇒ c2 = 0 ⇒ ψ(x) = c1 cos kx : esta solução é sempre finita! .

Portanto, temos os autovalores λk = k2 , (k > 0) , aos quais correspondem as autofunções ψk(x) =
cos kx . Portanto, a solução geral é

T (x, t) =

∫ ∞

0

A(k) cos kx e−k
2α tdk ■ (7.18)
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Impondo a condição inicial, obtemos

T (x, 0) =

∫ ∞

0

A(k) cos kx dk = f(x) ,

donde, usando (7.4), calculamos A(k), completando a resposta:

A(k) =
2

π

∫ ∞

0

f(x) cos kx dx ■ (7.19)

Exemplo 7.1.3. O problema de calor numa barra infinita em ambas as direções:

∂2T

∂x2
(x, t) =

1

α

∂T

∂t
, x ∈ (−∞,∞) , t > 0 , T (x, 0) = f(x) . (7.20)

Com a separação T (x, t) = ψ(x)τ(t), obtemos τ(t) = e−λα t e o problema de autovalor

ψ′′ + λψ(x) = 0 , com x ∈ (−∞,∞) ,

sem condições de fronteira pela simples razão de não haver fronteira na reta real, sendo a condição de
finitude a única a se impor.

Para λ = 0: ψ(x) = c1 + c2x

c2 = 0 para evitar valor infinito de ψ(x→∞)
〉
⇒

{
ψ(x) = c1 (∀x)é solução finita não nula;
logo, zero é autovalor.

Para λ = −k2 (k > 0): ψ(x) = c1 e
−kx + c2 e

kx

c1 = 0 para evitar valor infinito de ψ(x→ −∞)
c2 = 0 para evitar valor infinito de ψ(x→∞)

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
não há autovalores negativos.

Para λ = k2 (k > 0): ψ(x) = c1 cos kx+ c2 senkx
Não há qualquer restrição sobre c1 e c2.

Portanto, temos os autovalores λk = k2 , (k ≥ 0) , aos quais correspondem as autofunções
ψk(x) = A(k) cos kx+B(k) senkx. A solução geral é, portanto,

T (x, t) =

∫ ∞

0

[
A(k) cos kx+B(k) senkx

]
e−k

2α tdk ■ (7.21)

Impondo a condição inicial

T (x, 0) =

∫ ∞

0

[
A(k) cos kx+B(k) senkx

]
dk = f(x) ,

e usando (7.2), obtemos

A(k) =
1

π

∫ ∞

−∞
f(x) cos kx dx e B(k) =

1

π

∫ ∞

−∞
f(x) senkx dx ■ (7.22)

A parte final da solução dentro dessa moldura acima pode ser desenvolvida pelo seguinte modo
alternativo:
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Para λ = k2 (k > 0): ψ(x) = c1 e
−ikx + c2 e

ikx senkx

Não há qualquer restrição sobre c1 e c2.

Portanto, temos os autovalores λk = k2, com k ∈ R, aos quais correspondem as autofunções
ψk(x) = e−ikx (v. Ressalva abaixo). A solução geral é, portanto,

T (x, t) =

∫ ∞

−∞
C(k) e−ikx e−k

2α tdk ■ (7.23)

Impondo a condição inicial

T (x, 0) =

∫ ∞

−∞
C(k) e−ikxdk = f(x) , (7.24)

e usando (7.5), obtemos

C(k) =
1

2π

∫ ∞

−∞
f(x) eikxdx ■ (7.25)

Ressalva: As autofunções também podem ser expressas por ψk(x) = eikx, mas usamos a expressão
com o sinal negativo no expoente para obter (7.24) na forma de (7.5).

Exemplo 7.1.4. Resolva o seguinte problema:
∂2u

∂x2
+
∂2u

∂y2
(x, y) = 0 , x ∈ (0,∞) , y ∈ (0, h)

u(0, y) = u(x, 0) = 0 , u(x, h) = f(x) .

(7.26)

∂2u

∂x2
+
∂2u

∂y2
(x, y) = 0

u(x,y) ≡ X(x)Y (y)−−−−−−−−−−−−−−→ X ′′

X︸︷︷︸
−λ

+
Y ′′

Y
= 0 .

X ′′ + λX(x) = 0 , x ∈ (0,∞) , X(0) = 0 .

Este problema de autovalor foi resolvido no Exemplo 7.1.1, onde
obtivemos λk = k2 (k > 0) e Xk(x) = senkx .

Y ′′
k − λk︸︷︷︸

k2

Yk(y) = 0 ⇒ Yk(y) = A(k) cosh ky +B(k) senhky .

Yk(0) = 0 ⇒ A(k) = 0 ⇒ Yk(y) = B(k) senhky .

uk(x, y) = Xk(x)Yk(y) = senkxB(k) senky .

u(x, y) =

∫ ∞

0

uk(x, y)dk =

∫ ∞

0

B(k) senhky senkx dk ■ (7.27)

Determinamos B(k) impondo a condição de fronteira não homogênea:

u(x, h) =

∫ ∞

0

[B(k) senhkh] senkx dk = f(x) .

O termo entre colchetes pode ser calculado usando (7.3); logo,

B(k) senhkh =
2

π

∫ ∞

0

f(x) senkx dx ⇒ B(k) =
2

π senhkh

∫ ∞

0

f(x) senkx dx ■ (7.28)

Nota-se que o método de separação de variáveis também é eficaz na resolução de uma EDP que
envolve um problema de autovalor de domínio infinito. Tudo funciona similarmente, sendo a solução
representada por uma integral (um "somatório de infinitésimos") com coeficientes dados pelas integrais
de Fourier, em vez de ser representada por uma série de Fourier (cujos coeficientes têm similaridade
ainda maior com as integrais de Fourier); em suma: somatórios "tornam-se" integrais. O exemplo
seguinte mostra um problema cuja resolução envolve tanto um problema de autovalor de domínio
finito quanto um de domínio infinito, sendo sua solução, portanto, representada tanto por uma série
quanto uma integral de Fourier.
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Exemplo 7.1.5. Resolva o seguinte problema de calor:
∇2T =

1

α

∂T

∂t
(x, y, t) , x ∈ (0,∞) , y ∈ (0, h) , t > 0

∂T

∂x
(0, y, t) = 0 , T (x, 0, t) =

∂T

∂y
(x, h, t) = 0 , T (x, y, 0) = T0(x, y) .

(7.29)

∇2T =
1

α

∂T

∂t
(x, y, t)

T (x,y,t) ≡ ψ(x,y)τ(t)−−−−−−−−−−−−−−−→ ∇2ψ

ψ
=
τ ′

τ
= −λ .∇2ψ + λψ(x, y) =

∂2ψ

∂x2
+
∂2ψ

∂y2
+ λψ(x, y) = 0

ψ sob as mesmas condições de fronteira que T

ψ(x, y) ≡ X(x)Y (y) ⇒ X ′′

X︸︷︷︸
−µ

+
Y ′′

Y︸︷︷︸
−ν

+λ = 0 .

{
X ′′ + λX(x) = 0
x ∈ (0,∞) , X(0) = 0

v. Exemplo 7.1.2−−−−−−−−−−−−→
{
λk = k2 (k > 0)
Xk(x) = cos kx .{

Y ′′ + νY (y) = 0
y ∈ (0, h) , Y (0) = Y ′(h) = 0

⇒
{
νn = (nπ/2h)2 (n = 1, 3, 5 · · · )
Yn(y) = sen (nπy/2h) .

ψkn(x, y) = Xk(x)Yn(y) = cos kx sen (nπy/2h) .

τ ′kn + λknτkn(t) [λkn ≡ µk + νn] ⇒ τkn(t) = e−λknα t .

Tkn(x, y, t) = ψkn(x, y)τkn = cos kx sen (nπy/2h) e−λknα t .

T (x, y, t) =
∑

n=1,3,5···

∫ ∞

0

Akn Tkn(x, y, t) dk .

T (x, y, t) =
∑

n=1,3,5···
sen

nπy

2h

∫ ∞

0

Akn e
−λknα t cos kx dk ■ (7.30)

T (x, y, 0) =
∑

n=1,3,5···
sen

nπy

2h

[∫ ∞

0

Akn cos kx dk

]
= T0(x, y) .

∫ ∞

0

Akn cos kx dk =
2

h

∫ h

0

T0(x, y) sen
nπy

2h
dy .

Akn =
2

π

∫ ∞

0

[
2

h

∫ h

0

T0(x, y) sen
nπy

2h
dy

]
cos kx dx ■ (7.31)

Pelas EDPs resolvidas acima, observamos que a cada problema de autovalor de espectro contí-
nuo corresponde uma integral de Fourier. As integrais de Fourier não se restringem a autofunções
trigonométricas (por exemplo, há integrais de Fourier formadas pelas funções de Bessel). A partir
delas podem ser definidas as famosas transformadas de Fourier, que oferecem um modo alternativo
de resolver EDPs. No que segue expomos uma rápida introdução a elas que é restrita à aplicação na
resolução de EDPs, sendo omitidas, portanto, muitas propriedades importantes delas e muitas outras
considerações. Diga-se, entretanto, que, embora inicialmente formuladas com o propósito de resolver
equações diferenciais, as transformadas de Fourier têm uma vasta gama de aplicações.

7.2 Transformadas de Fourier

7.2.1 Definição
O resultado em (7.3) permite definir a transformada de Fourier em senos de f(x), denotada por

Fs{f(x)}, como sendo a integral que fornece β(k) [função que passaremos a denotar por f̄s(k)], isto é,

Fs{f(x)} =
2

π

∫ ∞

0

f(x) senkx dx = f̄s(k) , (7.32)
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bem como a chamada transformada de Fourier em seno inversa de f̄s(k), denotada por F−1
s {f̄s(k)},

como sendo a integral que fornece f(x):

F−1
s {f̄s(k)} =

∫ ∞

0

f̄s(k) senkx dk = f(x) . (7.33)

De modo análogo, (7.4) permite definir a transformada de Fourier em cossenos de f(x), denotada
por Fc{f(x)}, como sendo a integral que fornece α(k) [função que passaremos a denotar por f̄c(k)],
isto é,

Fc{f(x)} =
2

π

∫ ∞

0

f(x) cos kx dx = f̄c(k) , (7.34)

bem como a chamada transformada de Fourier em cosseno inversa de f̄c(k), denotada por F−1
c {f̄c(k)},

como sendo a integral que fornece f(x):

F−1
c {f̄c(k)} =

∫ ∞

0

f̄c(k) cos kx dk = f(x) . (7.35)

E (7.5) permite definir a transformada de Fourier complexa de f(x), denotada por F{f(x)}, como
sendo a integral que fornece γ(k) [função que passaremos a denotar por f̄(k)], isto é,

F{f(x)} = 1

2π

∫ ∞

−∞
eikxf(x) dx = f̄(k) , (7.36)

bem como a chamada transformada de Fourier complexa inversa de f̄(k), denotada por F−1{f̄(k)},
como sendo a integral que fornece f(x):

F−1{f̄(k)} =
∫ ∞

−∞
e−ikxf̄(k) dk = f(x) . (7.37)

Nota:

Há certa flexibilidade na forma de definir as integrais de Fourier e, portanto, as transformadas de Fourier:

Em (7.1) nada impede definir
ℓ

π
A kℓ
π

≡ c α(k) e ℓ
π
B kℓ
π

≡ c β(k) , assim incluindo um parâmetro positivo

livre c que passa a figurar nas integrais de Fourier. As equações (7.2), (7.3) e (7.5) passariam a ser

f(x) =
1

c

∫ ∞

0

[
α(k) cos kx+ β(k) senkx

]
dk , com


α(k) =

c

π

∫ ∞

−∞
f(x) cos kx dx

β(k) =
c

π

∫ ∞

−∞
f(x) senkx dx ,

f(x) =
1

c

∫ ∞

0
β(k) senkx dk , com β(k) =

2c

π

∫ ∞

0
f(x) senkx dx , (7.38)

f(x) =
1

c

∫ ∞

−∞
e−ikxγ(k) dk , com γ(k) =

c

2π

∫ ∞

−∞
eikxf(x) dx . (7.39)

Conclusão 1: As duas constantes que aparecem multiplicando as duas integrais que definem a transformada
de Fourier em senos e sua inversa podem variar, mas com a restrição de o produto ser 2/π (o mesmo
acontecendo na transformada em cossenos), e as duas na definição da transformada complexa, com a do
produto ser 1/2π .

Observe que, na equação (7.6), efetuamos a mudança de variável k = −l na primeira integral e simplesmente
trocamos a letra k por l no integrando da segunda, assim obtendo, como mostra (7.7), uma única integral
com o termo e−ilx no integrando. Ora, poderíamos inverter essas operações entre as duas integrais em (7.6),
isto é, simplesmente trocar a letra k por l na primeira integral e efetuar a mudança k = −l na segunda,
assim obtendo uma única integral com o termo eilx, ou seja, o resultado final seria (7.7) com o sinal de ilx
trocado. Consequentemente, a definição ⋆ da função γ(l) resultaria com l trocado por −l para l ≥ 0 e −l
trocado por l para l ≤ 0, o que levaria ao resultado final em (7.8) com o sinal de ilx trocado.

Conclusão 2: Pode-se trocar o sinal de ikx entre as integrais (7.36) e (7.37) que definem a transformada de
Fourier complexa.

A forma da transformada de Fourier também pode variar efetuando-se uma mudança da variável de inte-
gração. Vejamos, por exemplo, a variação nas transformadas de Fourier causada pela mudança de variável
k = 2πl (⇒ dk = 2πdl), primeiramente em (7.36) e (7.37):

f(x) =

∞∫
−∞

e−i2πlx 2πf̄(2πl)︸ ︷︷ ︸
≡ f̃(l)

dl = F−1{f̃(l)} ⇒ f̃(l) = 2πf̄(2πl) = 2π ·
1

2π

∞∫
−∞

ei2πlxf(x) dx = F{f(x)} ,
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ou seja, a transformada de Fourier complexa passa a ter a nova forma

F{f(x)} =

∫ ∞

−∞
ei2πlxf(x) dx = f̃(l) e F−1{f̃(l)} =

∫ ∞

−∞
e−i2πlxf̃(l) dl = f(x) ; (7.40)

agora em (7.32) e (7.33):

f(x) = 2

∞∫
0

πf̄s(2πl)︸ ︷︷ ︸
≡ f̃s(l)

sen2πxl dl = F−1
s {f̃s(l)} ⇒ f̃s(l) = πf̄s(2πl) = π ·

2

π

∞∫
0

f(x) sen2πxl dx = Fs{f(x)} ,

ou seja, a transformada de Fourier em senos passa a ser dada por

Fs{f(x)} = 2

∫ ∞

0
f(x) sen2πxl dx = f̃s(l) e F−1

s {f̃s(l)} = 2

∫ ∞

0
f̃s(l) sen2πxl dl = f(x) . (7.41)

Conclusão 3: Na transformada de Fourier complexa dada por (7.40) e na em senos dada por (7.41), o número
π deixa de aparecer multiplicando as integrais, surgindo no argumento dos núcleos dessas transformadas.

Pois bem, essa flexibilidade na definição das transformadas de Fourier enseja formas preferenciais de uso
conforme a área em que são empregadas:

• Engenharia [com c = π/2 em (7.38) e c = 2π em (7.39)]:

Fs{f(x)} =

∫ ∞

0
f(x) senkx dx = f̄s(k) e F−1

s {f̄s(k)} =
2

π

∫ ∞

0
f̄s(k) senkx dk = f(x) . (7.42)

F{f(x)} =

∫ ∞

−∞
e−ikxf(x) dx = f̄(k) e F−1{f̄(k)} =

1

2π

∫ ∞

−∞
eikxf̄(k) dk = f(x) . (7.43)

• Física [com c =
√
π/2 em (7.38) e c =

√
2π em (7.39)]:

Fs{f(x)} =

√
2

π

∫ ∞

0
f(x) senkx dx = f̄s(k) e F−1

s {f̄s(k)} =

√
2

π

∫ ∞

0
f̄s(k) senxk dk = f(x) . (7.44)

F{f(x)} =
1

√
2π

∫ ∞

−∞
eikxf(x) dx = f̄(k) e F−1{f̄(k)} =

1
√
2π

∫ ∞

−∞
e−ikxf̄(k) dk = f(x) . (7.45)

• Processamento de Sinais [ (7.41), e (7.40) com os sinais de i2πlx trocados nas duas integrais]:

Fs{f(t)} = 2

∫ ∞

0
f(t) sen2πωt dt = f̄s(l) e F−1

s {f̄s(ω)} = 2

∫ ∞

0
f̄s(ω) sen2πωt dω = f(t) . (7.46)

F{f(t)} =

∫ ∞

−∞
e−i2πωtf(t) dt = f̄(ω) e F−1{f̄(ω)} =

∫ ∞

−∞
ei2πωtf̄(ω) dω = f(t) . (7.47)

Neste texto, usamos as formas das integrais e transformadas de Fourier que naturalmente surgiram ao serem
desenvolvidas, ou seja, por razões didáticas. Elas também são empregadas na Ref. [2], na qual as eq. (8) e
(9) da seç. 51 correspondem à eq. (7.2); as eq. (3) e (4) da seç. 54, à eq. (7.4); as eq. (5) e (6) da seç. 54, à
(7.3); e, no Prob. 3 da seç. 52, vemos a eq. (7.5) (exceto pelos sinais trocados de ikx).

7.2.2 Propriedades
• P1 - Linearidade:

F{af(x) + b g(x)} = aF{f(x)}+ bF{g(x)} , com F = F , Fc ou Fs .

• P2 - Propriedades da diferenciação:

F{f ′(x)} = −ikf̄(k) , F{f ′′(x)} = −k2f̄(k) , F{f (n)(x)} = (−ik)nf̄(k) .

Fc{f ′(x)} = kf̄s(k)−
2

π
f(0) , Fc{f ′′(x)} = −k2f̄c(k)−

2

π
f ′(0) .

Fs{f ′(x)} = −kf̄c(k) , Fs{f ′′(x)} = −k2f̄s(k) +
2

π
kf(0) .

• P3 - Convolução:

F−1{f̄(k)ḡ(k)} = 1

2π
f(x) ∗ g(x) e F{f(x)g(x)} = f̄(k) ∗ ḡ(k) .

onde, em ambas as fórmulas, usamos a definição

u(s) ∗ v(s) ≡
∫ ∞

−∞
u(σ) v(s− σ)dσ : convolução de u e v .
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• P4 - Teorema de Parseval: ∫ ∞

−∞
f∗(x)g(x)dx = 2π

∫ ∞

−∞
f̄∗(k)ḡ(k)dk .

Corolário:
∫ ∞

−∞
|f(x)|2dx = 2π

∫ ∞

−∞
|f̄∗(k)|2dk .

Provas dessas propriedades

• Prova de P1

F{a f(x) + b g(x)} =
1

2π

∫ ∞

−∞
eikx

[
a f(x) + b g(x)

]
dx

= a
1

2π

∫ ∞

−∞
eikxf(x)dx+ b

1

2π

∫ ∞

−∞
eikxg(x)dx = aF{f(x)}+ bF{g(x)} ✓

• Prova de P2
– Integrando por partes, obtemos

F{f ′(x)} =
1

2π

∫ ∞

−∞
f ′(x)eikxdx

p.p.
=

1

2π

[
f(x)eikx

]∞
−∞︸ ︷︷ ︸

0, pois f(x→±∞)=0

−(ik)
1

2π

∫ ∞

−∞
f(x)eikxdx︸ ︷︷ ︸

F{f(x)} = f̄(k)

= −ikf̄(k) ✓

– Usando essa fórmula uma vez, temos que

F{f ′′(x)} = F
{
[f ′(x)]′

}
= −ikF{f ′(x)} = −ik(−ik)F{f(x)} = (−ik)2f̄(k) = −k2f̄(k) ✓

– E usando-a n vezes, também temos que

F{f (n)(x)} = (−ik) · · · (−ik)︸ ︷︷ ︸
n fatores

F{f(x)} = (−ik)nf̄(k) ✓

– Integrações por partes fornecem

Fc{f ′(x)} =
2

π

∫ ∞

0
f ′(x) cos kx dx

p.p.
=

2

π

[
f(x) cos kx

]∞
0

+ k
2

π

∫ ∞

0
f(x) senkx dx︸ ︷︷ ︸

Fs{f(x)} = f̄s(k)

=
2

π
lim
x→∞

f(x) cos kx︸ ︷︷ ︸
0, pois f(x→∞)=0

−
2

π
f(0) + kf̄s(k) = kf̄s(k)−

2

π
f(0) ✓

Fs{f ′(x)} =
2

π

∫ ∞

0
f ′(x) senkx dx

p.p.
=

2

π

[
f(x) senkx

]∞
0

− k
2

π

∫ ∞

0
f(x) cos kx dx︸ ︷︷ ︸

Fc{f(x)} = f̄c(k)

=
2

π
lim
x→∞

f(x) senkx︸ ︷︷ ︸
0, pois f(x→∞)=0

−kf̄c(k) = −kf̄c(k) ✓

– E usando essas duas última fórmulas deduzimos estas duas:

Fc{f ′′(x)} = Fc
{
[f ′(x)]′

}
= k Fs{f ′(x)}︸ ︷︷ ︸

−kf̄c(k)

−
2

π
f ′(0) = −k2f̄c(k)−

2

π
f ′(0) ✓

Fs{f ′′(x)} = Fs
{
[f ′(x)]′

}
= −kFc{f ′(x)} = −k

[
kf̄s(k)−

2

π
f(0)

]
= −k2f̄s(k) +

2

π
kf(0) ✓

• Prova de P3

F−1{f̄(k)ḡ(k)} =

∫ ∞

−∞
e−ikxf̄(k)ḡ(k)dk =

∫ ∞

−∞
e−ikx

[
1

2π

∫ ∞

−∞
eikyf(y) dy

]
ḡ(k)dk

=
1

2π

∫ ∞

−∞
f(y)

[∫ ∞

−∞
e−ik(x−y)ḡ(k)dk

]
dy =

1

2π

∫ ∞

−∞
f(y) g(x− y)dy =

1

2π
f(x) ∗ g(x) ✓

F{f(x)g(x)} =
1

2π

∫ ∞

−∞
eikxf(x)g(x)dx =

1

2π

∫ ∞

−∞
eikx

[∫ ∞

−∞
e−ilxf̄(l)dl

]
g(x)dx

=

∫ ∞

−∞
f̄(l)

[
1

2π

∫ ∞

−∞
ei(k−l)xg(x)dx

]
dl =

∫ ∞

−∞
f̄(l) ḡ(k − l)dl = f̄(k) ∗ ḡ(k) ✓

• Prova de P4 ∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
f∗(x)f(x)dx = 2π

∫ ∞

−∞
f̄∗(k)f̄(k)dk = 2π

∫ ∞

−∞
|f̄(k)|2dk ✓
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7.2.3 Resolução de EDPs por Transformadas de Fourier
Antes de aplicarmos as transformadas de Fourier na resolução de EDPs, dispensemos algumas linhas

sobre transformadas de Fourier de derivadas de funções de várias variáveis. Consideremos uma função
u(x, y) definida em todo o plano xy com o objetivo de calcular transformadas de Fourier de algumas de
suas derivadas. Conforme a integral que define a transformada de Fourier seja efetuada em relação a
x ou y, dizemos que se está calculando a transformada de Fourier na variável x ou y, respectivamente.

Pois bem, consideremos a transformada de Fourier de u(x, y) na variável x:

F{u(x, y)} =
1

2π

∫ ∞

−∞
eikxu(x, y)dx ≡ ū(k, y) .

Seguem transformadas de derivadas em relação a y :

F
{∂u
∂y

(x, y)
}

=
1

2π

∫ ∞

−∞
eikx

∂u

∂y
dx =

d

dy

[
1

2π

∫ ∞

−∞
eikxu(x, y)dx

]
=

dū

dy
(k, y) ,

F
{∂2u
∂y2

(x, y)
}

=
1

2π

∫ ∞

−∞
eikx

∂2u

∂y2
dx =

d2

dy2

[
1

2π

∫ ∞

−∞
eikxu(x, y)dx

]
=

d2ū

dy2
(k, y) ,

...

Ou seja, a transformada de Fourier na variável x de uma derivada em relação a y é a derivada da
transformada de Fourier: tais derivadas permanecem após a transformada.

Vejamos agora transformadas de derivadas em relação a x :

F
{∂u
∂x

(x, y)
}
=

1

2π

∫ ∞

−∞
eikx

∂u

∂x
dx

p.p.
=

1

2π

[
eikxu(x, y)

]∞
x→−∞︸ ︷︷ ︸

0

−ik 1

2π

∫ ∞

−∞
eikxu(x, y)dx = −ik ū(k, y) ,

F
{∂2u
∂x2

(x, y)
}
= F

{ ∂

∂x

[∂u
∂x

(x, y)
]}

= −ik F
{∂u
∂x

(x, y)
}
= (−ik)2 ū(k, y) ,

...

Assim, para calcular a transformada de Fourier na variável x de uma derivada em relação a x, usa-se
a propriedade P2, assim eliminando tal derivada.

Essas conclusões também são válidas para as transformadas em cosseno e seno. Observe nos exem-
plos abaixo que, quando as transformadas são na variável x, então derivadas em relação a y permanecem
e as em relação a x são eliminadas após o uso da propriedade P2:

Fc

{∂u
∂y

(x, y)
}
=
dūc
dy

(k, y) , Fs

{∂2u
∂y2

(x, y)
}
=
d2ūs
dy2

(k, y) ,

Fc

{∂u
∂x

(x, y)
}
= k̄ us(k, y)−

2

π
u(0, y) , Fc

{∂2u
∂x2

(x, y)
}
= −k2ūc(k, y)−

2

π

∂u

∂x
(0, y) ,

Fs

{∂u
∂x

(x, y)
}
= −k ūc(k, y) , Fs

{∂2u
∂x2

(x, y)
}
= −k2ūs(k, y) +

2

π
k u(0, y) .

Vejamos agora um exemplo de aplicação mista de transformadas de Fourier. Se

Fc{u(x, y)} =
2

π

∫ ∞

0

u(x, y) cos kx dx ≡ ūc(k, y)

e
Fs{u(x, y)} =

2

π

∫ ∞

0

u(x, y) sen ly dy ≡ ũs(x, l) ,

então
Fs
{
Fc{u(x, y)}

}
= Fs

{
ūc(k, y)

}
= ˜̄ucs(k, l) .

Isso pode acontecer numa resolução de EDP de várias variáveis em que se aplica Fc numa variável e
Fs noutra.

Quanto a como determinar qual a transformada de Fourier a se empregar, o preceito é o seguinte:
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a) Se o intervalo I da variável em relação à qual uma transformada de Fourier será aplicada for
infinito em ambas direções, isto é, I = (−∞,∞), usamos a transformada de Fourier complexa e sua
inversa, dadas respectivamente por (7.36) e (7.37).

b) Se I for semi-infinito, isto é, I = [0,∞), usamos a transformada de Fourier em senos e sua
inversa, dadas por (7.32) e (7.33), ou a em cossenos e sua inversa, dadas por (7.34) e (7.35), conforme
a condição no extremo inicial de I seja respectivamente a de Dirichlet ou a de Neumann. Isso é
consistente com o fato de que o seno e o cosseno nessas transformadas tenham surgido de problemas
de autovalor sob condições de Dirichlet e Neumann, respectivamente.

Pois bem, nos cinco exemplos seguintes, resolvemos novamente os problemas dos Exemplos 7.1.1 a
7.1.5 apresentados na subseção 7.1.3, mas agora usando as transformadas de Fourier.

Exemplo 7.2.1. O problema de calor numa barra semi-infinita com sua extremidade a 0◦:

∂2T

∂x2
(x, t) =

1

α

∂T

∂t
, com x ∈ (0,∞) e t > 0 , sendo T (0, t) = 0 e T (x, 0) = f(x) .

Solução:

Fs{T (x, t)} =
2

π

∫ ∞

0

T (x, t) senkx dx ≡ T̄s(k, t) .

∂2T

∂x2
=

1

α

∂T

∂t

Fs−−−−−→
P2

−k2T̄s(k, t) +
2

π
k T (0, t)︸ ︷︷ ︸

0 (∗)

=
1

α

d T̄s
dt

.

(∗) De acordo com a condição de fronteira de Dirichlet em x = 0.

d T̄s
dt

+ αk2T̄s(k, t) = 0 ⇒ T̄s(k, t) = B(k) e−αk
2t . [ I ]

T (x, t) = F−1
s {T̄s(k, t)} = F−1

s {B(k) e−αk
2t} ⇒ T (x, t) =

∫ ∞

0

B(k) e−αk
2t senkx dk ■

T (x, 0) = f(x)
Fs−−−−−→ T̄s(k, 0)︸ ︷︷ ︸

B(k)

= Fs{f(x)}
[ I ]−−−−−→ B(k) =

2

π

∫ ∞

0

f(x) senkx dx ■

A solução do problema é composta por esses dois resultados, sendo exatamente aquela dada por
(7.15) e (7.16).

Exemplo 7.2.2. O problema de calor numa barra semi-infinita com sua extremidade isolada
termicamente:

∂2T

∂x2
(x, t) =

1

α

∂T

∂t
, com x ∈ (0,∞) e t > 0 , sendo

∂T

∂x
(0, t) = 0 e T (x, 0) = f(x) .

Solução:

Fc{T (x, t)} =
2

π

∫ ∞

0

T (x, t) cos kx dx ≡ T̄c(k, t) .

∂2T

∂x2
=

1

α

∂T

∂t

Fc−−−−−→
P2

−k2T̄s(k, t)−
2

π

∂T

∂x
(0, t)︸ ︷︷ ︸

0 (∗)

=
1

α

d T̄c
dt

.

(∗) De acordo com a condição de fronteira de Neumann em x = 0.

d T̄c
dt

+ αk2T̄c(k, t) = 0 ⇒ T̄c(k, t) = A(k) e−αk
2t . [ I ]

T (x, t) = F−1
c {T̄c(k, t)} = F−1

c {A(k) e−αk
2t} ⇒ T (x, t) =

∫ ∞

0

A(k) e−αk
2t cos kx dk ■
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T (x, 0) = f(x)
Fc−−−−−→ T̄c(k, 0)︸ ︷︷ ︸

A(k)

= Fc{f(x)}
[ I ]−−−−−→ A(k) =

2

π

∫ ∞

0

f(x) cos kx dx ■

A solução do problema é composta por esses dois resultados, sendo exatamente aquela dada por
(7.18) e (7.19).

Exemplo 7.2.3. O problema de calor numa barra infinita em ambas as direções:

∂2T

∂x2
(x, t) =

1

α

∂T

∂t
, com x ∈ (−∞,∞) , sendo T (x, 0) = f(x) .

Solução:

F{T (x, t)} = 1

2π

∫ ∞

−∞
eikx T (x, t) dx ≡ T̄ (k, t) .

∂2T

∂x2
=

1

α

∂T

∂t

F−−−−→
P2

−k2T̄ (k, t) = 1

α

d T̄

dt
.

d T̄

dt
+ αk2T̄ (k, t) = 0 ⇒ T̄ (k, t) = C(k) e−αk

2t . [ I ]

T (x, t) = F−1{T̄ (k, t)} = F−1{C(k) e−αk
2t} ⇒ T (x, t) =

∫ ∞

−∞
e−ikxC(k) e−αk

2tdk ■

T (x, 0) = f(x)
F−−−−→ T̄ (k, 0)︸ ︷︷ ︸

C(k)

= F{f(x)} [ I ]−−−−−−→ C(k) =
1

2π

∫ ∞

−∞
eikxf(x) dx ■

A solução do problema é composta por esses dois resultados, sendo exatamente aquela dada por
(7.23) e (7.25).

Exemplo 7.2.4. Resolução da equação de Laplace num domínio retangular, semi-infinito ao
longo do eixo x e de altura h :

∂2u

∂x2
+
∂2u

∂y2
= 0 , x ∈ (0,∞) , y ∈ (0, h)

u(0, y) = u(x, 0) = 0 , u(x, h) = f(x) .

Solução:

Fs{u(x, y)} =
2

π

∫ ∞

0

u(x, y) senkx dx ≡ ūs(k, y) .

∂2u

∂x2
+
∂2u

∂y2
= 0

Fs−−−−−→
P2

−k2ūs(k, y) +
2

π
k u(0, y)︸ ︷︷ ︸

0 (∗)

+
d 2ūs
dy2

.

(∗) De acordo com a condição de fronteira de Dirichlet em x = 0.

d 2ūs
dy2

− k2ūs(k, y) = 0 ⇒ ūs(k, y) = A(k) cosh ky +B(k) senhky . [ I ]

u(x, 0) = 0
Fs−−−−−→ ūs(k, 0)︸ ︷︷ ︸

A(k)

= 0
[ I ]−−−−−→ A(k) = 0 ⇒ ūs(k, y) = B(k) senhky . [ II ]

u(x, y) = F−1
s {ūs(k, y)} = F−1

s {B(k) senhky} ⇒ u(x, y) =

∫ ∞

0

B(k) senhky senkx dk ■

u(x, h) = f(x)
Fs−−−−−→ ūs(k, h)︸ ︷︷ ︸

B(k) senhkh

= Fs{f(x)}
[ II ]−−−−−→ B(k) senhkh =

2

π

∫ ∞

0

f(x) senkx dx

⇒ B(k) =
2

π senhkh

∫ ∞

0

f(x) senkx dx ■

A solução do problema é composta por esses dois resultados, sendo exatamente aquela dada por (7.27)
e (7.28).
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Exemplo 7.2.5. Resolução da equação do calor num domínio retangular, semi-infinito ao
longo do eixo x e de altura h:

∇2T =
1

α

∂T

∂t
(x, y, t) , x ∈ (0,∞) , y ∈ (0, h) , t > 0

∂T

∂x
(0, y, t) = 0 , T (x, 0, t) =

∂T

∂y
(x, h, t) = 0 , T (x, y, 0) = T0(x, y) .

Solução:

Fc{T (x, y, t)} =
2

π

∫ ∞

0

T (x, y, t) cos kx dx ≡ T̄k(y, t) .

∂2T

∂x2
+
∂2T

∂y2
=

1

α

∂T

∂t
(x, y, t)

Fc−−→ −k2T̄k(y, t)−
2

π

∂T

∂x
(0, y, t)︸ ︷︷ ︸
0

+
∂2Tk
∂y2

=
1

α

∂T̄k
∂t

.

Essa EDP, com a separação de variáveis T̄k(y, t) ≡ Y (y)τ(t) , toma a forma −k2 + Y ′′

Y︸︷︷︸
−ν

=
1

α

τ ′

τ
.

{
Y ′′ + νY (y) = 0 , y ∈ (0, h)

Y (0) = Y ′(h) = 0
⇒

{
νn = (nπ/2h)2 (n = 1, 3, 5 · · · )
Yn(y) = sen(nπy/2h) .

τ ′kn + (k2 + νn)ατkn(t) = 0 ⇒ τkn(t) = e−(k2+νn)αt .

T̄k(y, t) =
∑

n=1,3,5···
Akne

−(k2+νn)αt sen
nπy

2h
.

T (x, y, t) = F−1
c

{
T̄k(y, t)

}
=

∫ ∞

0

[ ∑
n=1,3,5···

Akne
−(k2+νn)αt sen

nπy

2h

]
cos kx dk ■

Determinamos os coeficientes Akn por meio da transformada Fc da condição inicial:

T (x, y, 0) = T0(x, y)
Fc−−→ T̄k(y, 0) = Fc

{
T0(x, y)

}
⇒

∑
n=1,3,5···

Akn sen
nπy

2h
=

2

π

∫ ∞

0

T0(x, y) cos kx dx ,

que é uma série de Fourier da função (de y) no membro direito, cujos coeficientes Akn são, portanto,

Akn =
2

h

∫ h

0

[
2

π

∫ ∞

0

T0(x, y) cos kx dx

]
sen

nπy

2h
dy ■

A solução do problema é formada pelos dois resultados marcados com a quadrícula, sendo exatamente
aquela dada por (7.30) e (7.31).

Vejamos mais um problema, ainda não resolvido neste texto:

Exemplo 7.2.6. Resolva o seguinte problema em coordenadas cilíndricas :
∇2u(ρ, φ, z) = 0 , ρ ∈ (0, b) , φ ∈ (0, γ) , z ∈ (0,∞)

u(b, φ, z) = f(φ, z) ,
∂u

∂φ
(ρ, 0, z) = u(ρ, γ, z) = 0 , u(ρ, φ, 0) = 0 .

(7.48)

Solução:

∂ 2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂ 2u

∂φ2
+
∂ 2u

∂z2
= 0 .

Fc{u(ρ, φ, z)} =
∫ ∞

0

u(ρ, φ, z) cos kz dz ≡ ū(ρ, φ, k) .

∂ 2ū

∂ρ2
+

1

ρ

∂ū

∂ρ
+

1

ρ2
∂ 2ū

∂φ2
− 2

π

∂u

∂z
(ρ, φ, 0)︸ ︷︷ ︸
0 (∗)

= 0 .

(∗) Condição de fronteira de Neumann em z = 0 .
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ū(ρ, φ, k) ≡ R(ρ)Φ(φ) ⇒ R′′ + (1/ρ)R

R
+

1

ρ2
Φ′′

Φ︸︷︷︸
−µ

= 0 .

{
Φ′′ + µΦ(φ) = 0 , φ ∈ (0, γ)

Φ′(0) = Φ(γ) = 0
⇒

{
µm = (mπ/2γ)2 (n = 1, 3, 5 · · · )

Φm(φ) = cos(mπφ/2γ) .

ρ2R′′ + ρR′ −
[
k2ρ2 +

(mπ
2γ

)2]
R(ρ) = 0 ⇒ R = Rm(ρ) = Am(k)Imπ

2γ
(kρ) +Bm(k)︸ ︷︷ ︸

0 (∗)

Kmπ
2γ

(kρ) .

(∗) Rm(ρ→∞) finito ⇒ Bm(k) = 0 , pois lim
x→0

Kmπ
2γ

(x) =∞ .

ūm(ρ, φ, k) = Rm(ρ)Φm(φ) = Am(k)Imπ
2γ

(kρ) cos
mπφ

2γ
.

ū(ρ, φ, k) =
∑

m=1,3,5···
ūm(ρ, φ, k) =

∑
m=1,3,5···

Am(k) Imπ
2γ

(kρ) cos
mπφ

2γ
. [ I ]

u(ρ, φ, z) = F−1
s {ū(ρ, φ, k)} =

∫ ∞

0

[ ∑
m=1,3,5···

Am(k) Imπ
2γ

(kρ) cos
mπφ

2γ

]
cos kz dz . [ II ]

u(b, φ, z) = f(φ, z)
Fs−−−−−→ ū(b, φ, k) = Fs{f(φ, z)}

[ I ]−−−→
∑

m=1,3,5···

[
Am(k) Imπ

2γ
(kb)

]
cos

mπφ

2γ
=

2

π

∫ ∞

0

f(φ, z) cos kz dz , φ ∈ [0, γ] .

Nessa equação, entre colchetes, temos os coeficientes da série de Fourier generalizada da função de
φ que resulta da integral em relação a z que se encontra no membro direito, sendo essa série aquela
associada ao Problema de autovalor (iv) apresentado na pág. 40; portanto,

Am(k) Imπ
2γ

(kb) =
2

γ

∫ γ

0

[
2

π

∫ ∞

0

f(φ, z) cos kz dz

]
cos

mπφ

2γ
dφ .

Desse resultado e de [ II ] obtemos a resposta:

u(ρ, φ, z) =
∑

m = 1,3,5···
cos

mπφ

2γ

∫ ∞

0

Am(k) Imπ
2γ

(kρ) cos kz dz ,

onde Am(k) =
4

πγ Imπ
2γ

(kb)

∫ γ

0

∫ ∞

0

f(φ, z) cos kz cos
mπφ

2γ
dz dφ .
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