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Prefacio

Trata-se de um texto didatico para a disciplina "Célculo 4" (ministrada pelo Departamento de
Matemética Aplicada da UFF sob o codigo GMAOQ0158), cujo objetivo ¢ a descricio das seguintes
técnicas para resolver equagoes diferenciais ordinarias (EDOs) e parciais (EDPs): série de poténcias
(para EDOs), transformada de Laplace (para EDOs e sistemas de EDOs), método dos autovalores
(para sistemas de EDOs de 12 ordem), e separagdo de variaveis (para EDPs). Este texto contém
exatamente o que se apresenta nas aulas, evitando que o aluno as copie, assim se obtendo mais a sua
atencdo e economizando tempo, bem como definindo com clareza o que se deve estudar. Para o seu
aprendizado, sao imprescindiveis as explicacoes dadas nas aulas, quando, entao, se detalham muitas
das passagens matematicas. As principais referéncias bibliograficas sao apresentadas abaixo do titulo

de cada capitulo.
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Capitulo 1

Sequéncias e Séries

{Ref. [12], se¢des 11.1 a 11.10.}

1.1 Sequéncias

Se a cada inteiro positivo n associarmos um numero a,,, dizemos que esses nimeros formam
uma sequéncia, que é ordenada segundo seus indices:

ai, as, as, .-, Ap,y Ap+41,
Exemplos:
i)a,=1/2": a1 =1/2, ax=1/4, a3=1/8,

16

n+12, _
)' y a3 = 74,

i) a, = (%

=}

a1:43 a2 =

Chamamos a,, de termo geral da sequéncia, o qual é usado também para indicar a prépria sequéncia,
isto &, dizemos simplesmente, por exemplo, "que a sequéncia a, = n? é formada pelos quadrados dos
naturais."

Se o que denominamos limite da sequéncia, dado por

lim a, =a ,
n—oo

for finito, isto é, se para qualquer € > 0 é possivel achar N € N tal que
|ap, —al <€ para n> N |

dizemos que a sequéncia a,, converge para a. Se aquele limite ndo existe, dizemos que a sequéncia a,,
é divergente.

Observe que uma sequéncia a,, pode ser vista como uma funcao a(n) da variavel natural n. Com
isso, a definicao do limite acima é formalmente a mesma que aquela adotada no caso de uma fungao
f(x) da variavel real .

Sejam m e n naturais quaisquer, com m < n. Dizemos que uma sequéncia a,, é

e crescente se a, < ap, [Ex: 2,5,5,6,7,7,11,---| (estritamente crescente se a,, < a,)

e decrescente se a,, > a, [Ex: 6,6,3,2,2,1, -] (estritamente decrescente se a,, > a,)

e monoétona se for crescente ou decrescente

e limitada superiormente se 3\ € R tal que a,, < AVn € N

e limitada inferiormente se 3\ € R tal que a,, > A\Vn € N

e limitada se existem A1 e A tais que A\ < a,, < Ay Vn eN

Note que, na definicao de sequéncias crescente e decrescente, permite-se a igualdade entre termos, o
que possibilita considerar a sequéncia constante (aquela cujo termo geral é constante; por exemplo: 3,
3, 3, ---) tanto como uma sequéncia crescente quanto decrescente e, por conseguinte, também como
mondtona.




Teorema 1

E convergente uma sequéncia que

e ¢ crescente e limitada superiormente

e ¢ decrescente e limitada inferiormente

E divergente uma sequéncia que

e ¢é crescente e que nao é limitada superiormente (ela diverge para co)

e ¢ decrescente e que nao é limitada inferiormente (ela diverge para —oo)

1.2 Séries de Numeros Reais

Dada uma sequéncia ay, a sequéncia de termo geral

n

sn:Zak (n=m, m+1, ---)

k=m
[ou seja,

Sm = am (12 termo)

Sm+1 = Qm + Amp+1

Sn = Qm + Gmy1 + -+ a, (termo geral)

]

¢é denominada de série associada & sequéncia a,,. Os numeros a, sao chamados de termos da série, e
0s numeros s,, de somas parciais da série.
O limite da série é o limite da sequéncia das somas parciais sy:

n— oo n— oo

n oo
lim s, = lim E ar = E ap = A + Q1 + -+
k=m k=m

o qual, quando existe, denomina-se soma da série, caso em que a série é dita convergente. Se o somatoério
o0

> aj ndo existir [limite inexistente, isto &, ndo tnico ou infinito (+00)], a série é dita divergente.
k=m

o0
O simbolo > aj usado para indicar a soma da série é usado também para indicar a propria série.
k=m

oo
Por exemplo, a soma da série geométrica, Y. ¢, é igual a 1/(1 — ¢q) se |q| < 1:

k=0
> 1
S =gt = se gl <1|®)
k=0 q
De fato:
n
sn o= 34" = l4+q+a+-+q" -
kio — Sn_qsn:(l_q)snzl_qn+l
asn = Y ¢ = q+@+- g

k=0

0
_ +1 e _
- Snzzqk:i = qu:hm1 M S [ lim ¢"t' =0 se [¢| <1]

1—g¢q P n—00 1—gq 1—g¢q n—00

(*) Convencionalmente, z° = 1 Vz € R, isto é, z° denota a funcdo constante f(z) = 1.



Vejamos duas aplicagoes da formula acima:

i( 1)’“ Lo1o1 1 1 2
L R _ . 7
\ 2 24 38 1— (=) 32" 3
)IENEEIIESHESHE IS o () RS SRS S
2 712 48 N 2) 1-L1 172 7~
k=0 k=0 2

Uma férmula da soma da série geométrica com o termo inicial mais genérico ¢* (i € N), em vez do
termo inicial ¢° = 1, é a seguinte, deduzida a partir dos resultados ja obtidos acima:

o0 oo i—1 1 1— qi qz

§ ¢k = § F =D ¢ = — = se gl <1
‘ 1-q 1—gq 1—gq

k=i k=0 k=0

Observe que trabalhar com a série

oo

> ak=am+ampr+ooe

k=m
cujo somatoério comeca com o indice m, é equivalente a trabalhar com a série de termo geral a4,

o0

§ am+k:am+am+1+"‘ 5
k=0

cujo somatorio comega com o indice 0. Por isso nao ha perda de generalidade em se estabelecer um

o0
teorema para uma série que comece com o indice 0: > ay.
k=0

Teorema 2

o0 o0
Se «a ¢ um real dado e as séries Y ap e > by convergem, entao:

k=0 k=0
o0 o0
a) Y. aap =« Y. a, converge
k=0 k=0
o0 oo o0
b) Y (ar+br) = > ar + > bx converge
k=0 k=0 k=0
Teorema 3
o0
Para que a série Y aj convirja, é necessario que o termo geral tenda a zero, isto &, lim aj; = 0.
k=0 k—o0
Segue desse teorema o critério do termo geral para a divergéncia: se klirn ay, difere de zero ou nao
c— 00
o0
existe entdo a série Y ay é divergente.
k=0
Exemplos:

o0
i) > [1 + (—l)k} diverge, pois os termos dessa série sdo os da sequéncia

_ .k _ J 2sek for par
ap =1+ (1) _{Osekforimpar ,

cujo limite lim aj ndo existe. Além disso, vemos que
k—o0
s1=0, s5=04+2=2, s3=04+24+0=2, s4=0424+04+2=4,--- |,

isto é, a sequéncia s, das somas parciais é crescente e nao é limitada superiormente; logo, lim s, =
n—oo

n o0
lim Y ap =Y [1+ (—1)¥] = oo, de acordo com o Teorema 1.
n—oo k=0 k=0



ii diverge, pois hm =1 # 0. Em vista disso e do fato de s,, = ——— ser
)k§0k2+ 86 P oo k243 7 " k§0k2+3
%) k-2
uma sequéncia crescente (por ser formada de termos positivos), temos que Z m =
k=0

o0
iii) A série Y 1/k satisfaz a condi¢@o necessaria de o seu termo geral tender a zero (klim 1/k =0);

k=1 —00
entretanto, ela diverge para oo , como veremos adiante.

o0
iv) > 1/k? satisfaz a condi¢do necessaria de o seu termo geral tender a zero ( lim 1/k* =0) e ¢
k=1 k—o0
convergente, como veremos adiante.

Uma série do tipo
oo

E: k
(_1) A = Qm — Qm41 +am+2_am+3+”' 5

em que ar nunca muda de sinal, é dita alternada. Exemplos:

)2-3+4-5+- =Y (1)
k=2

1101 R vl 1

11)—1—&-5—6-4-“-—;:4( 1) ( k)

Teorema 4: Critério de convergéncia para série alternada

oo}

A série alternada Y (—1)*by [br, > 0] é convergente se a sequéncia (de termos positivos) by é
k=m
decrescente e lim by =0 .

k—o0

> 1
Exemplo: A série > (—1)* Wk converge, pois satisfaz as condi¢oes do Teorema 4: é alternada, e a
k=2

A 1
sequéncia by = —

é positiva, decrescente e tende a zero.
nk k>2

1.3 Critérios de Convergéncia e Divergéncia

Teorema 5: Critério da integral

o]
Considere uma série Y ar com ap > 0 para k maior ou igual a algum natural I. Se existe uma
k=0
fungao f continua, positiva, decrescente satisfazendo f(k) = ar para k > | entdo aquela série sera
(oo}
convergente ou divergente conforme a integral impropria f(z) dx seja convergente ou divergente,
l

respectivamente.

Exemplos:

A fungao f(z) =

1 ..
7]“ % é continua, positiva, decrescente em
n

i) A série > ay, com ap =
k=2
[2,00) e tal que f(k) = ay para k > 2 . Como

zlnx

S b b
/ f(z)dz = lim ! dr = lim In(Inz)| = lim In(lnd) —In(ln2) = oo ,
2

b—oo Jo xInx b—o0 2 b—o0

temos que a série dada é divergente.

ii) A chamada série harmoénica de ordem p ,

- (=00, 1] : diverge (1, 00) : converge

1 1

1 p



converge se p > 1 e diverge se p < 1. De fato:

1
Se p < 0, o termo geral — nao tende a zero quando n — oo; portanto, segundo o Teorema 3, a
n
série diverge.

1
Se p > 0, o critério da integral, com f(z) = — fornece
x

)

% q b1 b
o para p=1: / Zde = lim —dx:hmlnx’ — lim Inb—In1 = oo
1

T b—oo J1 X b—o0 1 b—o0

oo
mostrando que a série diverge.

e para p € (0,1)U(1,00):

1

<lim piop —1) =00 se pe€(0,1)
1—p b—oo

b —_—

e’ 1 b I,—pJ,»l
/ — dr = lim x Pdx = lim
1 xP b—oo Jq b—oco —P + 1

! li ! 1) = ! € (1,00)
1—p\ booo bp1 Tpo1 O PELh
0
mostrando que a série diverge se p € (0,1) e converge se p > 1.

Teorema 6: Critério da comparacio

Se 0 < ag < by para k maior ou igual a algum natural [, entdo:

&) o0
a) > by converge = > aj converge
k=0 k=0
o0 o0
b) > ap diverge = > by diverge
k=0 k=0
Exemplos:
[e ]
1 1
) A série ZE ne - senf < 6
k=1
. _\
A figura a direita ilustra o fato de que senf < 0 se 8 > 0 . Assim,
sen < 1 , 0 que nos permite escrever 1
< 1 1 < 1
OS5 = 0 om
radianos
o0
Logo, como a série Y. 1/k? converge (por ser a série harmonica de
k=1
ordem 2), a série dada também converge.

-1
2k3 +1°
Para k£ > 2, temos que:

ii) A série Z

k-1 k—1+1 1
2k3 +1 ~ 2k3+1—1  2k2

x 1 11
Logo, como a série »_ %2 = 3 > 72 converge (por ser a série harmonica de ordem 2), a série dada
= k=1

também converge.

— 1
) A ser .
iii) A série ,;,2 ok

Temos, para k > 2, que:

|~

=
=~
Vv
x| =

(pois Ink < kVEk>1) .



x 1
Logo, como a série Y — diverge (por ser a série harmonica de ordem 1), a série dada também diverge.
k=1
- k
iv) A série —_—.
v) ; k2 + 2k + 5

Temos, para k > 1, que:

R S B
k?4+2k+5 = k> +2k2 +5k>  8k? 8k
x 1 1 X . L. . -
Logo, como a série >, — = — Y — diverge (por ser a série harmonica de ordem 1), a série dada

=18k 84k

também diverge.

o0
. 1 .
v) A série E on converge, pois
n
n=3

1 1
< — paran>1 ,

O< 27L _271

1 .
e a série Z — (geométrica) ¢ convergente:
n_

1

Yr-26) -1t

o0 o0
Dizemos que uma série Y aj ¢ absolutamente convergente se Y |ag| for convergente. Uma série
~ k=0 k=0
convergente que nao é absolutamente convergente é dita condicionalmente convergente.

Teorema 7: Critério da comparacao no limite

Sejam Y ay e > by, séries de termos positivos. Se hm b— for um namero finito diferente de zero*),
k k k

entao essas duas séries convergem ou as duas divergem.

A condigao de hm — ser finito e diferente de zero garante que as séries > ay e > by sejam assin-
bk k k
toticamente de uma mesma ordem kP. Assim, para aplicar o teorema acima, precisamos inferir uma

série Y by que seja assintoticamente da mesma ordem que a série Y ay investigada, o que se consegue
k

k
igualando by ao termo assintoticamente dominante em Y ax, que é a estratégia empregada nos exem-
k

plos que seguem.

Exemplos:
i) A série Z —1 [este é o Exemplo (ii) do Teorema 6]
2k3 +1 emp
k-1 k 1
Comakzm>06bkzﬁzﬁ>OVk22,temosque

_ 3 _ .2 _
lim =% lim k-1 LI u lim ﬂzlz finito.

a
— = lim
k—oo by, T koo 263 + 1/ K2 koo 2k3 1 1 k—>002+1/k3 2
Logo, pelo critério da comparagao no limite, uma vez que Y by, converge (por ser uma série harmo-
k

nica de ordem p = 2), concluimos que a série Y ar dada também converge.
k

() O critério da comparacdo no limite pode ser estendido aos casos em que klim ay, /bi seja zero ou infinito, que sdo
c—> 00

aqui omitidos, ndo por serem complicados, mas pelo pouco tempo de aula para o estudo deste texto. O aluno interessado
pode inteirar-se deles na Ref. [7], se¢@o 3.2, ou na Ref. [12], se¢do 11.4, Exercicios 40 e 41.



Esse exemplo mostra que o desafio na aplicagao do teorema em questao é encontrar uma série de
referéncia 3 by cuja convergéncia (ou divergéncia) seja conhecida e que torne klim ay /by, finito e nao
k ;—> 00

nulo, o que entao revela se a série investigada Y a, € convergente (ou divergente), pois essas duas séries,
k

de acordo com o teorema, devem exibir o mesmo comportamento assintotico. Na aplicacao do Critério
da Comparacao no Limite (CCL), a busca da série de referéncia exige a mesma intuigdo necessaria
no uso do Critério da Comparagao (CC). Contudo, no CCL, identificar essa série costuma ser mais
direto: ela é formada apenas pelo termo dominante da série investigada, permitindo imediatamente
ignorar os demais termos, que se tornam despreziveis no processo de limite. Em contrapartida, no CC,
esses termos secundarios precisam ser eliminados por meio de uma cadeia de desigualdades nem sempre
evidentes para que se isole o termo dominante na compara¢ao. Em resumo, embora ambos os critérios
sempre conduzam a mesma série de referéncia baseada no termo dominante, o percurso no CCL é, via
de regra, mais simples. Uma ressalva: o preco da simplicidade do CCL é o célculo do limite, que pode
se tornar complexo diante de fungbes mais exdticas, caso em que o CC possa ser uma alternativa mais
viavel.
Continuemos com os exemplos:

k
ii) A série Z T [este é o Exemplo (iv) do Teorema 6] -
k Eoo1
Comak:m>0ebk:ﬁ:E>0vk217temOSque
k 1 k2 1
im 2% = fim ——~ /= lim % = lim —— =1 : finito.

hvoo by, koo k2 4 2615/ K b K2+ 2k 45 koo 1+ 2/k + 5/k2

Logo, pelo critério da comparagdo no limite, uma vez que a série _ by diverge (por ser harmonica
k

de ordem p = 1), a série Y aj dada também diverge.
k

oo L3 49
iil) A série Z Wt 2k

, bk3 — 8k2
VE3 + 2k VE3 1
Comakzr—’—gw>0ebk=? k2>OVk>2 temos que

l'm ag 1 \/\3 k3 + 2 / k2 \/‘3 kS + 2 lm v k3 + 2
1 — = = -
k—oo by, k—oo Hk3 — 8Kk2/ k2 k—)oo 5k3 —8k2  kooo bk—8

1+ 2/k2
=1 ¥ +2/ *1'ﬁnit0.

= lim V——=—:
koo K(5—8/k) 5
Logo, pelo critério da comparagao no limite, uma vez que > by converge (por ser uma série harmo-
k

nica de ordem p = 2), a série Y a; dada também converge.
k

V6k —
1 V9Kt + 5k2

. _ VR o, VR R 1
om ak—m> e k_W_k4/3_k(4/3)*(1/2)_k5/6

— 5/6 — 5/6 _
by O o VOE—2 1 kYOVEk iy FOVEVG 2]k

k—oo by k—oo /Ok% + 5k2/ k5/6  k—oo /OEE + 5k2 T koo YR/ 4 5/k?
i EL(6/6)+1/2) /6= 2/k . JAE 6 — 2/k \/6 fuit
= lim —— : finito.
koo kA/33/9 4 5/k2 koo JMS Y0157k /9
Logo, pelo critério da comparagéo no limite, sendo Y b, uma série harmonica de ordem p =5/6 < 1
k

e, portanto, divergente, a série > ay dada também é divergente.
k

iv) A série Z

>0 Vk > 1, temos que
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V) A série k§2 m
Ink Vi 1
Com ak:m>0 e bk:ﬁ:m>0 Vk > 2, temos que
. ap . Ink . Ink ra 1/k o .
A h T s er T e sen T N e — (ojgykie — 0 it

Logo, pelo critério da comparagao no limite, uma vez que Y by converge (por ser uma série harmo-
k

nica de ordem p = 3/2), a série Y aj dada também converge.
k

Teorema 8

E convergente a série que converge absolutamente.

senk

oo
Exemplo: Considere a série k2—:1 2

. Constatamos, por comparagao, que ela converge absoluta-

senk

k2

1
mente: 0 < | | < = Logo, ela propria é convergente.

Teorema 9: Critério da razao

o0
Considere uma série Y ag, com ay # 0, tal que L = lim |agy1/ax| exista ou seja infinito. Podemos
k—o0

k=0
afirmar que

a) Se L < 1, a série dada converge absolutamente
b) Se L > 1 ou L = 0o , a série diverge

¢) Se L =1, o critério nada revela

Exemplos:

oo
i) A série Y. ax , com ay = 2¥/k! | converge, pois

k=0
o Okt1, . 2K/ (K +1)! L 2k+1 K 2
Liklggo| ag |7k1520 2k / k! 7&520 2k (k+1)!7kli>ngok+1io<1

o0
ii) A série Y ay , com aj, = k¥ /k! | diverge, pois

k=1
k+ 1)1/ (k+ 1) k+1)k+t k!
L= lim &5 = gy EED/REDE (RED
k—oo Qg k— o0 kk/ k! k— o0 kE (/ﬂ + 1)'
k k
o (kDR ey 1 k+1\" "
= m P ‘kf-b—/f_klggo k = 1+k =e>1.
o0
iii) Calculo de  de modo que a série »_ a, , com a, = nz"™ , seja convergente.
n=1
Se x = 0 entdo a, = 0, e a soma da série é zero (série convergente).
Se x # 0, pelo critério da razao, temos que
" 1 n+1 1
L= tim |2 = gim (Y tm P 1= e
n—oo Ay n— 00 nxm n—o00

mostrando que a série é convergente para |z| < 1. Mas, para || = 1, o critério da razdo nada revela,

e uma anélise separada é necesséria:
o0 (o]
Para z = 1, temos que Y nz" = Y n = oo (série divergente).
1 n=1

n=1 r=



o0 o0
Para © = —1, temos que > na" = > n(=1)", que é uma série divergente, de acordo com
n=1 r=—1 n=1
o Teorema 3, pois lim n (—1)" néo existe.
n—oo

Resposta: a série dada é convergente para |z| < 1.

iv) A série

i5+(_1)k_1+1+1+1+1+1+
Pt 6-28 3 4 12 16 48 ’

formada por duas séries geométricas de razao 1/4 (uma constituida pelos termos com k par e a outra,
pelos com k impar), é tal que

. Agy1, . 5+(71)’“r1 6-2F 1. 5+ (71)chrl
im | | lim | Pl k|77hm7k
k—oo Qg k—o00 6-2 5+(—1) 2 k—oo 5+(—1)

Lozl b1 s st do val

— . —— = — se oo tomando valores pares

2 54+1 3

)1 541
351 + 1 = 1 se k — oo tomando valores impares ;

logo, esse limite néo existe, o que inviabiliza a aplicacio do critério da razio enunciado acima(*).
Mas outros por procedimentos podemos provar que essa série converge e, mais ainda, calcular a sua
soma: cf. Prob. 24.

Teorema 10: Critério da raiz

o0
Considere uma série Y ay tal que L = klim {/|ax| exista ou seja infinito. Podemos afirmar que
k=0 — 00

a) Se L < 1, a série dada converge absolutamente
b) Se L > 1 ou L = o, a série diverge

c) Se L =1, o critério nada revela

o0
Exemplo: A série Y ay, com ap = k3/3%, é convergente, pois

k=0
k3 1 1 Ink 1 3( lim 1“—’“) 1 1
L= lim ap| = lim {/0 = lim &%* = = lim (%) = 2 ¢\t /) =20 =2 <. (1)
d, Ve = i Vg =5 I = g e 3¢ 3973 °
Outro exemplo: vimos, no Exemplo (iv) logo acima, que o critério da razao (Teorema 9) falha com
x5+ (—1)k
a série » L Vamos, entretanto, empregar o critério da raiz; uma vez que

K=o 6-2F

5+1 1 1
’k/6+2k = Wk/zik =3 se k for par

J5—1  1/4\Y* )
=—|= — — quando k — oo tomando valores impares ,

Y
Vil = {12550 =

6 - 2F

6-2  2\6 2

isto ¢, L = 1/2 < 1, concluimos que a série é convergente(®) .

() critério da razdo admite uma formulagao mais genérica pela qual se verifica a convergéncia da série acima: cf. a
segdo 6-8 da referéncia bibliografica [9].

(1) Usando a regra de ’'Hopital, vemos que lim % = lim UTk =0 .
k— o0 k— o0
. . - . . Ina lim h}ca 0
(M Foi usado o seguinte resultado: se @ > 0 entdo lim ¥/a = lim e k =ek>oF =0 =1
k— oo kE—oo

12



1.4 Séries de Poténcias

Seja z uma variavel real e considere um valor xg fixo dessa varidvel. Entendemos por série de

poténcias uma série cujo termo geral é o da sequéncia a,, (z—x¢)®" (uma poténcia de z—x¢ multiplicada
o0

por uma constante): Y. a, (x — x9)F». Neste texto, o expoente F,, consistird simplesmente nos

n=0

nameros naturais, F, = n € N, ou nestes acrescidos de um nimero real r fixo, F,, = n + r. Ou seja,
trabalharemos com as séries de poténcias

o0
Zan (x —20)" = ap + a1(z — x0) + ag(x — z0)* + - -
n=0
e
o0
Z an (x — 20)" " = ag(z — 20)" + ar(x — o) 7" + az(z — 20)*" + -+
n=0

o0

A série Y a, (v — x)P» & dita série de poténcias relativa a zo (ou em torno de xgy, ou ainda
n=0

centrada em xp), na qual g é denominado ponto de expansdo da série. E bastante frequente a série

o0
de poténcias centrada em zero; por exemplo: Y. a, 2™ = ag + a1x + asz? + -+ .
n=0

Seguem dois teoremas fundamentais no estudo das séries de poténcias:

Teorema 11

o)
Toda série de poténcias Y a, (x — )™ tem um raio de convergéncia R tal que a série converge
n=0
absolutamente se |z — zg| < R e diverge se |z — zo| > R .
O nuamero R pode ser 0 (caso em que a série converge somente para © = zp), um ndmero real

positivo, ou co (caso em que a série converge para todo x), podendo ser calculado pela formula

. a . 1 Ao
R= lim |[—/~| ou R= lim ——— |, conviréenma
n—=00 Gpi1 n—oo |an‘ — —

o —O L O
contanto que, para algum natural N, a,, # 0 se n > N, e o limite T,—R x, T, +R
fornega um tunico resultado, finito ou infinito.

Observe que o teorema nada diz se |t — 29| = R: nos pontos x = zy = R, a série pode ser

absolutamente convergente, condicionalmente convergente ou divergente. Além disso, se a, se anula
uma infinidade de vezes, o raio de convergéncia R nao pode ser calculado com as férmulas acima; nesse
caso, exemplificaremos como R pode ser determinado por meio dos critérios da razdo e da raiz: v. os
exemplos (vi) e (vil) abaixo.

O conjunto dos valores reais de x para os quais a série é convergente é chamado de intervalo de
convergéncia. Este, segundo o teorema, pode consistir apenas no ponto xg, se R = 0, ou, se R > 0,
nos intervalos (xg — R, o + R), [x0 — R,z0 + R), (x0 — R, o + R] ou [zg — R,z + R], conforme a série
seja convergente, ou nao, em zg = R.

Por exemplo, vamos calcular o raio de convergéncia R e o intervalo de convergéncia

(o]
i) da série > n"a™:
n=1

lim | = lim

n" . 1 n o \" . 1 1 1
B — T : ( ) =
n—00 Up41 n—o00 (n + 1)"""1 n—oomn + 1

n—+1
R=1qou
1

lim#:lim = lim — =0

1
n—oo n/ an| n—oo Ynn n—oo N

&)
e, portanto, a série > n™ z™ s6 converge em = = 0 .
n=0

13



:Cn

n+2

o0
ii) da série >
n=0

lim |- = limM—l

n—00 (Gpyq n— o0 /(TL+3) B
o0 n
r={" 1 > z converge Vo € (—1,1) .
lim =lim ——=1lim VYn+2=1 n=0mn+2

n— 00 71/|aln| n—00 1 n—00

n

n—+2
o0
Analisemos a convergéncia nos ponto £ = +1. Se z = 1, temos a série divergente P} =
—on
o 1 - n=0
> f}. Se x = —1, temos a série alternada > (—1)"—— , que, segundo o Teorema 4, é convergente
n=2"T n=0 n+2

(condicionalmente convergente, obviamente).

fo%e) n
Resposta: A série Y

n=0

converge no intervalo [—1,1), sendo R =1 .

0
iii) da série > — :
n=0 n'

—— =1 1) =

R=<ou Z

; converge VzeR.

1 1 n=0 T
1 —_— 1 —_— 1 Y | — ... =
e ] e g e VT >
o (1) (g — 3"
iv) da série > Dt @ =3)" :
n=1 2"n
a 2ntl(n +1
lim -2 | = lim %:2
n—oo @ n— o0 n
ou " & (=)" (=-3)"
R= 1 > T gn,,  converge Ve (3—-2,342) = (1,5) .
lim i lim {/2nn = 2 =t
n—,oo TV OO N e’
| g
Analisemos a convergéncia nos pontos extremos desse intervalo. Se x = 1, temos a série divergente
> — . Se x = b, temos a série alternada Y !, que, segundo o Teorema 4, é convergente
n=0 T n=0 n

(condicionalmente convergente).

s ()" (o - 3)"

Resposta: > 5 converge no intervalo (1, 5], sendo R =2 .
n=0 "n
o 51"
d 4 am
v) da série nzz:l = om
o+ (—=1)" n 4
Os coeficientes a,, = S+ (1" sao tais que lim | a | = 3 ou = , conforme n — oo tomando
6-2n n—o0  Up41 3

valores pares ou impares, respectivamente (isso ja foi verificado no Exemplo (iv) desenvolvido na pag.
12); assim, por nao existir esse limite, calculemos o raio de convergéncia usando a féormula de R
envolvendo a raiz n-ésima:

1 1
R = lim = lim ——
n— oo "/|an| n—oo |5+(71)n|
6-2n
. 6-2"
lim { =2 se n — oo tomando valores pares
n—oo | 541
1
= —_——~
. 6-2" . a6 3
lim ¢ =2 lim - =2 se n— oo tomando valores impares ,
n— 00 5—1 n—oo \ 4
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isto ¢, R = 2, convergindo a série no intervalo (—2,2). Uma vez que, nos extremos desse intervalo, a
série toma as formas

’I’L

—5+ (- —, D+ (=1)" = N
Z%m :Z(_l)% ¢ Z 62" o

n=1 r=—2 n=1

54 (—1
221(6 )"

que sdo séries divergentes (pois o termo geral nao tende a zero), temos, como resposta, que a série dada
converge no intervalo (—2,2).

. R (=) (w—5)
d .
vi) da série n§:1 a2

Nao podemos empregar as formulas de calculo do raio de convergéncia fornecidas no Teorema 11,

r=2

pois todos os coeficientes das poténcias impares de (x — 5) se anulam [note que, com k = 2n, a
- . & & (—1)k/2
série pode ser escrita na forma kX::l ap(x —5)", comap, =0se k =1,3,5,--- e ax = W se
k=246, ] Nesse caso, empregamos o critério da razao ou o da raiz para determinar os valores
de z que tornam convergente a série ij:l Cn, onde ¢, = %
Para z # 5 (ponto no qual a sérien(’; obviamente convergente), o critério da razao fornece
1

lim |C”+1| = lim | (x —5)%n+Y) 64" n? = (x—5)* ( )2 <1
n—oo  Cp n—oo 647+1(n 4 1)2 (x —5)2n 64 n—ooco\n+1
= (z-5)?<64 = -8<zr-5<8 = -3<z<I13.

O mesmo resultado é obtido com o critério da raiz:

. .o (=) (z=5)*"  (z—5)? 1 9
nl_}I{.lo\/‘Cn‘ Jim iz \ ol limW< = (z—-5)<64 = -3<x<13,
n—oo
. "5 . 2\1/n : Inn? 2 1im o0 2(0) 0
uma vez que lim Vn? = lim (n*)/" = lim e n =¢e noe" =0 =V =1.
n—oo n—o00 n—o00
Por outro lado, % = > ( 2) é absolutamente convergente.
n=1 647n e=—30u13 n=1 N

x (1" _ 2n
Resposta: > e = 5™

a2 converge no intervalo [—3,13], sendo R =8 .
n=1

i < ()" (@ 5)
vii) da série -
) n2:31 64"\/n
Nesta série nota-se a auséncia de toda poténcia (z — 5)" em que k nado seja multiplo de 3, motivo
pelo qual novamente convém empregar os critérios da razao ou da raiz.

(1" (=5
647\/n

k

Com ¢, = , € para x # 5, obtemos, pelo critério da razao,

1

" _5 3(n+1) 64" _5 3
lim (S = |2 20) VAT ek I TR
n—=0oo0  Cp ”_>°° 64n+1\/7m (l’ — 5)371 64 n—oocc\ln+1

= |z-5P<64 = |r-5<Vbid=4 = —-4d<zr-5<4 = 1<z<9.

Esse mesmo resultado é obtido pelo critério da raiz:

lim {/[ep| = lim \/I @~ 5)?ml [2—5° ! <1l = [z-5P<64 =1<2<9
n—00 64"\/n 64 nhﬁn;o V\/n
pois lim {/\/n = lim (/n)"/™ = lim R E e e =1.

Além disso,

% (1) (= 5)*

HM8

(uma série harmonica de ordem menor ou igual a 1) é divergente.

7

z=1
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& (D) @=5° ]
ngl 64”\/ﬁ =9 n=1 \/ﬁ

o) _1\n _ 3n
Resposta: 50 (" (@ =5

é uma série alternada convergente.

converge no intervalo (1,9] , sendo R =4 .

Teorema 12

Uma série de poténcias Z an (x — xo)™ com raio de convergéncia R > 0 apresenta as seguintes
=0

propriedades no mtervalo (J;O — R, 29+ R):

a) sua soma Z ap, (x — xo)™ = f(x) é uma fungdo continua;
n=0

b) ela pode ser diferenciada termo a termo para se obter E nay, (r — )"t = f/(

n=1

o0
¢) ela pode ser integrada termo a termo para se obter > an (x —20)" ! = /f
n=0 T + 1
Observe que, de acordo com esse mesmo teorema, a série de poténcias produzida por diferenciagao
pode ser novamente diferenciada para se obter uma nova série de poténcias que converge para f”(z)
no mesmo intervalo (zg — R, 29 + R). Ou seja, diferenciagées sucessivas produzem as derivadas
f™(z) [n =1,2,---], todas definidas no mesmo intervalo. Isso significa que a soma de uma série de
poténcias centrada em ¢ com raio de convergéncia R > 0 ¢, no intervalo (zg — R, 2o+ R), uma fun¢ao
infinitamente diferenciavel, isto é, uma funcao que pode ser diferenciada um nimero qualquer de vezes.

1.5 Séries de Taylor e de MacLaurin

Teorema 13

o0
Os coeficientes de uma série de poténcias > a, (z — x¢)"™ com raio de convergéncia R > 0 sdo
n=0
dados por a, = f™(x¢)/n!, onde f(x) é a funcio para a qual aquela série converge no seu intervalo
de convergéncia. Para essa fungao, temos entao a seguinte série:

f"(z0)
2

s, 1" (a0)

3l (x—zo)>+--- .

- f(n) (xO) n 1
=Y (@ —w0)" = f(w0) + (o) (& — o) + o (@ — )

Para estabelecer esse teorema, ¢ fundamental o fato de a soma f(x) de uma série de poténcias com
raio de convergéncia nao nulo ser, como garante o Teorema 12, uma funcao infinitamente diferenciavel

no intervalo de convergéncia.

Considere agora qualquer funcdo g(x) que seja infinitamente diferenciével em xy. Podemos formar
a seguinte série, com a mesma forma daquela acima:

(1) (
Zg (' 0) (x—a:o)" ,
0 n.

denominada série de Taylor de g(z) relativa a zg (se 2o = 0, ela é chamada de gérie de MacLaurin).

Surge a questao de saber sob que condigGes essa série converge para g(z). Nao vamos entrar aqui
nos detalhes dessas condigoes (existe teorema especificando condigoes suficientes para a convergéncia),
mas é importante saber o seguinte:

e A série de Taylor pode convergir apenas em parte, isto é, num intervalo do dominio de g(z), ou
mesmo apenas no ponto x = rg. Por exemplo, mais adiante veremos que g(z) = 1/(1+ z?) (cujo
dominio é todo o eixo real) é convergente apenas para x € (—1,1).

e Ainda que a série de Taylor convirja em todo o dominio da fungéo g(x), a série pode nao coincidir
com a fungéo em parte do dominio. Por exemplo, se g(z) = |z — 1| (ignalaz —1sexz > 1e a
1—xsex < 1), entdo g(0) =1, ¢'(0) = [d(1 — m)/dx]zzo =—1,e g™(0) = 0; logo, a série
de MacLaurin é g(0) + ¢'(0)x = 1 — z, que ¢é diferente de g(z) se x > 1.

‘nZQ
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Ha varios modos para calcular uma série de Taylor. Vejamos alguns deles, todos em relagao a x = 0
(séries de MacLaurin):

Modo 1) Naturalmente, um modo consiste no uso direto da formula da série de Taylor fornecida
no Teorema 13. Os detalhes dos proximos quatro exemplos, relacionados a algumas das fungoes ele-
mentares, sdo apresentados no Prob. 18):

i) em§§1+$+zz+§+ﬁ+ (x eR).

ii) cosxi(l)”(;ir;llzj+ﬁ§+~~ (x eR).

iii) senx:i(—l)"(;j:t)!:x %?—F%T—%—!—--- (z €R) .

iv) mng(_l)"1(”“‘_”1)71:(;5—1)—(”3_21)2+(I;)1)3—(x;1) +o (0<2<2),

ou, em funcgao da variavel u =x — 1,

e u™ u2 u3 u4
m(l+u)=> (- = - T T (C1cus<).
= n 2 3 4
1 2
V) 7:1_£+....

V14 22 2

Modo 2) Séries de Taylor conhecidas podem ser usadas para calcular novas séries de Taylor. Os
seguintes exemplos sao baseados nas séries de Taylor apresentadas acima:

. e —37)" aad —1)n3n 4+n 9 6 27 7
) sttt R S N et at BB Gem).
n=0 ’ n=0 :
2n+1 oo An—+5 9 13 17
3 _ .3 1y 2t Ty T
ii) z%senz? =z Z 2n—|—1) ,;)( 1) Gt 1) =2t - + =] o + (x eR).

o0
Modo 3) A série geométrica Y 2™ = 1+ x + 22 + -+, que converge para 1/ (1 — x) se |z| < 1,
n=0
pode ser empregada para se obter mais facilmente a série de Taylor de algumas fungoes:

o0 o0

. 1 | , , L o
D T Ty :n;)(_x )n:,;)(_l)%nzl_m tat —at e se |(—a)| = a2t <,
e, —l<x<l.

z2 z2 1 z? & L 4rgnt? 22 4lxd 42z% 4325
ii —_— = — 4 3 no— _— = — - ..
i) 3 — 4z 31— (4x/3) 3 ;( z/3) 7;) gntl 3 + 32 T 33 + 34 +

se |dx/3| < 1,ie, =3/4<x<3/4.

Modo 4) De grande auxilio no desenvolvimento de certas fungoes em série de Taylor é o Teorema 12.
Nos trés exemplos que seguem, para se obter o desenvolvimento em série da fungao f(x), primeiramente
desenvolvemos f’(x) em série e depois integramos essa série termo a termo. Esse método funciona bem,

obviamente, quando é mais facil expandir f’(z) do que f(x):

) £() = (1 +2) ) )
L fl(x) = LI = 17@ = Z(—x)k = Z(—l)kxk, se|—z|<1,isto ¢, z € (—1,1).

1+ k=0 k=0
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oo +1
Integrando, obtemos f(z Z + c , onde, substituindo z = 0, obtemos
k=0
o0 s
f(O)Z[ -1) } +c = 0=c.
=0 kZ:O( it emo

0
Sempre determinamos tais constantes de integracao substituindo o ponto r = xg em que a série
esta centrada, pois, nele, anulando-se a série, o calculo delas é facilitado.

O Teorema 12 garante que a série de f(x) obtida por integracao permanece valida, pelo menos, no
intervalo (zg — R, 2o+ R), igual a (—1, 1) no caso. Mas a integragdo pode melhorar a convergéncia nos
extremos desse intervalo, o que nos leva & tarefa extra de verificar se isso de fato aconteceu:

s (_1)2k+1 oo 1

—emzx = —1: Z k Til = kzzo o e kZ:O o aue é uma série divergente, como
ha de ser, p01s nao existe f(—1) =1n0 .

& Z‘k'H > (_1)k
-emz =1: Z(—l)k Pl = pq 0 ma série alternada convergente.

k=0 o=l k=0

Temos entao que
oo * oo

flz)=In(14+2) = ];)(—1 P ) z:: — ,comz € (—1,1] ,

onde, na passagem (), mudamos o indice do somatoério para n = k + 1 para escrever a séria na forma
ja obtida acima, no Exemplo (iv) do Modo 1.

Foi dito logo acima que a mtegragao pode melhorar a convergéncia, o que se entende pelo fato de

que a integral de uma série Z anx™ convergente é Z [an/(n+1)]z" 1, cujos coeficientes, sendo iguais
n=0 n=0
aos da série original divididos por n 4+ 1 — oo, tendem comparativamente a zero mais rapidamente, o
o0

que melhora a convergéncia. JA a diferenciagdo produz a série Y. na,x™ !, cujos coeficientes, sendo
n=1
os originais multiplicados por n — oo, tendem a formar uma série com tendéncia menor a convergir.

1 oo
ii) f(z) = arctanz = f'(z) = 152 Z(fl)"xzn (série ja obtida acima, valida para —1 < z < 1)
x
=0
S (_1)nx2n+1 "
= f(z)= Z ol + ¢. Como essa série é convergente para = +1 (segundo o critério para
n

n=0
» ) e (_1)nx2n+1
séries alternadas), e ¢ = 0 [ pois f(0) = 0], temos, finalmente, que f(z) = arctanz = Z —_— =

o 2n +1
.’Eg x5 x7
L.z l<a<1
x 3—|—5 7—!— ( T )
i) flo) =Iny /il o pla) = — —i(xz)”se l<z<l = f(x)—imwm
N -z S l-a? ~— CZomtl

Como essa série é divergente para © = +1, e ¢ = 0 [pois f(0) = 0], obtemos finalmente f(z) =

1 x©  2p+1 3 5 7
+z x :x+£+%+%+... (-l<z<1).

1 f—
"Wt s Zaont1 3

Uma aplicagao das séries de Taylor é o cédlculo da integral de uma fungao cuja primitiva nao
é conhecida na forma de uma expressao fechada (isto é, em termos das fungdes elementares). Por

exemplo, uma primitiva de e &

2 o o 1 x2n+1

/e da::/[nz_% ] Z / da:— n'rL—l—l

x3/3  25/5 x7/7 2%/9
1! 2! 3! 4!

=+ +--- (zeR),
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obtida na forma de série infinita. Usando-a, podemos calcular, por exemplo, a integral definida:

b 21t 1/(2n+1) /3 1/5 1/7  1/9
| =2 R B R . L L

n=0

1.6 Exercicios
1. Calcule lim a, , caso exista, sendo:
n—oo

nd+3n+1

a)an=—r 5y

b) a, =vn—+1—+/n c)an=(1+i)n d) a, = /n

2. Calcule a soma da série:

k 2k—1
05 (3) WEer  ofevet g fer g Sepiy
k=2 \ 3 = k=0 k=0 k=1 7
f) > 2k-131=k ) 0,032 +0,0032 + 0,00032 + - - -
k=2
3. Usando o critério do termo geral, mostre a divergéncia de:
e k*m x 2k k+5
— b — k1
a) kglsen 5 )k;kd c) E n )
4. Usando o critério para série alternada, mostre a convergéncia de:
< Ink 1 < (=1)kkK? < (=1)k2kk
1)e+1 2 bl A d ) e
a) }gz::1( ) ko b) z:: (= ) sen k 2 kX::Q k*+3 ) kX::Q (k+1)ektt
5. Usando o critério da integral, determine a convergéncia de:
] o0 1
a b —
)k:1k2+1 )kz::gkank
6. Usando o critério da integral, determine a divergéncia de:
& k oS 1 e 1 ) 1
a —_— b — c d —_——
) E e ) &, Wik ) &, Rk ) &, k) It k)
7. Usando o critério da comparagao, mostre a convergéncia de:
X 1 * 1 x Ink X Ink X Ink
a _— b —_— c — — e —
) 1;::1 VE(1+VE3) ) k2::2 k?Ink ) 1;::1 k3vVk 9 kz:: k2 ) 1;::1 k3/2
8. Usando o critério da comparagao, mostre a divergéncia de:
x  2k+1 x  2k+1 >x  2k-1 >x 2tk-9
v v v d 7
PV v ) X skt ) X skt DD T
e
) ,§2 In* k ) k;g ViInk 2 =2 VInk
9. Usando o critério da comparagao, determine se é convergente ou divergente:
> k+1 > 2k0 —4k5 + 3k —6 > 2k-1
a) 3 ) 9 2 ) 2 73
= 2k3 —1 o 3k +2k% -2k +1 i—o k*—3k+14

10. Usando o critério da comparagao no limite, determine se é convergente ou divergente:

4k% —k +3 < k+Vk > k-3 < 9k +2(3%)
)2:31 k3 + 2k b) kz::1 2k3 — 1 © kz::4 (k+2)vE+1 )kz::o 5(2%) — 4
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11. Usando o critério da razao, determine a convergéncia ou divergéncia de:

12. Usando o critério da raiz, mostre a convergéncia de:
x 1 </ k \"
VL 9 E (541)
13. Usando o critério da razao, determine = para que a série seja convergente:
Y ) 0o oo n+l
g 3 b 5 o 3 BT g S
oo 1 n
e D B D W e

14. Classifique, justificando, se sdo absolutamente convergentes, condicionalmente convergentes ou
divergentes:
(~1)* S S 1
a) Z ——— b) > (=1 c) 3 Vksen—=
=1 Vk(k+2) k=1 4k k=1 vk

15. (Seéries telescopicas) Seja aj uma sequéncia convergente e denote klim ar = a. Mostre que
o0

a) Z(ak—ak+1)=aj—a b) Z(ak—ak+2):aj+aj+1—2a

k=j pa

L — 1 3 < %41 1
)Y o =1 QY =2 oy 1
£ k(k +1) k-1 4 = 12 (k+1)? T 9

> 1 1 1 = kr+m km V3 -1
f)kz_ﬁ(4k+1_4k+5>_25 g>kz_l[sen(3k+6)_sen(3k+3ﬂ_ )

= 1 1 > 1 S 5
Sy —— - = . I
)kzzo(?)k;—2)(3k+4) 12 );kk—i—l)(l@—i—Q) 4 J)J;(k2_1)2 4
)Z(\f — EF1) =v2-1 Z(k:l @_kl %_1 Zt ):4ln7—6

= k=4

16. Determinar se sao convergentes ou divergentes:

) 1:1 ﬁ b) kz=:1 = ];21’“000 ¢) ij ke—t 1 9 ;;1 k! ]ing

o (_1)* 0 _ o0 _ o0 k
) : 2k~)+h;k D2 kn+kln 11: ) h;fni?kl b2 (k;;:1>
) 55 S )= ) 5 (/5"

k=0 k=1 k=1

17. Determine o intervalo de convergéncia das seguintes séries de poténcias:

a) ni;#x" b) ;;W © 2:: (71(—1—?;6)12
05 R 0 8 St

18. Calcule as séries de MacLaurin, e os correspondentes intervalos de convergéncia, de
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a) e” em torno de x =0 b) cosz em torno de z =0 ¢) senz em torno de x =0
d) Inz em torno de z =1

19. Desenvolva as seguintes fungoes numa série de MacLaurin, fornecendo o intervalo de convergéncia:

T z? z+1
) T D) G ) 3012

20. Identifique as seguintes funcoes:

) f(z) = 5 (n-+ Da” b) gla) = 3 (n D)o ) h(r) = 3 2!

d) u(z) = io: nz?ntl

n=1

21. Desenvolva as seguintes fun¢ées numa série de MacLaurin, fornecendo o intervalo de convergéncia:

a) / Sl b) / Ot ) / In(1 + 125¢3) dt
0 t o 1 0
22. Calcule a soma das seguintes séries:
n 12 2n n 2n+1 s (_l)n
z:: Z +1 2n+1) D

n=1 n=0
23. Se f(x) = senx?, calcule f19)(0).

24. Calcule a soma da série no Exemplo (iv) do Teorema 9.

1.7 Solucoes dos Exercicios

Prob. 1 )
_ ot +3n+1 . 14+S 4L
a) lim a, = lim ——— = lim ”72” =4

vn+1l++/n lim 1
B L
Vn+1l+4+y/n n=ooy/n+1+4++/n

T\" 2\"
¢) Como lim (1 + 7> =e%, temos que lim a, = lim (1 + 7> = ¢2
n n

b) lim a, = lim vn+1—+/n= lim (Vn+1—n)
n—oo n— oo n—oo

n—oo n—oo n—oo
im n ’ im Yn
d) lim a, = lim nl/n = lim %" :e(nlﬁOo B ) ) e("LOO ! ) =eV=1
n—oQ n—oo TI—)OO
Prob. 2 )
Neste problema fazemos uso da férmula da soma da série geométrica Z q* =1 se |q| < 1.
k=0 —4q
(1732 _ 1
a) Z ( ) 1-1/3 6
b —k = -1 k = =
) kX::Oe kz::O (=) l—et e—1
o oo r—1\k 1 2
) Y (-2 = () =115 =5
k=0 k=0 \ 2 1—-(=1/2) 3

S 9—k/2 _ NN (9—1/2\F _ 1 1 V2 V241 24V2
Dz ! _k:Z::()(Q ") C1-22 -2 V21 V2l 2 =242
3 _1s 2 1 (=22t =2 2
°) kX::l(il)k I 5;;1(72 /7 = 2 1—(=22/7)  7+4 11
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% gk 3R (2\'_3 (23 3 49
nE2wt =05 (3) =5 E=5 A

g) 0,032+0,0032+0,00032 + -+ = 0,032 [(1071)% + (1071 + (1071)2 + -] = 0,032 3 (10~ 1)*

k=0
1 10 32
=0,032- ——=0,032- — = —
’ 1—-10-1 ’ 9 900
Prob. 3
Neste problema, basta mostrar que klim ar nao exite ou, existindo, que klim ar 0.
— 00 — 00

. : KPm :
a) lim a; = lim sen —— néo existe (ay oscila nos valores 0 e 1)
k— o0 k— o0 2

b) hm ay = hm ﬁ ) fim 2k17n2 0 Jim 2¢In" 2 T Jim 2¢In’2 =00 (nao existe)
oo k3 k—oo 3k2 k—o0 6k k—o0
-3
k+5 2 o (F+2)(k+5) 3k?
1i = 1 k1 = 1 = i — = i — =3 0
©) Jim ay = lim kins=— = lm == ey Koo k2 1 Th + 10 7

Prob. 4

Aplicamos o critério de convergéncia para uma série alternada Y po(—1)*ay [ax > 0], que consiste
em verificar se a sequéncia ai é decrescente e com limite igual a zero. Abaixo, cada sequéncia ay
dada é claramente decrescente (o que, caso se duvide, pode ser confirmado constatando que a derivada
da fungao f(k) = ap é negativa). Assim, mostraremos a convergéncia verificando tao-somente que
limk_w(, ap = 0.

. . 1 .1
b) kll}ngo ay = klin;o sen - = ben( lim %> =sen0=0v

k—o0
kS
c) li)ngoak_ lim S klin;om =0V
2k k; 1 k

d) hm ——— = — lim (2/€)k7=0/

kE+1ektl eksoo k+1

—1

Prob. 5

Observe que, em cada integral [ ;O f(x) dx usada, a fungdo f(x) é continua, positiva, decrescente e
tal que f(k) = a (o termo geral da série) para k > K, assim satisfazendo as condi¢oes do critério da
integral. Neste problema, basta mostrar que essa integral imprépria existe.

o0 s s T
a) —dx = arctanx‘ = arctanoco —arctanl = — — — = —
x2+1 1 2 4 4
<1 _1 |°° 1 1 1 1
b de = —1 ‘ N S S S
)/ zn®z v . xz 1noo+ln2 O+ln2 In2
Prob. 6

Devemos mostrar que a integral impropria construida segundo o critério da integral (v. o inicio da
resolucdo do Prob. 5) ndo existe.

o 1 )

—~—
o0

DN | =

b)/zmx\/% do = 2vinz | = wT Ving) =

o0
c
)/2 rlnz

(o)
dx:1n|lnx\‘ =Inlnoc—Inln2 =0
2 N——
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(e e) 1 %)
d)/ ———————dr=Inlnlnz| =Ihlnlnocc—Inlnln3 = oo (note que Inlnz > 0 se x > 3)
3 (zlnz)lnlnz 3 =

oo

Prob. 7

Pelo critério da comparacao entre séries de termos gerais positivos, para mostrar que uma série é
convergente, basta mostrar que, assintoticamente (i.e., para k maior que algum natural, ou k — 00), o
seu t.g. (termo geral) é menor ou igual que o t.g. de alguma sér. conv. (série convergente).

a < = — : t.g. de uma sér. conv.
: VEQ+VE) - VE(I-1+vE) R
1 1
b) 2k s < 72 : t.g. de uma sér. conv.
Ink k 1

. t.g. de uma sér. conv. *)

k?’\/E_k?’\/E:W.

d) — < — = : t.g. de uma sér. conv.

e) — < = : t.g. de uma sér. conv.

Prob. 8

Pelo critério da comparagao entre séries de termos gerais positivos, para mostrar que uma série é
divergente, basta mostrar que, assintoticamente (i.e., para k maior que algum inteiro positivo), o seu
t.g. € maior ou igual que o t.g. de alguma sér. div. (série divergente).

a) 2k+1 2k+1-1 2 o de wma sér. di
=—: t.g. ma sér. div.
Ro3k—4~ k2 -3k—d+sk+d kT
2k +1 2k +1-1 1
> =—:tg d ér. div.
) k2 +3k+4 — k2 +3k%2 4+ 4k2 Ak g. de uma ser. div
C) 2k — 1 > 2k —k 1 t d , di
= —: t.g. ma sér. div.
K2 _3k+4 - kZ_3k4 3kt 4k2 5k B commaseh aw
2k—9 2k — k 1
= — — (k>9): tg d er. div.
)k2—3k+4_k2—3k+3k+4k2 5k( >9) g. de uma sér. div
1 1 1
e) —— > ——— = —: t.g. de uma sér. div.

k2 = (VR? &
£)

: t.g. de uma sér. div.

1 1 1
> = -
VElnk ~ VkVE Kk
1 1
: t.g. de uma sér. div.
g) T g

1
Y
Prob. 9

E

kE+1 k+k 2
a) Conv., pois 2]{;_ 1 < 2k3+— B2 é o t.g. de uma sér. conv.

2k — AKP + 3k —6 _ 2K — 4kD + 4K5 +3K° —6+6 5

b) Conv., pois 359 12k — 2k 1 1 < BT o ol o 11 i ¢ o t.g. de uma sér. conv.

k—1 2k — k 1
= — é o0 t.g. de uma sér. div.

2
Div., pois >
©) DI, POl e T sk + 3k 4R Bk

() ¥p >0, Ink < kP para k suficientemente grande, pois essas duas fun¢ées sao estritamente crescentes e

Ink ra .. 1/k . 1
= lim ——— = lim — =0sep>0.
k—oo kP k— o0 pkp_l k—oo kP

Assim, In k é menor que k2, k, k1/2, k02 e E0:001 para k maiores que algum real.
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Prob. 10

4k —k+3 K1
a)Comak=ﬁ>0ebk:ﬁ:%>0Vk21,temosque
ap _ 4k —k+3 4k — kK2 +3k . 4—1/k+3/K*
e L Sy T E B R s T S S y e R finito.

Logo, pelo critério da comparagao no limite, uma vez que a série Y by diverge (por ser harmonica
k

de ordem p = 1), a série Y ar dada também diverge.
k

k+Vk Eoo1
b) Com ak:2k3_1>0ebkzﬁ:ﬁ>OVk21,temosque
k k% + k5/2 1+1/Vk 1
hm%—l + vk zlimLzlimi:f: finito.

k—oo b k—oo 23 —1/ k2 kooo 2k3—1 k—oo 2 —1/k3 2

Logo, pelo critério da comparagao no limite, uma vez que a série y . by, converge (por ser harmonica
k

de ordem p = 2), a série Y aj, dada também converge.
%

k—3
c)Com ap=—————=>0¢e b=

k+2)vVk+1

>0 Vk > 4, temos que

k\f\f

T k=3 g1 L (1-3/kVR
W T VRt VR koo (14 2/k)Vky/1+ 1k

=1 : finito.

Logo, pelo critério da comparagéo no limite, uma vez que a série _ by diverge (por ser harmonica
k

de ordem p = 1/2), a série Y aj dada também diverge.
k

9k + 2(3%) 3* 3\F
= = — = | = >
d) Com ay 5(2F) — 4 >0 e by oF <2> >0 Vk > 0, temos que
0
k k k kok
oy % ORE23F) 3L OkREY) v2(k3h) L 9k3E 2 g: dnito.

k—oo by k—oo H(2F) — 4 27k T koo 5(2k3k) — 4(3%) k—oo 5§ — 27%\*
Logo, pelo critério da comparagdo no limite, uma vez que a série Y by, diverge (por ser uma série
k

geométrica de razao ¢ = 3/2 < 1), a série Y a; dada também diverge.
k

Prob. 11
Seja L = klim |ag+1/ax|, onde ap é o termo geral da série dada. Abaixo, os resultados L < 1 e
—00

L > 1 indicam séries convergentes e divergentes, respectivamente. (O simbolo de modulo sera omitido
no caso de termo geral positivo.)

k+1
/(k“)\— M :hmizhmizoa
—1)k/k! k~>oo (E+1)! koo Jf (k+1) koook+1

. . F 4 k+1 2841 5, 1+
o3 k41 2R 41 3k ok
b)L_klggo 2k+1 41 .Sk—i—kz_khjgo kT 11 ik klggo >1
2k 3k 2+¥ 1+%

| 9k+1 k k
L L= . B

— )
) E=

Koae (k+ DFEFL K12 ihn Bl kT ke (L+ 1/k)F e
(4—m)"t k344 k3 44
L= lim : =(-m)- lim oo = (4-m) 1< 1
d) L= lm oy oy - A i e s
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Prob. 12

Seja L = klim {/|ak| , onde ar, é o termo geral da série dada. Abaixo, os resultados L < 1e L > 1
— 00

indicam séries convergentes e divergentes, respectivamente.
caso de termo geral positivo.)

a) L= lim 1/VkF = lim 1/k=0<1
k—o00 k—o00

b) L = lim

k—o0

Prob. 13

k(k+1y3_gm(ki0k:ggﬂl+;mk:

(O simbolo de médulo sera omitido no

e

o0
Segundo o critério da razéo, os valores de x que tornam a série > ¢, () convergente sdo os que

satisfazem a inequagdo ®(z) < 1, onde P(x) =

hH;o|<,0n+1( ) /pn ().

n=0
Uma investigagao separada é

necessaria para verificar se a convergéncia da série também ocorre com os valores de x que satisfazem

a equagao P(x) = 1.
1

=lz-3|' 1<l =-1<2-3<1 = z>2ecx<4.

_3 nil 1 —_—

a) tim (U2 e T

0 — 3\ © (—1)"

> (z—3) => (=1) , que é uma série alternada convergente.
=1 N e=2 51 N

[e's) (l’ _ 3)7L

— , que é divergente.

Resposta: z € [2,4)

n=1 n =4 n=1
—1 —1
—_— —
by lim [(MEDIT et L AL
im = x| lim . = |z

nsoo' (n+1)3+1  nd+41 nsoo n (n4+1)341
5t 3 (—1y : érie alternad t

— = —1)" ——— , que é uma série alternada convergente.
n=1 n3 -+ 1 r=—1 n=1 TL3 -+ 1 1 &

——
—0
x  nz" x n X n
= —— | < — | € convergente. Resposta: z € [—1,1
nzzzln?’—'-lz:l n:1n3—|—1 [7}::1713} vers pi [ 7}
—1 = ﬁ —0
—
2(n+1)+ 1]z (2n+1)z" 2n+3 n!

c) lim | - | =|z| I —— =0V Resposta: z € R

n—oo (n+1)! n! noo 20+ 1 (n+1)! e

n+2/3n ‘CC|
%) anrl S
> =9 > (=1)""! que é uma série divergente.
n=2 37171 r=-3 n=2
n+1

&)
= > 9, que é uma série divergente.
n=2

n=2 37171 =

Resposta: = € (—3,3)

Outro modo, baseado no fato de que a série dada é a uma série geométrica, é o seguinte:

<1l=|z+4+6]/>1 = 2<-7 ou x>-5

———— . que é uma série alternada convergente.

) $n+1 n—1 T
> P 32 Z ( ) , que é convergente se |§| <1, istoé se |x]<3.
n=2
=1 ('H)
"1 1 1 1 1
o tim | O D) Tl 1)
n—oo (x4 6)"t'In(n+2)" |z + 6| n—oc In(n + 2)
& 1 e 1
— —1)n
; (x+6)"In(n+1)la=—7 n;( ) (n+1)
———
* 1 * 1 7 1
= r—————— — >
;::1 (x+6)"In(n+1)la=—s =1 In(n+1) ngz Inn [ -
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z" 1 X T

£ - (
)Z( _ )n-‘,—l 1_1-”:2 1—2

|z — 1| > |z| (inequagdo que também se obtém pelo critério da razdo). Como os modulandos mudam

de sinal em x = 0 e z = 1, convém resolver a inequagao nos intervalos separados por esses valores de .

n x
) . Essa série geométrica é convergente se |17\ < 1, ou
—x

No intervalo x < 0: —x+1 > —z, ou 1 > 0, que é veridico Vx < 0 .
No intervalo (0,1) : —z +1> z, ou z < 1/2; logo, = € (0,1/2) .
No intervalo x > 1: x—1 > x, ou —1 > 0, um absurdo; logo, nao existe solugao no intervalo (1, 00).

Além disso, |L\ =0<1, e ’
11—z, 11—z

A unido dos valores de x que satisfazem a inequagao fornece a resposta: < 1/2 .

| nao existe.
=1

Prob. 14

_(=D*

\ k(k+2)

: 1
> =
pois = \/k2+2k2 k\/§ , que é o t.g. de uma sér. div. Assim, § \/T‘? nao converge

oo
a) Vejamos a série Z \ | = Z ﬁ ; vemos, por comparacao, que essa série é divergente,

absolutamente; mas essa série é convergente, o que se deduz do critério para série alternada m é

uma sequéncia positiva, decrescente e tal que klim m = 0} . Logo, a série dada é condicionalmente
— 00

convergente.
. L. (— 1) k2 X g2 , s - .
b) Vejamos a série Z |“———| = >_ 3= ; ela & convergente segundo o critério da razao: lim
k= k=1 k—oo
k+1)2/4kt? . L .
(ﬂcgi/k lim (k“) =1 < 1. Ou seja, a série dada ¢ absolutamente convergente.
74 I e A% 1

c) A série ¢ divergente segundo o critério do termo geral: lim vk sen == = lim (sen#)/0 =1 # 0,
divergente k=00 VE 60

onde fizemos a mudanga de indice 1/vk = 6 (— 0 quando k — 00).

Prob. 15
a) > (ap —aks1) = lim{ZakuakH} = lim{[ajJr (aj1 +0a; ~~~+an)]
k=j n—=o0 L p—j k=j n—00
—[(aj+1+ ) Tt ap) +an+1]}—aj—nh_>ngoan+1—aj—a
b) > (ax — agy2) = hm {Zakf Zak+2} = ILm {[aj+aj+1+ (a2 +a; '-~+an)]
k=j k=j k= n—oo
_[ (ij+2+ . +an) + Gny1+ an+2,]} = aj+aj+1_n1i_>ngoan+1—7}L120an+2 = aj—|—aj+1—2a
) S = (1) = 2 )=~ lm ag=1-0=1
c = - —_—— ) = ap —ag4+1) =ay — lim ap =1-0=
— 1 — 1 — oo
s k(k+1) SNk k+ k=1 k—
ak ak+1

o B B /2 12\ 1x/ 1 1
d)k§2k2—l_k§2(k+l)(k 1) Z(k+1 k—1>_2k22<k—1_k+1>

N~ =

Ak —1 Ap1
(o)
=(1/2) X (on1 —arer) = (1/2) (a1 + 02 = 2 lim ay) = (1/2) (1+1/2 - 0) =3/4
_ RS S B g 1i 1
? Z 5 k2(k +1)2 kzg[ k2 (k+1)2 } g;ak apt1) = a3 — lim ap =g
~ —
@k k41 0
e 1 1 oo 1
f - _ _ e i _ 1
) kZ::G ( 4k+1 4k+5 ) ,;::6 (ar — akt1) = ag — lim ap = o
ar Ak+1 0‘
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) km+m km o . T T V3-1
g) sen( )— Sen< ) =Y (agt1 —ag) = lim a —a; = sen— — sen— =
1

P 3k+6 3k+3 = k—o00 3 6 2
Akt1 ag
o 1 < / 1/6 1/6 1/6  1/6 1/6 1
h _— - = —2 i —2.0=—
) L GGk ,§0( k—2 3k:+4) dta=2lim ogmo =5t ~20=5
H/—’ N——
Qg Ap42
= 1 22, 1,12 00{11 1 1/ 1 1 }
1 —_—m —|— = —_ - - _— —_—
)kZ::lk(k—kl)(k—kQ) %31( k+1 k+2) kZ::I 2(k k+1> 2<k+1 k+2>
ak Qg1 b br41
1 1 1 1/1 1 1 1
z(al‘lﬂ"‘;oz) g\ Hookﬂ)—z(l“))‘g(i‘o)—5‘1—1
x 1 1 1 1 5
= li =1+--0=-
J)Z( 1) 22[(/@—1) (k+1)} R IS A 4
—_——  ——
ag Ak42
k)kz_:Q(\k/E —k+\l/k+1)—a2—ll>rr(>10%:\/§—l
- ay apt1
ag Ak+1
& k+3 k+4 k+4> S [ k+3 k+4 o0
1 n———kln———-In— | = kln— —(k+1) In—— | = (ag — ags1)
),;1( k—3 k—2 k—2 k; k—3 ) ,;1 i
k+3 —6
=S 0 K23
= a4 — hm ap = 4In7— lim ———2 = 4In7 - hm -
k—o0 k—o0 -1 koo —k—2
6k
Prob. 16
k—4 k—4 k V2

a) Temos que

VKo —3k_5 VRS — 3k +5) = kS —(k5/2) k%
que é o termo geral de uma série convergente Logo, por comparagao, a
série dada é convergente.

Note que a desigualdade acima é valida se 3k + 5 < k%/2, isto &, para
k maior que o valor kg indicado na figura & direita.

b) A série é convergente, pois, para ela, o parAmetro L no teste da razdo é menor que 1:

L_hm‘3(k+1)—1ooo k 2k \—lnm 3k—997 k1 _,
kool (k4 1)281 3k —1000' 2 k—oo 3k — 1000 k+1 2
N — N~
—1 —1
el k41

c) A série ¢ divergente, pois o pardmetro L no teste da razéo é L = lim |——  ——|
k—oc0 k + 2 e’“

d) A série é convergente segundo o teste da comparagio, uma vez que se consegue mostrar que, para
k maior ou igual que algum natural [, seu termo geral é maior que o termo geral b; de uma série
convergente. De fato, temos que

B K%
=2~ K —klj2 &

e, usando o teste da razdo, constatamos que bx forma uma série convergente:

=e>1.

=b, (se k? <k!/2,isto é, para k >1=15)

. . 2(k+1)° k! . E+1\9 1
] — lim 2T (7)7= 1.
i P /bl = Jim 4= e e = i () g 70
N——
—1 —0

e) A série é convergente consoante o critério para séries alternadas, pois a sequéncia ay = (Ink)/(2k+3)
é positiva, decrescente e tende a zero quando k — oo .
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f e g) Por comparagao, constatamos que as séries sdo divergentes, pois, para k maior que algum
natural [, temos que

2, 27 (1.2 2

Ik 5 ! > In”"k — (In"k)/2 = (In” k)/2 > 1—/2 : t.g. de série divergente
k+1n%k kE+ (VE)? 2k 2k

Ink -1 S Ink — (Ink)/2 B (Ink)/2 B 1/2

PrCa= Ik = Zr Rk t.g. de série div. [v. Exemplo (i) na pag. 7].

E+1
2k

k+1\k E+1 1
. K BT k _ T _ =
iy Vieel = Jim {f (S57) =l 5 =5 <1

k
h) Pelo critério da raiz, com ap = ( ) , verificamos que a série é convergente:

i) Por comparagao verifica-se que a série é divergente:
5+ cos VK3 S 5-1 2

: t.g. de série divergente.

k+1 T k+k k-
= COSET = (—1)F X (—1)F :
i) Z = Z = Z : uma série alternada convergente.
k:1k+2 k:1k+2 k=3 k

k) Por comparagcao verifica-se que a série é divergente:
1 1 1

(2/5)mn = TP > T t.g. de série divergente.
ou )
Inn __ In(2/5)]1nn _ Inn1ln(2/5) _ 1In(2/5) __ . s At
(2/5)"" = [e @/ )] = [e™"] = nIn(/5) = e t.g. da série harmonica
divergente de ordem p =In(5/2) < Ine = 1.
Prob. 17
S atn IS GV
-1)" "= R=1 “=1 =1 = +R=-1 1
S IIETIRE Jim | = i o on
S I(=1D)"/n]a™ = > [1/n] & divergente
n=1 T=— n=1
[(-1)"/n]z™ = > [(=1)"/n] é uma sér. altern. convergente Resposta: (—1,1]
n=1 r= n=1
XV 3 3 61\ 2
) S YPES 7 = R— lim B Y s <"+ ) =1 = 2p£R=60us8
n=1 (n+5)2 n—oo | Api nsoco \ n+4 \n+5
—_———— ———
an — 1 — 1
> vnt3 (x —=T)" => (=" vnt3 é conv., segundo o critério p/ séries alternadas
n=1 (n+5)? w=6  n=1 (n+5)?
— 0
X Vn+3 X vVn+3 X Vn+3n x 2
v AT I A G A I W Al e L ¢ conv.  Resposta: [6,8
|:n¥1 (n+5)2 (z—7) - ngl (n+5)2 | = ngl ) n§1 s | © o Resposta: [6, 8]
S (—2)" ) (=2 (n+2)2+2 1 1
) X et A [ = i e Ty T2 T 2

n=1

[ (2t } f( n" - é uma sér. alt. con Resposta [ L1 }
= — . . V. T 505
STz, & (n+1)%+2 SEPORA | T 509
— 0
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o n M 1)! 1
d) Y = (@—1)" = R= lim |- | = lim D PPl Resposta: € R
=l oo Gy meeo nl BRIl nooo —
~—~
0ot a n" 2n+1 2 n n
oy e T P 2 (0
) > 5 (@2 A = o ey A
~—~
” li 2 1 0 R t 2
= lim = esposta: x =
W nF 1 (At 1/n)" —poRE
SN~ — ——
=0 — 1/e

o) 9 3n 9 3(n+1) n 2
f) Para a série ) w2 , 0 critério da razao fornece L = lim | (@ T ) 8 In(n +2) | =
n=o0 8" In(n +2) n—oo 8tlIn(n+3) (z+2)%"

lz+22 . In(n+2)
lim

8 n—ooln(n+3)

—_——

1

<l = |z+2/<2 = -2<z+2<2 = -—-4<z<0.

e 2 3n 00 _1)n
Z u = Z L : série alternada condicionalmente convergente
e 87 In(n + 2) 4 — In(n + 2)
o _(z+2)%" S 1 &1
87 In(n + 2) =) o | T2 22 | d t Resposta: [—4.0
[1;) 8" In(n+2) ], T; In(n + 2) 7;2 Inn — 7;2 n rvergente Resposta: [—4,0)
Prob. 18

Abaixo, R é o raio de convergéncia e L é o parametro definido no critério da razao.

- = lim (n+1) =00 = convergéncia em R m

b) f(z) = coszx

f(0)=cosO=1, f'(0)=—sen0 =0, f"(0) = —cos0=-1, f"(0) = —sen0 =0,

f®(0)=cos0=1 --- e os valores se repetem.

. f0(0) = 1 sek=0,4,812--- (— k/2 é par)

‘ T 1-1 sek=2,6,10,14--- (— k/2 & impar)
%0 e(k) 00 a\k/2 . o 1\

. f(:c):zf (O)xkzz( 1) gk IRk Z( 1) 2" m

k! k!
k=0 k par n=0

= (=1)*¥/2 para k par.

n -1 n+1,.2n+2 2 |
c+1\:lim|( ) T (n)

n—00 (2n + 2)! (—1)ra?n |

Com ¢, = (—=1)"z*"/(2n)!, temos que L = lim |
n— oo

=22 lim W
n— 00 W(Qn +1)(2n+2)

=22.0=0<1 = convergénciaVzcRm

c) f(zx) = senx
f(0) = sen0=0, f'(0)=cos0=1, f7(0) = —sen0=0, f7(0) = —cos0=—-1,

f®(0) = sen0 =0 --- e os valores se repetem.
1 sek=1,59,13--- _ .
100 = {—1 se k=3,711,15--- (=1)+=1/2 para k fmpar.
. &R0, S (DRI s &K (D)
@)=Y et = Y et TS .
k=0 k impar n=0
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Com ¢, = (—1)"z*" 1/ (2n +1)!, temos que L = nhHH;O |Cn:1 | = nl;rrgo | (_(12)::;3:;’2;+3 ( (21?%;21")“ |
=22 lim QAT =22.0=0<1 = convergénciaVrcRm

n=oo (2n+1JT (2n + 2)(2n + 3)

d) f(z) =lnz

f)=Inz| _ =0

Fy=a7t,_, =1

1) =—a? _ =1
[y =227 _ =2
fWA)y=-2-3274 _ =3
fO(1)=2-3-427° _ =4

_ M) n_ N~ (D" -1 n_ N~ D" 1T n
F@) =T+ P o1 = S 1) = 3 T )
o -1 n+1
S R
n=1 n
—1)nt! n —1)"*! 1 1
Coman—( ) , obtemos R = lim | a |:lim\( ) nt | = lim nt . Além
n n—=00 Up41 n—00 n ( 1)n+2 n—oo M
disso para x=1—R=1-1=0, asérie é obviamente divergente, e para z = 1+ R = 1+ 1 = 2, a série
n+1
Z , que é uma série alternada convergente. Logo, a série é convergente para = € (0,2] m
Prob. 19

v d 1 d = n o n—1 = n
a)m:x%(l_gﬁ>:x% Zox :an::1nx :nglna: , para |z| < 1.

x? 2?2 d 22 d d 1 22 d? = x? >
b) ——  —2 " (]— 72_777(7):77 n_ = -1 n—2
) (1—x)3 2 da:( z) 2 drdr\l—=x 2 da:?nz::om 2 nZZ:Qn(n )
o0 1
:Zan )x”,para|z|<1.
n=2

z+1  z+1 1 R R o s L R N G K — (—3)"a"
C)3x+27 2 1—(=3z/2) 2 ;( 2) ’7;0 2n+1 {Z n+1 }

n=0

n+1
n=1 2

n>1 on on+1 - on+1 ’

para | —3z/2| <1 ,ie., z € (-2/3,2/3).

1 —1)ngn—1 —1)73" —1)ngn—1
= > apz™, onde ag = 5 € an _ D (=1 )
n=0
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Prob. 20

& & d 1 1—z—z(-1) 1
— 1 n_ n+1 7( ) _ _ 1
a) f(x) nzo(n—!— ) yi nzzzoac L \& T e R com |z] <
b) g(e) = 3 (n— Do =a? 50— ar2 = a2 L 3 o1 2
n=2 n=2 dx n=2 dx n—=1
d x 1 z?
2 2
= —_— — — 1
i) = A—op ~ (—ap cm <
00 2)\3 7
c) hiz) = Z 2l =g nZS( Hn = 1(30_ )1‘2 = 1%332 , com |22| <1, ie.,|z]<1
> > iy & yd 1
Q) ule) = 55 na? = S5 nla?) T2 Syt = Sy =t ()
n=1 n=1 n=0 Y Y
1 3
=a%. = com |y| = |x2| <1,ie,|z|<1

=y G-

Prob. 21

cos T

. e o 1 . ny2n z ny2n—1
o [t [HEER - [3[8 55 o[£ S

—0 t
(0" [Fpneryy & GO [E1]T = (e
P = { L_n; Gnyian W ER

i (-1 )" [t4n+1r_ o (=1)rgtnt!

o 2n+ 1) [4n+1 _7120(2n+1)!(4n+1)

[z € R]

C) /mln[1+(5t)3] gt — xio: (_l)n—l [(5t)3]’n gt — io: (_1)n—153n /Itgn i — io: (_l)n—153nx3n+1 .
0 0

0 n=1 n n=1 n n=1 71(37”L + ]_)
Nesse caso, a méxima variagao de t é dada por (5t)® € (—1,1], ou t € (—1/5,1/5]; esse ¢ o intervalo
de integracdo maximo possivel. Vemos entao que = pode variar no intervalo (—1/5,1/5] .

O Prob. 21 também pode ser resolvido diferenciando-se primeiramente, depois substituindo-se f’(x)
por sua série de Taylor, em seguida integrando-se e, finalmente, sabendo que f(0) = 0, determinando-se
a constante de integragao; observe esse modo aplicado ao item (a) acima:

Tcost —1 cosT —1 = (—1)"x2”_1 =
= —_— dt / = —_— = S S ———

/(@) /0 t = @) x nz::l (2n)! nz::l 2n 'Qn ’
onde f(0)=¢=0.
Prob. 22

oo (71)717127271 oo ( 1)n71(272)n 0 ( 1)71 1,.n 5

—_— = = =In(1 =In-.

2) nZ::1 n nZ::1 n n{:l n r=2—2 n(l+2) z=1/4 "

bs.: 1/4 € (—1,1], que é o intervalo de convergéncia da série de MacLaurin de In(1+z) que foi usada.
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( 1)n 2n+1 jo%s) (_1)nx2n+1 %) (_l)nx2n+1 T
b) X i S e, L T Y, L3
n+1)! n=1 (2n+1)! s n=o (2n+1)! o=F
—
senx
(=" (=1)"a?rt! W ™
N ) \= t _ =
c) Z TS nZO 1 |, arctan x .
e acordo com o resultado obtido no Exemplo (i) da secio 1.5, pagina 18 .
WD d ltado obtid E lo (i) d a0 1.5 ina 18
Prob. 23
f"(0) FE0) : (@) | (@®)
flx) = fO)+ f(0)x+—=> 51 24+ 5 P4+ = senz® = 2*— 30 + T
f490) 1 (15) /oy 15!
= Tmoom o TTO=5
Prob. 24

Foi dito no texto que a série em questao pode ser visualizada como sendo formada por duas séries
geométricas de razao 1/4, uma constituida pelos termos com k par e a outra, pelos termos com k
impar; de fato:

54 (—1)* x
ot X ko
6-2 k=1,3,5--- 6-2 n=0

oo _ k oo
> 5;(2161) = 2

k=0 k=0,2,4---
< 5+1 X 5-1 < 1\ 1= (1\" 1\ = /1\" 4 1 16

= — — — = ]_ — — = =t — = —
ngoﬁ.(22)n+n§06.2(22)n n20(4> +3n20<4) <+3)n20(4> 3 1-1/4 9

Mas ela também poder ser desmembrada em duas séries geométricas, uma de razao 1/2 e outra de
razdo —1/2:

oo k &
,;052(2’9 - % Z_;)( )

5+( 1)2n 0o 5+( )2n+1
6 -

22n + Z—:O 6 . 22n+1

Gz\»—t
([
A
\_/
| ot
—
)
N
+
[
/N
wl N
~_
Il
|5

k=0
N—— N————’
1 1 _ 2
RS

Evidentemente, esses desdobramentos da série dada em duas outras séries convergentes sao validos
em vista do teorema 2, item (b).
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Capitulo 2

Resolucao de Equacao Diferencial
Ordinaria Linear por Série de
Poténcias

{Ref. [12], se¢des 17.4.} ou {Ref. [13], se¢des 6.2 ¢ 6.3}

Sabemos que a solucao geral da EDO linear de 12 ordem

y —2zy(r) =0 (2.1)

(“’Z‘)n VzeR . (2.2)

[e.9]

2
yx)=cre® =¢ Z
n=0

Isso sugere que também possamos resolver a EDO em (2.1) tentando uma série de poténcias

y(x) =Y apa" | (2.3)
n=0

donde -
y'(z) = Z na,z" " . (2.4)
n=1

Substituindo (2.3) e (2.4) em (2.1), obtemos

oo oo
0 = ¢y —2zy= Z napz" ! — 2z Z apx"
n=1 n=0

oo o0

— Znanmn—l _ Z 2anxn+1
n=1 n=0
) )

= Z nanpz" "t — Z 2ot
n=1 n=2

oo
=ap + Z (nan — 2a,_9) "t |

n=2

uma equagao que s6 pode ser vélida para todos os valores de x se os coeficientes das poténcias se
anularem, isto é:

a1 =0 e (nap, — 2an,2)’ 0.

n>2 =
Desta segunda equagao, deduzimos que

2
Qp = —Qp_o para n>2 .
n
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Essa equagao é chamada de relagao de recorréncia. Por meio dela, determinamos os coeficientes a,.
Fazendo n igual a naturais pares, obtemos

n=2: as=aqg
2 1
n=4: g = 7 az = ao
6 2 11
n=6: a —as=--a
7632
8 2 111
n=8: ag=-a=--=-a
*TR 432
1 >0
Gz = 1 o (n )
Agora, com n igual a impares, temos
2
n=3: agzgalz()
2

n=>5: a5:ga3:0

. agn+1 =0 (n>0)

Finalmente, substituindo essas expressoes dos coeficientes em (2.3), obtemos

0 2
= E apz” = E Agpx’" = E 2" = ag E =qpe®
n! n!
n=0 n=0 n=0 n=0

que é a solugdo dada em (2.2), pois o coeficiente ap permanece como uma constante arbitraria.
Vejamos mais um exemplo. Considere a seguinte EDO e a sua solugao geral (conhecida):

4y +y(z) =0 = solucao geral y(x) = ¢y cos(z/2) + casen(x/2) . (2.5)
Vamos recalcular essa solucio geral pelo método das séries de poténcias(*). Os passos sio os seguintes:

Passo 1 - Escrevemos a série de poténcias que se admite como solugao e as derivadas dessas séries
que serao usadas:

oo f:
= Z apx” = n=1
n=0 z_: (n - 1) "2

Passo 2) Na EDO, substituimos y,y’ e y” pelas respectivas séries para deduzir a rela¢io de recor-
réncia:

0=4y"+y = 4 Z n(n —Da,z" % + Z anx" = Z 4n(n — 1apz" 2 + Z Up_ox™ 2

S n—2 __ _ An—2
;4nnflan+an o] x =0 = aniim (n>2)

(*) Estamos comegando a estudar um poderoso método que servird, naturalmente, para obter solugdes de EDOs que nao

sabemos resolver analiticamente; mas os exemplos ora apresentados sao educativos: ilustram o método e as manipulagoes
matematicas costumeiras.
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Passo 3) Usamos a relacdo de recorréncia para calcular os coeficientes em termos dos coeficientes
que permanecem arbitrarios (ag e a1):

—_ ao
2= T100)
a3z = — “
5T 43(2)
oy — — a2 - ao )
YT 44(3) 2432 4
ar — — as o al o 2(11
T 4.5(4) 42.5.4.3.2 5125
G ag _ o
6~ "4.6() 4°.6-5-4-3-2 6126
as ay 2&1
a7 = — =

4-7(6) 43-7-6-5-4-3-2 727

Passo 4) Deduzimos uma expressdo genérica para os coeficientes em termos de ag e a;. Do passo
3, concluimos que,
(=) ™ag (=1)"2a,q
aran>0: a9, = -—>—— e a =
patam = n = (2n)l22n T (9n 4 1)l 220t
Passo 5) Substituimos a expressao genérica dos coeficientes na série de y(z) para deduzir uma
expressao fechada para a solugao:

o . n __ . 2n G 2n+1 - (71)’”&0 2n G (71)7120‘1 2n+1
y(e) = D ana = 3 oz ) gz =) (5 Noar e D o g ¢
n=0 n=0 n=0 n=0 n=0
o0 oo
—1)" 2n —1)" 2n+1
:aOZ(Zn)! (§> +362/Z 2(n+)1 '(§> — a0 COSg+a/1 seng ’
n=0 n=0
- 7 =

que é a solugdo geral apresentada em (2.5).

Ressalte-se que o passo 4 é frequentemente dificil, e o passo 5 é raramente possivel. Por isso,
nas resolucgoes por série de poténcias que seguem, nao nos preocuparemos, ordinariamente, com a
implementagao do passo 4 (o que seria até elegante, mas este passo, embora de certa importancia, esta
fora dos nossos propésitos aqui, que é o entendimento do método) e do passo 5.

2.1 Definicoes

a) Uma fungdo f(z) é dita analitica no ponto x = 1z se ela pode ser desenvolvida numa série de Taylor
relativa a esse ponto que tenha raio de convergéncia positivo.

b) Considere a EDO linear de 22 ordem
A(z)y" + B(z)y + C(z)y(x) =0 , (2.6)

que pode ser escrita na forma
y" + @)y +q(@)y(x) =0, (2.7)

com p(z) = B(z)/A(x) e q(z) = C(x)/A(z). Dizemos que z = zy é um ponto ordinario, ou
nao singular, dessa EDO se, nesse ponto, p(x) e ¢(x) ou suas extensoes continuas™ sao fungoes
analiticas. Um ponto que nao é ordinario é dito um ponto singular, ou uma singularidade, da
EDO.

(*) Recordagdo:
Uma fungdo f(x) definida num ponto z = z¢ é dita continua nesse ponto se lim f(z) = f(zo).
- 1)—?:1)0

A extensdo continua de uma fun¢éo f(z) num ponto z = g em que ela néo é definida, mas tem limite finito, é a fungéo
g(z) que € igual a f(x) se  # xg e, naquele ponto, é dada por g(xp) = lim f(z). Por exemplo, a extensdo continua da
T—xQ

funcédo (senz)/z em x = 0 é a funcdo g(z) igual a (senz)/x se  # 0 e com ¢(0) = lirno(senz)/x =1.
T—
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Exemplos:

i) y" + (Inz)y(x) =0: x = 0 é ponto singular, pois f(z) = Inz nao é analitica nesse ponto (ndo
existindo f(0), f'(0), etc, f(x) ndo pode ser desenvolvida numa série de Taylor em torno de z = 0).

i) ¥ + (x — 1)y +y = 0: z = 1 & ponto singular, pois (z — 1)>/3 nio pode ser expandida

em poténcias de (z—1) [a segunda derivada de (z—1)%/3, igual a (10/9)(z—1)~'/3, ¢ infinita em = = 1].
1—
iil) zy” + (senz)y’ + (1 —cosz)y(x) =0 = ¢’ + Send Yy + 8T y(z) = 0.
x x
p(z) a(x)

Essa EDO néao tem ponto singular, isto é, todos pontos de R sdo ordinarios, inclusive z = 0. De

fato, como

3 5 7 2 4 6

1 1( T +x T + ) 1 T +:£ T +
teeng = (gt L Ly
T T 3! 5! 7! 3! 5! 7!
e
1(1 ) 1(12 x4+x6 x8+ ) x x3+x5 x7+
_ — cos - —( — — — - - — — - —
z L N T R TR TR 2l 4 68

s@o as séries de Taylor relativa a © = 0 das extensoes continuas de p(x) e ¢(z) nesse ponto, a analitici-
dade em x = 0 est4 verificada.

. 9 _ T 1 _
) (@ + Dy +ay' —y(2) =0 = '+ oy - @) =0.
Os pontos singulares dessa EDO sao as raizes de 22 + 1 = 0, a saber, z = =i, nos quais z/(z* + 1)

el/ (302 + 1) ndo admitem extensdo continua, pois apresentam limites infinitos nesses pontos. Esse
exemplo ilustra que pontos singulares nao sao necessariamente reais.

Percebe-se que a caracterizagao de pontos ordinarios e singulares com base no conceito de analiti-
cidade pode complicar, as vezes, a determinacao deles. Ora, o conceito de fun¢@o analitica é porme-
norizadamente estudado num curso de funcoes complexas, e é exatamente a falta desse estudo que nos
traz dificuldades aqui. Mas nao precisamos de muita teoria para prosseguir, uma vez que estaremos,
na maioria das vezes, preocupados apenas com EDOs cujos coeficientes sao polinémios. Nesse caso,
fornecemos a seguinte receita:

A EDO (2.6) — no caso em que A(x), B(z) e C(z) sdo polindomios sem fator comum — tem, em
x = x¢ (real ou imaginario), um ponto
e ordindrio se A(xg) # 0
e singular se A(xg) =0

Por exemplo:

i) (22 — 1)y" + 22y’ + 6y(z) = 0 : os pontos singulares sdo as raizes de 2 — 1 = 0, isto é, x = +1.
Todos os outros pontos sao ordinarios.

i) (z—D%"+ @2 =)y +(@-1D)%(x)=0 = (r—1)y"+(@+1)y+(x—1)y(z) =0: ponto
singular em = = 1.

i) (x — )y + (@ =Dy + (z = D?y(x) =0 = ¢+ (xz+ 1)y + (z—1)y(z) = 0 : nio tem
ponto singular (todos pontos de R séo ordinérios).

iv) 22y + 2%y + z(z — Vy(x) =0 = ay” +axy + (x — 1)y(xr) =0 : ponto singular em = = 0.

v) (22 +1)y” + y(x) = 0 : pontos singulares em x = +i .

2.2 Teorema da Existéncia de Solucoes em Série de Poténcias

Se x = xg for um ponto ordinario da EDO (2.6), podemos sempre encontrar duas solugdes line-

o0
armente independentes na forma da série de poténcias > a,(x — x¢)™, convergindo cada série, pelo
n
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menos, no intervalo (g — R, g + R), em que R é a distancia do ponto xy ao ponto singular (real ou
nao) mais proximo.
o0
Por exemplo, a solugao da EDO (z —1)y” +zy’ +y = 0 na forma > a,(z — 4)™, isto é, na forma de
n
uma série de poténcias em torno do ponto ordinério z = 4, é convergente para (4 — 3, 4+ 3) = (1,7),
pois, nesse caso, a distancia R do ponto x = 4 ao ponto singular mais préximo, que é o ponto z = 1, é
R=1]4-1|=3.
Outro exemplo: a solucio da EDO (22 + 9)y” + 2y’ +y = 0 na

o0
forma Y a,(x —4)™, isto é, na forma de uma série de poténcias em torno 3{,/ """ ~~

n . ’ \\
do ponto ordinario x = 4, é convergente para (4 — 5, 4 +5) = (—1,9), 31,‘\1%:5 intervalo de\\\
pois, nesse caso, a distancia R do ponto x = 4 (do eixo das abscissas, S CAonvergénCia N
que também é o ponto z; = 4 do plano complexo) ao ponto singular
mais proximo, que sao 0s pontos zQi = +3i do plano complexo, é R = s 9' z
|21 — 25| = |4 —3i| = |44 3i] = V42432 = 5(0). A figura a direita 3.\ \\ ,'
mostra que o intervalo (—1,9) é a parte do eixo real que jaz no interior T /, 2

da circunferéncia de raio R = 5 centrada no ponto x = 4 desse eixo. =~ T =-_--

2.3 Exemplos de Resolucao de EDOs Lineares por Séries de
Poténcias em Torno de Ponto Ordinario

Nota: Aqui, por questao de simplicidade, supomos que a origem x = 0 seja sempre o ponto

ordinario em torno do qual se deseja obter a solugao da EDO na forma de uma série de
o0

poténcias, Y a,z™ no caso. Isso nao significa perda de generalidade, pois, mediante a
n=0
mudanca para a variavel ¢ = z — xg, sempre podemos transformar uma EDO com ponto

ordinario em x = xy noutra com ponto ordinario em ¢ = 0.

Exemplo 1: y"” — 22y =0

Como néao ha pontos singulares, a solucdo em série obtida abaixo é convergente para todo x real.

Z n(n — Dayx — 2z Z anx” = Z n(n — 1)czn:£’“2 - Z 2a,z" !
=2 n=2 n=0
= Z n(n —1a,z" 2 — Z 20, 32" "% = 2ay + Z [n(n —1)a, — 2a,_3] ">
n=2 n=3 0 n=3 0
2ap,3

Como ag = 0, temos que a5 = ag =+ = a2+3k’ =0.
k>0

O coeficiente ag permanece arbitrario, dele dependendo os coeficientes asg
E>1

2a0 an
a3 = = —
3)2) 3
2a3 1 ap ()
aﬁ = = —_——-— = —
6)(5) 153 45
2a6 1 ao ao
ag = =

(9)(8) ~ 3645 1620

(*)Recorde-se de que a distancia entre dois pontos z1 e z2 do plano complexo é dada por |z1 — 22|, € que o mddulo
de um ntimero complexo z = a + bi é |z|] = va? +b2. Por exemplo, a distancia entre os pontos 6 + 13i e 1 +1i é

6 4 13i — (14 1)| = |5 + 12i] = v/52 + 122 = /169 = 13.
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O coeficiente a; também permanece arbitréario, dele dependendo os coeficientes aszk41

2aq a1
a)r = ———— = —
e 6
2a4 1 ag al
ar = = —— = —
T (M) 216 126
2a7 1 a1 a1
a = —-——— =
197 10)(9) T 45126 5670
Logo,
y(x) = ag+arx+
az 22+ a3 ¥+ ag 2+ as 25+ ag 2%+ ay 2T+ ag ¥+ a9 2°+ ajo 210+
0 ki & 0 T5 136 0 1630 5670
(1+x3+x6+x9+ )+ (+x4+x7+xw+ )
= a — — PR a x —_ R P
0 3 45 1620 ! 6 126 5670

é a solugao desejada, sendo as séries entre parénteses duas solugoes linearmente independentes da EDO.
Exemplo 2: (22 + 1)y + a2y —y =0
Os pontos singulares sao © = +i. A disténcia entre esses pontos e o ponto de expansao x = 0 é

R =|0+£i| = |i| = 1. Logo, a solugdo em série obtida abaixo é convergente para x € (0 — R,0+ R) =

e} o o)
0=(22+1) Z nn —1a,z"? +x Z napz" "t — Z anx"
n=2 n=1 n=0

oo oo oo oo
= Z n(n — Dapz™ + Z n(n —Da,z" 2 + Z na,x" — Z anpx”
n=2 n=2 n=1 n=0

= Z(n —2)(n = 3)an_oax" 2 + Z n(n —1)a,z™? + Z(n —2)a, 92" "% — Z Y
n=4 n=2 n=3 n=2
= 2as + 6azx + ar® — ag — ar® + Z {n(n - Da, + [(n -2 (n—3)+n—2-— 1] an_g}x”*Q
2as—ag + 6asz n=4 (n—1)(n—3)
—3) an_
= 2a2—ag=0, a3=0 e ap —w
n>4 n

O coeficiente ag permanece arbitrario, dele dependendo os coeficientes agk’

k>1
ap
ag—?
o agi (10/27 ap
e
- 3(14_ —a0/8_a0
“WTTTE T T2 T e

O coeficiente a; também permanece arbitrario, e, como a3 = 0, vemos, pela relagao de recorréncia, que
as = a7 = ag = --- = 0. Logo,

y(x) = a9+ a1x + a2 z? + as 3 + a4 xt + as b+ ag 8 + ay x4

~— ~— ~— ~— ~— ~—
QTO 0 ,QTO 0 % 0
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z?2 ozt S

- 1+ T )
a1x+a°(+2 s T

Exemplo 3: 4" — (1+2)y=0

Nao existem pontos singulares, convergindo, para todo x real, a série que se obtém a seguir.

oo

0= Z n(n — Day,z™™ (1+= Z anx” Z n(n — Day,z™~ Z Oy i 32" 2
n=3

n=2 n=2

—2
= 2a3 —ap + E (n—1)ay — ap—2 — ap_glz" >,

donde ag = ag/2 e
o Ap—3 + Gn—2

Wl s = n(n —1)

é a relagao de recorréncia. Como ag e a; permanecem arbitrarios, em termos deles escrevemos todos
os demais coeficientes:

ago
as = —
2
a ag + aq
3 =
6

_a1+a2_1< ao)_

4= "9 T\t 24+12
b= Lt dotay a0 o
7720 20 6 T30 ' 120

Finalmente,

y(xr) = ap+a1x + ay 22+ a3 3+ ay 2*+ a5 a®+---
~— ~—

BRI BYB B
(L + 2 2 a(or o D )
0 2 "6 24 30 ! 6 ' 12 ' 120

2.4 Exercicios
Calcule a solugao em série centrada no ponto ordinario z = 0 de cada uma das EDOs abaixo:
@y '=zy  (bB)y' -2y +y=0  (c)y'+2% +ay=0  (d) (2*+2)y" +3zy —y=0

Respostas:

(a) y(gj) = Qo (]' + 2}73:];3 + 2~3}5-6x6 + 2~3-5?6'8~9x9 + ) +a (IZ’+ ﬁIA + 3-4?6,7‘%74» 3,4,6}7,9.101‘10 +-- )
(b) y(q;): aO(l—%.’L‘Q—%.’E‘l—%Jﬁ_)"V a1($+%$3+%$5+%$7+)
(c) y(2)= ao(l T T A 429!72m9+...) 4 al@, Ph g 2T %xlum)

(d) y(m):a0<1+ix2_mx +76u2§1?6_'”)+ al(x— Lad 4 Jgs 1;;!-::14337_._.)
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Capitulo 3

O Método dos Autovalores para
Sistema de EDOs Lineares de Primeira
Ordem com Coeficientes Constantes

{Ref. [14], secbes 8.5 a 8.6} e {Ref. [15], secdo 3.3}

3.1 Toépicos Preliminares
3.1.1 Solucao Geral de Sistema de EDOs Lineares de Coeficientes Cons-
tantes

Um sistema de n EDOs lineares de 1 ordem de coeficientes constantes e n fungdes incognitas 1 (%),
xa(t), -+, x,(t) tem a forma

LE’l (t) = auxl(t) + alzxg(t) + - 4 a1n$n(t) + fl(t)
xh(t) = ag1x1(t) + agaw2(t) + - + agnn (t) + fo(t) (3.1a)
lerb(t) = anlxl(t) + an2m2 (t) + + annxn(t) + fn(t) s
ou, matricialmente,
. z1(t) (1) ajr - a1 z1(t) i)
T : = : = : : : + :
T (t) ), (t) Unl vc Gnp T (t) fal(t)
X(t) X1 (4) A X(1) F(t)
d
= %X = AX(t)+ F(t) , (3.1b)
onde a matriz A é constante, a matriz F(¢), denominada termo independente, compdem-se de fungoes
conhecidas, e todas as fungoes z;(t) e f;(t) (i =1,--- ,n) sao definidas num mesmo intervalo (¢1,t2). O

vetor X (t) que satisfaz tal sistema é chamado de solugdo do sistema no intervalo (t1,%2). Se F(t) =0
em (t1,t2), entdo o sistema é dito homogéneo; caso contrario, ndo homogéneo (ou inomogéneo).

Seguem dois principios, faceis de provar, que sdo validos para qualquer sistema de EDOs linea-
res [mais geral que aquele em (3.1)], podendo as EDOs terem ordem maior do que 1 e coeficientes
dependentes de t (sendo também chamados de sistema linear de EDOs):

Principio de superposicao para sistema linear homogéneo:
Se o vetores Xi, ---, Xj sdo solugoes de X'(t) = AX(¢), entdo a combinagao linear ¢1 X7 +
<o+ cp Xk, onde ¢; (i =1,---,k) sdo constantes, também é solugao; em particular, um multiplo
escalar de uma solugao e a soma de duas solucoes também sao solucoes.

Principio de superposicao para sistema linear nao homogéneo:
Considere o vetor X; que é solugdo de X'(t) = AX + F;(t), com (¢ = 1,--- ,k); ou seja, temos
n solugoes de sistemas lineares que se distinguem apenas pelos termos independentes. Nesse
caso, a combinagao linear ¢1 X7 + -+ 4+ ¢, X de coeficientes constantes é solu¢iao de X'(t) =
AX + [ClFl(t) + -+ Cka(t)]
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Em todo o restante deste capitulo, o sistema linear em 3.1, com matriz A constante, é o considerado.
— Solugoes Linearmente Independentes

Os conceitos de dependéncia linear e de independéncia linear estudados na Algebra Linear é essencial
neste estudo, sobre os quais ha o seguinte teorema:

Teorema. Sejam X, Xo, ---, X, solugoes do sistema linear homogéneo, e considere o
chamado wronskiano dessas n solugoes, denotado e definido como segue:

W(X1, Xo,---,X,) = determinante da matriz n x n formada por n

colunas que sao as solugoes X1, Xo, -+, X, .

Tem-se que W (X1, Xo,--+,X,,) #0 Vt € (t1,12) se e somente se as solugdes X (t), Xa(t),
-+, X,,(¢t) forem linearmente independentes no intervalo (¢1,2).

Demonstra-se que, no intervalo (¢1,¢2), ou o wronskiano ndo se anula em nenhum ponto ou se anula
em todos eles. Logo, ao se provar que o wronskiano W difere de zero em algum ponto de (¢1,t2),
prova-se que W # 0 em todos os pontos desse intervalo.

— Solugao Geral

Outro conceito importante é o de conjunto fundamental de solugdes num intervalo (¢1,t2), que é
definido como um conjunto formado por quaisquer n solugoes linearmente independentes do sistema
homogéneo naquele intervalo. Sobre esse conceito se baseia o seguinte teorema, basico nesta exposigao:

Teorema (sistema homogéneo) Num intervalo (¢1,¢2), existe conjunto fundamental de
solugoes para o sistema homogéneo, e a solugao geral desse sistema é dada pela combinagao
linear das solugoes de um conjunto fundamental de solugbes qualquer.

Teorema (sistema nao homogéneo) Se Xp(t) é uma solugao conhecida de um sistema
nao homogeéneo, dita solugao particular, e Xg(t) é a solugdo geral do sistema homogéneo
associado, entdo X (t) = Xg(t) + Xp(t) é a solugdo geral desse sistema nao homogéneo.

Em vista desse teorema, o processo de calcular a tinica solugao de um sistema linear nao homogéneo
pode ser dividido em trés etapas:

Etapas da resolugdo de um sistema nao homogéneo X'(t) = AX(¢) + F(t):

Etapa 1: Resolve-se o sistema homogéneo associado X (t) = AXpy(t), obtendo-se Xy (t) =

aXi(t)+- -+ Xn(t), onde X;(t), -+, X, (¢) formam um conjunto fundamental de solu¢oes desse
sistema homogéneo.

Etapa 2: Determina-se alguma solugdo Xp(t) tal que X5(t) = AXp(t) + F(t) (uma solugéo
particular do sistema ndo homogéneo).

Etapa 3: Forma-se a solucao geral X (t) = X () + Xp(¢) do sistema nao homogéneo.

— Problema de Valor Inicial

Um Problema de Valor Inicial (PVI) com o sistema linear (3.1) consiste em resolver tal sistema
sob as chamadas condigOes iniciais, que sdo assim especificadas num ponto to do intervalo (¢1,%2)
considerado:

X(to) = COl[Il(t0)7 l‘g(to),"' s .In(to)] = COl[k’l, kg,"' s kn] .
————

Prova-se que, no caso do sistema homogéneo, esse PVI tem sempre uma tnica solugao. Mas, no caso
nao homogéneo, para garantir a existéncia de uma unica solugdo, a continuidade das fungoes f;(t)
(i =1,---,n) naquele intervalo é uma condigao suficiente.
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3.1.2 Alguns Aspectos da Teoria dos Autovalores e Autovetores de um
Operador Linear

Seja L uma transformacao linear num espago vetorial V :

L:' VvV — V
v — Lv=w , (3.2)
caso em que L recebe a denominacao de operador linear. Um vetor nao nulo v € V é autovetor de L
se existe um escalar A tal que

Lv=Xv. (3.3)

Dizemos que A é o autovalor de L associado ao autovetor v, e nos referimos a equagao acima como um
problema de autovalor. Essa equacao tem obviamente a solu¢ao v = 0, chamada de solugao trivial,
que, no entanto, como estipulado acima, nao pode ser autovetor.

Se houver n (qualquer inteiro positivo) autovetores vy, - - -, v, linearmente independentes associados
ao mesmo autovalor A\, entao qualquer combinacao linear desses autovetores também é um autovetor
associado a \; de fato:

L(civy + -+ covp) =1 Loy + -+ ¢ Lu, = A(eyvg + -+ + cavy) .
A A
V1 Un

Portanto, sempre hd uma infinidade de autovetores associados a um mesmo autovalor A\, os quais,
juntamente com o vetor nulo, formam um subespago vetorial de V', denominado autoespago de A, aqui
denotado por Sy. Apesar dessa infinidade, é comum dizermos que "s6 existe um autovetor (ou s6
existem dois autovetores, etc.)", assim na verdade informando que, no autoespacgo de A, ndo existem
mais de um autovetor (ou mais de dois autovetores, etc.) que sejam linearmente independentes. Em
resumo, se a dimensao do subespago Sy for n, costumamos dizer que, ao autovalor A, s6 existem n
autovetores correspondentes (sendo estes uma base de Sy).

Se v = (v1,-+,v,) € V = R" a multiplicidade algébrica m de um autovalor A é o namero de
vezes que esse autovalor aparece como raiz do polindmio caracteristico da matriz A associada a L, e a
multiplicidade geométrica g de A é a dimensao de Sy (o maior niimero de elementos que um conjunto
linearmente independente de autovetores associados a A pode ter). Ha a seguinte relagio entre essas
duas grandezas:

1<g<m.

Demonstra-se que g é igual ao nimero de linhas nulas na matriz A — AI (I é a matriz identidade) em
sua forma escalonada.

A respeito do célculo de autovalores e autovetores, o aluno devera recordar-se de como efetué-lo. A
Ref. [10] pode ser consultada, sendo recomendada, no minimo, a leitura das se¢oes 6.1 e 6.2, ou uma
revisdo mais rapida seria a Ref. [14], secao 8.4.3.

A seguir fornecemos um conjunto de matrizes 3 x 3 que contempla todas as possibilidades do par
(m, g) previstas pelas desigualdades g < m < 3.

No primeiro ezemplo, a matriz A tem trés autovalores A1, Ag e Az distintos (my = mg = m3z = 1),
cujos autoespagos, portanto, segundo a relagdo acima, tém necessariamente dimensao 1 (g1 = g2 =
gs = 1). Serdo calculados os autovetores vy, vy e vs associados aqueles trés autovalores. Note que,
quando dizemos "o autovetor v; associado a A1", estd implicito que v; pode ser qualquer autovetor
de S),, sendo escolhido o que na situagdo se ache o mais conveniente (por exemplo, pode-se sempre
escolher autovetores unitérios).

No segundo exemplo, A tem dois autovalores distintos: A\; # Ao, para os quais (m1,91) = (2,1) e
(ma,g2) = (1,1). Sao calculados um autovetor v; € Sy, e um autovetor vy € Sy, .

No terceiro exemplo, A tem dois autovalores distintos: A; # Ag, para os quais (m1,91) = (2,2) e
(ma,g2) = (1,1). Sao calculados dois autovetores vy, vy € Sy, e um autovetor vy € Sy, .

No quarto exemplo, A tem um autovalor distinto: \;, para o qual (my,g1) = (3,1). E calculado
apenas um autovetor vy € Sy, .

No quinto exemplo, A tem um autovalor distinto: A1, para o qual (my,g1) = (3,2). S@o calculados
dois autovetores vi1,v12 € Sy, .

No sexto exemplo, A tem um autovalor distinto: Aq, para o qual (m1,g91) = (3,3). Séo calculados
trés autovetores vi1,v12,v13 € Sy, -

Eis os exemplos:

42



1 2 0 A1 =1[(mi,g)=01] —— v =(1,0,0)

(@)
w
S
3

Exemplo 12 A = AQ = 3 [(MQ,_QQ):(LU] E— V2 = (1a 170)

0 0 o5
A3 =5[(msgs)=(1,1)] —— w3 =(1,2,1)
1 1 0
AL =1[(m1,g)=(21 — v =(1,0,0
Exemplo2: A=[ 0 1 1 = { 1=1eman=@n] 1= (10,0
0 0 2 )\2 =2 [(mQ,gg):(l,l)] — Uy = (17 ]., 1)
1 0 0 V11 = (17Oa0)
A =1](mi,01)=(2,2 —_—
Exemplo3: A= 0 1 0 = ! Lm0 =(22)] {012 =(0,1,0)
0 0 2 A2 =2[(maga)=(1)] ——— vz =(0,0,1)
1 1 0
Exemplo4: A= 0 1 1 = A1 =1[(mi,g)=31] —— v =(1,0,0)
0 0 1
1 00
Exemplo5: A= 0 1 1 = A =1[(mig)=32] — v = (1,0,0)
—— V1 = (071,0)
0 0 1
1 00 v11 = (1,0,0)
Exemplo6: A= 0 1 0 = A =1[(mi,0)=83] —— v12 = (0, 1,0)
0 0 1 vz = (0,0,1)

Observando a estrutura das respostas apresentadas acima, podemos dizer que resolver o pro-
blema de autovalor Lv = Av consiste em calcular os autovalores A; e os respectivos autovetores v;;
(j =1, 4gi), ou, em outros termos, calcular cada A\; e uma base do respectivo autoespago Sy, .

Nota: Um problema baseado num operador linear que seja homogéneo (i.e, que, como se
apresenta, admite a solugdo nula) pode ser caracterizado como um problema de autovalor
caso exiba um parametro livre para o qual se buscam os valores (ditos autovalores) que lhe
possibilitam a existéncia de solugdes nao nulas (ditos autovetores).

3.2 Sistemas Homogéneos

Trataremos, primeiramente, de sistemas de EDOs lineares de 12 ordem homogéneos: F(t) =0 em
(3.1). Note que, quando n =1 (A é uma matriz 1 x 1, isto é, um ntamero), a solugdo de dX/dt = AX
é X(t) = Ce”t. Pois bem, prova-se que essa também é a solugdo quando n > 2, desde que se defina a
exponencial de uma matriz. Nao apresentaremos esse método; ele é descrito nos capitulos 29 e 31 da
referéncia [4].

O método estudado aqui comega por admitir-se uma solucdo da forma X = Ve, onde V =
col vy, - ,v,] € um vetor (coluna) constante; substituindo, obtemos

AWM= AV = AV =AV, ou (A— ANV =0,

que é um problema de autovalor, no qual procuramos as solugdes nao nulas (V' # 0) associadas aos
valores de A\ que satisfazem a equagdo de autovalor, ou equagdo caracteristica, det(A — AI) = 0.

Dividiremos nosso estudo em trés casos: 1) autovalores reais e distintos, 2) autovalores imaginérios
e 3) autovalores repetidos. Isso ndo significa que um sistema de EDOs lineares se enquadre num desses
trés casos. Na verdade, os trés casos podem ocorrer num mesmo problema, ocorrendo tanto autovalores
reais quanto imaginarios que se repetem.
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3.2.1 12 Caso: Autovalores Reais e Distintos

A solugao do sistema X’ = AX, sendo A uma matriz n X n, é dada por
n
X(t) = chVke)\kt ,
k=1

onde Vj é um vetor linearmente independente associado ao autovalor Ag.

Exemplo 1: o' =20 + 3y ou i vl_|23 x
= y =2z +y dt |y | |2 1 Yy
e~ Y

X A X
1 2=A 3 _ 42 _ = -1
det(A—)\I)—’ 9 1)\‘—(/\—1)(/\—2)—6—)\ —3A—4=0 = )\—{/\2_4
Célculo do autovetor V; e da solucdo X () associados ao autovalor A\; = —1:
. 3 3 escalonamento 3 3
A/\lfb 2] 3 {0 0]
. _ 3 3 ||a] |0 3a+38=0 a=-0 p=1 -1
onizos [ 3 3][e] <[]+ {iarsm0n faz o =y ]
-~
Vi
X (t) = Vieht = {_” et
Célculo do autovetor V4 e da solugao X (t) associados ao autovalor Ay = 4:
-2 3 escalonamento -2 3
ar= [T ] e [T
o _ -2 3 |{a| |0 —2a+36=0 a=38/2 p=2 |3
a3 ][ P (5 e |
" Xg(t) = Vge’\"‘t = |:§:| ett
- -1 _,; 3| 4
Solugao geral: X (t) = ¢1 X1(t) + c2Xa(t) = 1 1le + ¢ 5| €, ou
z(t) = —cre 4+ 3coe? e y(t) =cre ! +2c0e™ m
=4 +y+=z2 il —4 1 1 T
Exemplo 2: Yy =x+5y—=z2 ou — |y |= 1 5 -1 Y
’_ dt
2 =y—3z z 0 1 -3 z
S S —
X A X
—4— A 1 1
det(A — \I) = 1 5-x -1 =—A+HD[A=5)A+3)+1]+(A+3+1)
0 1 -3-A
Ar=-3
=A4+YDY1-A=-5)A+3)-1]=-A+3)A+4H)H(A-5)=0 = Ay = —4
Calculo do autovetor V7 associado ao autovalor A\; = —3:
-1 1 1 -1 1 1
A_ All _ 1 8 -1 escalonamento 01 0
0 1 0 0 0O
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-1 1 1 e’ 0 —a+pf+v=0 a=vy 1
L(A=MDVi=0=| 0 1 0 ||B8]|=]0|=>({B=0 ={B=0 T==Vvi= {0
0 0 0 ¥ 0 0y=0 Y 99 1

|41

Célculo dos autovetores V, e V3 associados aos autovalores Ay e A3, respectivamente (abaixo, na

E o
passagem denotada por — , a matriz é escalonada):

01 1 1 9 -1][a 0 a=10y_ _, [ 10
A-XI=| 19 1| 5 lo 1 1||sl=]0]| =2¢8=-"20wn=|-1
| 0 1 1] | 0 0 01l 7] | 0 | Y qq |1
[—9 1 1] (1 0 —17[a] JO] a= B M1
A-XNI=| 10 1| B o 1 s8||Bl=|0]| =2{=87y2"1w=]38
I 1 -8 | o 0o ofl~y] [O] v aq 1

1 10 1

Solucdo geral: X=c1| 0 |e3+c| =1 |e*H+ez| 8| =
1 1 1

3.2.2 2° Caso: Autovalores Imaginarios

Os elementos da matriz A e, por conseguinte, os coeficientes da equagao caracteristica sao reais.
Logo, se A imaginario for autovalor, A* (complexo conjugado) também sera. Além disso, se ao autovalor
A corresponde o autovetor V', isto é AV = AV, entdo (AV)* = (AV)*, ou AV* = \*V™*| significando
que ao autovalor A* corresponde o autovetor V*. Isso facilita os célculos que seguem.

Exemplo 3: v =6r—y ou i |6 -l sc
KGO o Yy = 5x + 4y dt|ly | |5 4 Yy
—— ﬂ_/w_/

6-) -1 ) .

det(A— ) = 5 4\ =X -10A+29=0 = A=5=£2i

Calculo do autovetor V' associado ao autovalor A = 5 + 2i:

. . - B - )
A\ — 1-2i —1 . 3 1-21 —1 al _ 0 N a_ﬁ B=1-2i v — 1 '
5 —1-2i 0 0 | 8qq 1-2i

. _ At Nt 1 (5+2i)¢ 1 (5—2i)¢
X(t)—k1Ve +l€2V€ —k1|:1_21 € +k2 1+21 € .

Para escrever X (t) como uma fun¢io real, usamos a seguinte formula:

ki Ve + koV*e' VePioi cre® (Pcosbt — Qsenbt) + cae™(Qcosbt + Psenbt)| ,  (3.4)

A = a+bi

onde ki e ko sao constantes complexas arbitrarias, c; e co sdo constantes reais arbitrarias, a e b sao as
partes real e imaginaria de A, e P e @) sdo as partes real e imaginaria de V.

. 1 1 0.
No caso: )\—5+§1 e V—[l_zi}—[l]—i—{_Q}l.

P Q
X(t)=cp e <[ 1 ]cosZt— [ _(2) } sen2t> +cpe’ <{ _(2) ]cosZt—i— [ 1 ] sen2t) |
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A dedugao da formula em (3.4) é como segue:

X(t) = /ﬁVe)\t + kQV*e)\*t k(P + Qi)e(a+bi)t + ko (P — Qi)e(a—bi)t
= k1 (P + Qi)e™ (cos bt + isenbt) + ko(P — Qi)e (cos bt — isenbt)

= [k1(P + Qi) + k2(P — Qi)] e cos bt +i[k1 (P + Qi) — ko(P — Qi)] e senbt
= [(kl + kg) P -+ l(kl — k‘g) Q] eat cos bt + [ l(kl — kg) P — (kl + k2) Q} e“t sen bt
—— — —— ——

C2 C1

=c = cC2

c1e (P cosbt — Q senbt) + coe (Q cos bt + Psenbt)  CQD.

1 20
Exemplo4: X'=| -1/2 1 0 | X
0 0 1
A
1-Xx 2 0 AN o=1+1i
det(A—X)=| =1/2 1-X 0 |=(1-N)[1-N*+1]=0 = Ao =1—1i
0 0 1-2X A3 =1
i 2 0 -1 2 0 a 0 —ia+28=0
A-MI=|-1/2 =i o | & |0 0 o Bl=]0]| = {og=0
0 0 —i 0 0 —i v 0 —iy =
a=—2ip 2 2 0
= (Baq 2L ovi=il=o|+|1]i
= 0 0 0
—— =
P Q
0 20 —~1/2 0 0 a 0 —a/2=0
A—xI=1|-1/2 0 0| & 0 201|8|=|0] = {28=0
0 0 0 0 0 0 7y 0 0y=0
a=0 ) 0
= B=0 == Vz=10
7 a9 1
2 . 2 ‘ 0
X(t)=k eI Lo | =i | e 4 oeg | 0 | €
0 0 1
[ 2 0 0 0 0
= e 0 |cost— | 1 | sent| +cqet 1 |cost+ | 2 | sent| + c3| 0 |ef m
| 0 0 0 0 1

onde usamos (3.4) para reescrever como uma funcdo real os dois primeiros termos (indicados por
chaves), que correspondem ao par de autovalores complexos conjugados.

3.2.3 32 Caso: Autovalores Repetidos

A solugao do sistema X’ = AX, sendo A uma matriz n X n constante, é dada por

kmax

X = Z X (kmax = n? de autovalores distintos) ,
k=1
onde X}, é a parcela da solugao associada ao k-ésimo autovalor distinto A\;x. A expressao de X depende
da multiplicidade de A\ e dos autovetores associados a esse autovalor; vejamos:
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e Se a multiplicidade de A\ for igual a 1 , entao, sendo Vj o autovetor associado, temos que:

Xk = Ckaekkt . (35)

e Se a multiplicidade de Ay for igual a m > 2 | a expressao de X depende do namero de autovetores
linearmente independentes associados a esse autovalor, havendo trés possibilidades:

— Existem m autovetores Vii, Vio, -+, Vim :
X = (cu1Vir + - + ComVim) €M . (3.6)
— Existe um tnico autovetor Us :
Xk:{ck.lw + (Ut + Us) + e (Uﬂ; +Upt +Ug ) + -
m—1 gm—2 .
m—1 T
onde (A= NI U;=Uj_1 (j=2,---,m).

+ Chm [Ul P Uit + Um} } et (3.7)

— O namero de autovetores associados ao autovalor de multiplicidade m é maior que 1 e menor
que m; neste caso, o problema torna-se complicado e nao sera estudado aqui.

Essas formulas sao provadas no final desta segao. Vale a pena escrevé-las em correspondéncia com
a estrutura de autovalores e autovetores. Fazemos isso a seguir, onde cada seta que se inicia num
autovalor )\ indica uma base (de autovetores) do autoespago de A :

Matriz Asyo:

Dois autovalores distintos:

M=V e a—=Vy ~ ‘X = 61‘/16)\1t +CQ‘/2€)\2t

Um autovalor distinto:

ViieVig~ | X = [Cll‘/ll + Clgvlg] et (V. Exemplo 5)

S
A1 (mult. 2)

X = [011U1 + Clg(Ult + UQ)] eMt

U1 ~
onde (A—X\1I)Us = Uy

(v. Exemplo 6)

Matriz Asx3:

Trés autovalores distintos:

)\1 — V1 s )\2 — ‘/2 e )\3 — ‘/3 ~ X = clvle/\lt + CQVQG/\zt + Cnge/\St

Dois autovalores distintos:

Vél e ‘/22 ~ X = clVle’\lt + [621‘/21 + 022%2] 6/\2t (V. Ex. 7)

/
Ar(mult. 1) = V4 e Ag(mult. 2)

X = ¢, Vier? U Uit + U: Azt
v | X Z N lenlh FenlUi s U [ gy
onde (A—X2I)Us = U;
Um autovalor distinto:
Vir, Vize Vig~ | X = (011V11 +c12Vi2 + 013V13) et
a
Ar(mult. 3) — Vi; e Vg ~ nao estudado aqui
N\
Ui~ | X = [c11U1 + c12(Urt + Us) + c13(Ut? /2 + Ust + Us) | e (v. Bx. 9)
onde (A*)\ll)Uz = U1 e (A*/\ll)Ug = UQ ’ ’
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Enfatize-se, na notagao adotada, que, se o autovalor \; é multiplo e existe um tunico autovetor
associado, este é denotado por U; (ao invés de V;). Vejamos algumas aplicagoes dessas formulas:

Exemplo 5: A= [ (3) g }

3—-A 0
0 3—-A

R FH R ) I )

<= [ <o of] = o=t semren

det(A—)\I):’ ‘z()\—?))Z:O = A1 =3 (mult. 2) .

Vi1 Vio
A O ) P

Nota: O sistema linear consiste em duas EDOs que nao sao acopladas, permitindo que sejam
resolvidas separadamente:

{x'(t) =3z = x(t) =k
y'(t) =3z = y(t) =kt .

Embora demasiadamente simples para ser resolvido matricialmente, este exemplo serve como ve-
rificagdo do método.

Exemplo 6: A= [ ? _} }

3—2 -1

det(A—)J)z’l L

‘:(A—B)()\—l)+1:()\—2)2:0 = A =2 (mult. 2).

(1 <11 & [1 -1a]_ToO a=8 s-1 .. [1
oni-[ 2] 1 22 - = el
X1 = {cn Ui + coa(Unt + Us) pet2t

onde Uy é uma solugdo (h&a uma infinidade) do sistema algébrico (A — A\ I)Us = Ui, o qual, em

componentes, se torna
1 -1 a | |1
0 0 g1 | 1]|°

Este sistema é mais facilmente resolvido na forma de uma matriz aumentada a ser escalonadas:

1 —1]1] & [1 -1]1 a=1+8 g=0 . _[1
ol s Lo l) = G e el

Finalmente,
X=X = o a2 Ve
= A1 =45C1 1 C12 1 0 €
1 -2 2
Exemplo 7: A= | -2 1 -2
2 =2 1
1—A -2 2
det(A-A)=| -2 1-X -2 |=—-(A-5A+1)2=0 = {AM___? guﬁ ;;
2 2 1-2\ 2= uit.
-4 -2 2 2 1 -1 o 0 o= 1
A-nI=| -2 -4 2| B o1 1]||g|=]|0]| =2{8=- = Vi=v|-1
2 -2 —4 00 O y 0 Y a4 1
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= X, = VieMt =¢ | =1 | €% é a parcela da solucdo associada ao autovalor A; = 5, conforme (3.5).
1
2 -2 2 1 -1 1 e 0 a—pF+v=0 a=08-—7v
A-xI=|-2 2 2| 5 10 ool|Bg|=|0] ={0s=0 ={Baqq
2 =2 2 0 0 0 ¥ 0 Oy=0 v qq
B—~ 1 -1 1 -1
=W=| p =B|1|+7] 0|= Xo=(co1Vor +coaVa)e™ = |ca |1 | +co| O e’
¥ 0 1 0 1
—— ——
Va1 Va2
é a parcela da solucao associada ao autovalor As = —1, conforme (3.6). A solugao geral ¢ X = X7 + Xo,
ou,
1 1 -1
X=c|—-1 edt + o1 |1 | +coo 0 etm
1 0 1

5
Exemplo8: A= 1|1
0

1 0 2 «a 0 a=—2y 4
EZlo2s5|lsl=|0]={8=-5y2 =2 v=] 5
00 0]~ 0 v aq )

-5 2 o 0 a=-2y ) 2
1 0 Bl=0| ={{p=0 == Uu,=| 0
0 0 ~y 0 Y qq -1

1=

-4
A—Xl=1|1 -5
2

o

= Xo = {021U1 + coo(Urt + Us) } A2t ¢ g parcela da solucio associada ao autovalor o = 5, e Us é

uma solugao do sistema algébrico (A — AoI)Uy = Uy, ou, em componentes:
0 —4 0 Q@ 2
1 =5 2 B | = 0
0 2 0 ¥ -1

Este sistema é mais facilmente resolvido a partir da sua forma que é dada por uma matriz aumentada
e escalonada:

0 —4 0] 2 1 -5 2| 0 a=-5/2-2y —5/2
1 =52 0| & o 20[-1] = {B=-1)2 22 Uy = | -1)2
0 2 0/|-1 0 0 0| 0 v qq 0

Logo, a solucao geral ¢ X = X; + X5, ou,

4 2 2 —5/2
X=c| 5| +<cu| 0| +ecam 0|t+|—-1/2 et m
—2 -1 —1 0
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1 0
Exemplo 9: A={|2 2 -1
0 1

det(A—A)=| 2 2-X -1 |=-A—1P%=0 = A =1 (mult. 3)
0 1 =
00 0 21 -11[ a 0 a=0 0
A-MnI=]21 1| B o1 —1||Bl=]0|=2{s=y I U, =1
01 -1 00 0 y 0 v dq 1

= X, = {011U1 +c12(Urt + Us) + c13(Urt? /2 + Ut + Ug)}e)‘lt é a parcela da solugao associada ao
autovalor \; = 1, sendo U; e Us, respectivamente, solugoes dos sistemas algébricos resolvidos a seguir:

00 00 2 1 —1]1 a=0 L, 0]
A-MNDUs=U1= |2 1 -1|1 | & o1 -1|1] = {B=y+1 =2 1,=|1
0 1 —-1]1 00 0|0 v aq 0
00 00 2 1 —1]1 a=1/2 1/2]
A-MDUs=Us= | 2 1 -1|1 | & o1 —-1]0] = {p=y =5 U3=]0
01 1|0 00 00 Y aq 0 |
Logo, a solucao geral é
0 0 0 07 0 1/2
X=X;={Len|l| 4+ |1]t+]1 +es | |1 7+ 1(t4+1] 0 e m
1 1 1 0 0

Prova das formulas (3.5). (3.6) e (3.7):

Devemos provar que X dado por cada uma dessas formulas é solucao do sistema linear, isto é, que
AXp — M X = 0.
e Prova da formula em (3.5). Se X}, = ¢, Vet onde AVj = A\ Vi, entdo

AXk - X]/C = A(CkaeAkt) - ()\kckae/\’“t) = (AVk - )\ka) Ckekkt =0Vt. CQD
~————
0

m
e Prova da formula em (3.6). Se Xj = ( > clekl> et onde AViy = A\, Vi, entao
=1

AXk_X]/g = ( E cklAVkl)e)"“t—)\k( E Clekl>€)\kt = |: E Ckl (AVkl - )\kal) e)\kt =0Vt. CQD
—_—
=1 0

=1 =1

e Prova da formula em (3.7). Esta formula pode ser escrita na forma

m 1 1—i
t J
Xy = E cki Xk, com Xp = eAktZUj [
=1 Jj=1

Demostramos que essa expressao de Xy, é solucao do sistema de EDOs observando, primeiramente,

que
l
AXk — X]; = chl (AXkl - X,;l) =0 5
————

j=1 0
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restando, para completar a demonstragao, mostrar que o termo entre parénteses se anula:

/ Axt Lt Axt Nt A tl_l gt
AXkl—X = ek 7,14[]‘—)\;@6)‘7 7U—€k 7(]
. ;(lﬂ)l ’ ;(5*3)! ’ ;(I*J*U! !

-1 L 1—j
= e)\kt{ (lt— ol [M] + Z (lt— ;)' [(A=NDU; — Ujl]} = 0. CQD.
' 0 j=2 ' 0

3.3 Sistemas Nao Homogéneos

De acordo com a descri¢ao das etapas de resolugéo do sistema ndo homogéneo X'(t) = AX (t)+ F(t)
apresentada no texto quadriculado na pag. 41, uma vez encontrada a solugdo geral Xy (t) do sistema
homogéneo associado, basta somar a essa solugdo uma solugao particular X p(t) do sistema para obter
a solugao geral X (¢) = Xg(t) + Xp(t) do sistema nado homogéneo. Nesta segido descrevemos dois
métodos para determinar X p(t), expostos separadamente nas duas subsegoes seguintes.

3.3.1 Meétodo dos Coeficientes a Determinar

Este método funciona para algumas expressoes particulares de F'(t), das quais consideramos aqui
apenas quatro. Abaixo listamos a regra de formagao da solucdo particular Xp(t) para esses quatro
casos. Nas expressoes consideradas para F'(t), um termo conhecido, K e M sdo matrizes colunas
conhecidas, e k é uma constante conhecida. J4 nas formas admitidas para Xp, B ¢ C sao matrizes
coluna a serem determinadas. Todas essas matrizes sdo da mesma ordem n x 1 de F(t) e Xp(t),
sendo n o nimero de EDOs no sistema. O método consiste em calcular B e C, cujos elementos B;
e C; (i=1,---,n) sdo os "coeficientes a determinar" *), presentes nas equagdes do sistema X (t) =
AXp(t) + F(¢).

F(t) = K (const.) = Xp(t) = B (const.) . (3.8)
F(t) = Kt + M (com M nulo ou nao) = Xpt)=DBt+C . (3.9
F(t) = Ke** (k # autovalor de A) =  Xp(t) = Be* . (3.10)
F(t) = Ke** (k = autovalor de A de multip. 1) =  Xp(t) = Bte* 4+ Ce* | (3.11)

Pelo principio de superposi¢do para sistema linear ndo homogéneo (v. pag 40), essas regras de
formagao de Xp(t) se superpdem; por exemplo, se F'(t) é a soma de expressdes como aquelas em (3.9)
e (3.10), isto &, F(t) = Kt + M + Ne**, entdo havemos de usar Xp(t) = Bt + C + De*.

Exemplo: Vamos resolver X'(t) = AX(t) + F(t), com A = [ 3 i1’> } e F(t) dado por:

@ro=[5] wro-[Gh] @ re-[55]

Resolucgao:

A solugéo geral é dada por
X(t)=Xpult)+Xp(t) m

O sistema homogéneo associado ja foi resolvido na subse¢do 3.2.1, Exemplo 1, quando se obteve

Xu(t) = er [_ﬂ et e m i m

0 presente método lembra aquele, de mesmo nome, existente para determinar uma solugao particular de uma EDO
linear de coeficientes constantes cujo termo independente envolve polindmios, fung¢bes exponenciais, senos, cossenos,
somas ou produtos finitos dessas fungoes, ou ainda somas finitas de tais produtos. No caso de EDOs, nao é complicado
elaborar o método genericamente, o que nao acontece no caso de sistemas de EDOs, razao pela qual aqui consideramos
apenas algumas formas do termo independente F'(t)
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Calculemos X p(t) de cada um dos itens (a), (b) e (c):

Item (a):

Como F é constante, de acordo com (3.8) admitimos Xp = B = [ !

essa expressao no sistema linear para calcular By e Bs:

xpmaxerr = [=[2 )2+ 2]

0=2B;+3B2+9 N By =6
0=2B1+DB>—-5

Item (b):

Como F' é formado por polindmios do 12 grau, de acordo com (3.9) admitimos

— _ | B Ci| | Bit+Cy
voomson [l [0 - [500]

e substituimos essa expressao no sistema linear para calcular By, By, C7 e Cs:

2 3 0[Bit+C1|  [2(Bit+Cy)+3(Bat +Co)|  [(2B1 + 3Ba)t + (2C; + 3C»)
2 1 || Bat+Co| | 2(Bit+C1)+(Bat+C2) | | (2B1 + Ba)t + (2C1 + Cs)

[ -2t ] (B[ —2-B
F=Xp= [—2t+1] {BJ - [—2t+1—BJ '

(2B, +3Bo)t + (2C; +3C2)]  [-20—-B, | [0
(2B1 + Ba)t + (2C, + Cy) —2t+1-By| |0

axr = |

AXp+F — Xp = {

(2B1 + 3By —2)t + (2C1 +3Cy — B1) =0
(2B1+Bz—2)t+(201+02+1—32)ZO.

2B1 4+ 3By =2 B =1
2B1+ By =2 By =0.
201 +3C, =B =1 N Ci=-1
201 +Cy=—-14 By =—1 Co=1.

| Bit+C | |t—-1
- [3436]-[71]

Item (c):

Como F' & como em (3.10) (pois k = 2 nao é autovalor da matriz A), admitimos

B B €2t
X 2t 1 2t 1
P_Be = |:B2:|e = |:BQ 2t:|

e substituimos essa expressao no sistema linear para calcular By e Bs:
AXp — 2 3 |[Bie*] _ [(2B1 +3By)e?
P71 2 1 || Bye? |~ | (2B + By)e? | -
Foxl— —3e*'|  [2Bie*] _ [(—=3—2B)e*
P | 52t 2Bse?t | T | (=5 —2Bg)e?t | -

o [@Bi+3B)e*]  [(-3-2By)e*]| [ (3B, —3)e? o
AXp + F = Xp = [(231+B2)62t (=5 —2Bs)e | T | (2B1 = By —5)e2t | T o] -

3B, —3=0 _ [Bi=3
2B; — By —5=0 By=1.

Xe() =% |

€
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3.3.2 Meétodo da Variagcao dos Parametros

A solugéo geral do sistema homogéneo associado

Xy — AXp(t) =0

é da forma
C1
C2
XH(t) = chl(t) + CQXQ(t) + -+ Can(t) = [Xl(t) XQ(t) s Xn(t)} . = @(t)C ,
B(t) c'n
——
c

onde §(t) (a denominada matriz fundamental) é formada por n colunas que sao solugdes X1 (t), Xa(¢),
-+, X, (t) linearmente independentes do sistema homogéneo™), e C' é uma matriz coluna com n
constante arbitrarias. Substituindo a segunda equagao acima na primeira, obtemos [®'(t) — AP(t)]|C =
0, a qual, por ser valida com C arbitrario, leva a concluirmos que @'(t) — A®(t) = 0, equagdo que
é utilizada abaixo, no cancelamento dos dois termos riscados, ao se deduzir uma solugao particular
Xp(t) do sistema ndo homogéneo.
Admitindo que Xp(t) = @(¢)U(t), obtemos, substituindo essa expressao no sistema nao homogeéneo,
a seguinte equagao que permite a determinagao de U(t) [e, portanto, de X p(t)]:

0=Xp(t)—AXp(t)— F(t) = &HUT) + o()U'(t) — A 0 —F(t) = U@)=o ' (t)F(t).

Em resumo, temos que a solugdo geral do sistema nao homogeéneo é X (t) = Xy (t) + Xp(t),
isto é, a soma da solugao geral do sistema homogéneo Xy (t) = ¢(¢)C (calculada conforme a segao
3.2) com a solugao particular Xp(t) = &(t)U(t), onde U'(t) = &~ L(t)F(t) .

A substituicao do parametro C' em Xy (t) pelo U(t) para obter X p(t) justifica o nome deste método.

Exemplo 1: Resolugao do sistema X' = { _g _i } X+ [ e?)_tt ] (t>0):

A F(t)

A resolugéo do sistema homogéneo associado X}, = AX g (t) fornece a solugao geral

1] _ 1] _ e~2t e~5t c
a1l 2]ee- 22 £2)(2]

2(t)
Apos o calculo(t) de ¢1(t), temos que
2e2t L2t 5 2te2 4 Let
U'(t) = 6 F(E) = |2 |- >
ledt _Llest e5t _ 1At
o1 (1)
[2te* + let} dt + k
3 1 te2t — Le2t 4 Let
Ut) = = ,
1,5t 1 5t _ 14
/{te‘r’t—%e‘“}dt—i—kz stet — e — et

(*)Note que &(t) é a matriz cujo determinante é o wronskiano daquelas solugdes linearmente independentes:
W (X1, -+ ,Xn) =det &(t) # 0, mostrando que &(t) tem uma inversa &~1(t).

Z 3},ComdetA:ad—bc;£0,entéo AilzdetA{

d —b}

(D Uma férmula atil: Se A = { - .
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onde fizemos k1 = ko = 0, pois queremos uma solugao particular. Logo,

2t 1,2t | 1t 6t 27 | 1.t
o2t o5t te 2€7 t 3¢ 5 50 1T 1€
Xp(t) = eOUW®) = | o0 oo = ,
€ € lyebt L5t 1 4t 3t 21 41—t
5 25 12 5 50 ' 2

e a solugao geral é, finalmente,

6t 27 4 ieft

5 7 50

X(t) = { 1 }6_2t+c2|:§ :|6_5t—|- [
ﬁ,ﬂJr%e*t
5 0

_ 1945t
Exemplo 2: Considere o sistema X' = { b 2 } X(t)+ [ 12¢ } (t > 0) . Temos que

2 0 0
B 1], 2] 4 [ e 2eM c1
XH(t)—C1[2]€ +02[1]€ _[Zet eAt co
~————

o(t)

é a solugao do sistema homogéneo associado (verifique isso). Logo, a solu¢ao é X = Xy + Xp, sendo
Xp calculado como segue:

1 et —2¢ett —12€5¢ 1 —12e% 4ett
/ p— 71 T e—— = —— p—
U=e¢F= ebt _ 4ebt [ —2e¢t €l 0 3e5t | 24et —8et | -
&-1(t) F(t)

et 26415 6415 eSt _ 166515 7156515
Xp = oU = |: 26t e4t :| |: _8et :| - |: 26515_86515 - _665t

_ —2
Exemplo 3: Resolugao completa do sistema X' = [ 3 -1 } X(t)+ { _i 4 } (t>0):

9 -3 -
—_——— ——
A F(t)
3-x -1 , ,
det(A —\I) = 9 _3_1 =A=3)(A+3)+9=X=0 = A; =0 (multip. 2)
3 -1 escalonamento 3 -1
A_Alj_{g —3} } [0 0}

(A—AJ)V=0:»H ng}:[8]:{32;5:0;*{2;5/3 = = [é]

B 3 1] 1] s [3 -1]1 3a—B=1 s=0 , [V
(A—/\ll)UQ—U1=>|:9 _3 ‘ 3 :| — |:0 00:| = {ﬁqq e U2—|:0
A—\1 Vi

a0 =0 =ea 1] ren ([ 1] [0]) = T2 40 ][]

2(1)

3t —t—1/3

=% R smmn el s S

]3t—(3t+1) 3 -1
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-3t t+13 t=2 —3t1 3 Ly
:/QS (DF(@#) dt = /[ 3 —/1 } { —t4 dt:/ 312 4 14 dt
[ —3Int+ 3t + 373 ]

=3t~ — 3t ;

R
3 3t

[ —3Int+ §t72 + 373 ]
-1 1,-3
—3t~1 — 1t
—3Int+4t72 -t -3
—9Int+ 3734 5t72 -9

= Xp(t) = l

A solugao geral é X (t) = Xg(t) + Xp(t), ou seja,

11+ ea(t+ 3 —3Int+L¢2—¢1 -3
Xty=1|"" 2t 5) 6 0 n

3c11 + 3eipt —9Int + 173 4 J172 —

3.4 Aplicacoes

3.4.1 Conversao de EDO Linear de Ordem n > 2 num Sistema de n EDOs
de Primeira Ordem

Numa EDO linear de ordem n nao homogénea,

an Y 4 ano1 YV ano YD 4+ by +ary + aoy(t) = f(1)
— — [ L [l (i
3 1 1 3 1 )
7, (t) zn (t) on—1(t) z3(t) z2(t) z1(t)
se definirmos n fungdes x1(¢), - -+, x(t) conforme indicado acima, ela se converte no seguinte sistema

de n EDOs lineares de 12 ordem nao homogéneo:

) = x9
xh=1x3
[onde x1(t) =y(t)] .
Th_1=Tp
a a a Ay
al =L — Dy — Pag = 4 f(1)

Observe que essa conversao num sistema de EDOs lineares funciona independentemente de serem
os coeficientes ag, a1, - - -, a, constantes ou dependentes de t.

Nota: O método apresentado pode ser usado para converter uma EDO de ordem n da forma
¥y (t) = F(t,y,v,--,y" ") num sistema de n EDOs de 1* ordem (nfo necessariamente linear),
o que é facil de mostrar, pois o procedimento é exatamente o mesmo; nesse caso se obteria o sistema
de EDOs acima, exceto pela tltima equacio, que passaria a ser x,, = F(t7 T1, X2, - 7:Un).

Exemplo: Resolva a EDO 3" + 2y’ — 24y(t) = 0: (a) convertendo-a num sistema linear de EDOs e
resolvendo este sistema, e (b) pelo método das raizes da equagio caracteristica.

Item (a):

=72 x 0 1 x
7 o _ 1| — 1
|y_| ™ 2& 24|y(t)| 0 = {x’zz 24x1 — 215 = [mé] {24 —2] |:J,'2:| ’
w'z(t) z2(t) z1(t)
0— A 1

det(A —\I) = 94 _9_ 1

‘_/\(A+2)—24_)\2+2>\—24_0 = A_{
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—4 escalonamento —4 1
A_All_{m—} - [ 00}'
=

al |0 —4a+ =0 a=p/4 p=4 1
ﬁ] B {0] {0520 i{qu i= [4} .
~—~
Vi
6 1 escalonamento 6 1

N R N e )

1 11 _ crett 4 cpe™ x1(t) (t)
_ Vv A1 V- A1 4t 6t 1 2 1 Yy
X(t) = aVie e =a [4} € = {6} € o |:461€4t — Gege O | T xa(t) | ’

6t

y(t) = cre? + e m

Item (b): 724+2r—-24=0 = r=4o0ou —6 = y(t)=cret +ce % m

Embora este exemplo tenha mostrado ser mais trabalhoso resolver EDO linear com coeficientes
constantes usando o método explicado acima, de conversao num sistema linear, este método tem sua
importéincia pratica e tedrica, porque insere a teoria de EDOs de ordem superior naquela de sistemas
de primeira ordem.

3.4.2 Modelagem
3.4.2.1 Circuitos Elétricos

Um circuito elétrico com mais de uma malha pode ser descrito

R matematicamente por um sistema de equagoes diferenciais. Mas,
antes destes, para relembrar alguns conceitos e procedimentos, con-

. iﬂ) sidere o circuito de uma tnica malha mostrado & esquerda. Para

E(t)T@ i) —— calcular a corrente elétrica i(t) neste circuito, primeiramente igua-
I lamos o potencial E(t) suprido pela fonte de for¢a eletromotriz a

L yTT— soma das quedas de potencial no resistor de resisténcia R, capacitor
de capacitancia C' e carga elétrica armazenada ¢(t), e indutor de
indutancia L, respectivamente dadas por Ri(t), q(t)/C, e Ldi/dt,

obtendo uma equagao diferencial figurando duas grandezas desconhecidas i(t) e g(t). Com a substitui-
¢ao de i(t) = dg/dt, obtemos uma equacao diferencial para q(¢) :

WA

2
B —r% 10 4

q(t) di  i=dg/dt
S dt ¢ dt?

B(t) = Ri(t) + = + L

()

Da solugao ¢(t) desta EDO calculamos finalmente a desejada corrente elétrica por diferenciacao: i(t) =
dq/dt. Outro modo seria derivar a equacdo () acima para deduzir diretamente a seguinte EDO para
i(t): dE/dt = Rdi/dt +i(t)/C + Ld%i/dt?.

Exemplo 1: Considere o circuito elétrico abaixo. Para calcular as correntes elétricas nele, proce-
demos como acima em cada uma das malhas abcda e befcbh:

a b e
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0
Malha abeda : E = L% + Ryiy + Ryiy .

. d/dt 1 d di 1. di
Malha be fcb : 0:%—]%1@2 Y 0= d—Z—Rld—; = 0= ig— R

Temos entao duas equagoes com as trés incognitas i1, i2 e i3. Mas, no né b do circuito elétrico, temos
que i1 = ig + i3, donde i3 = i1 — i2, equagao que pode ser usada para eliminar i3, obtendo-se o seguinte
sistema de EDOs de 12 ordem nao homogéneo:

di, Ry, R, . E(t)
iy L0ty kI OR

dis 1 1

B2 D) — —— ot =
T oA Ve ki)

Exemplo 2 : Calculemos as correntes elétricas no circuito elétrico abaixo.

a b e
L AT
L Loy 4
C t C t
() Gl AN
R
d ¢ VVVY f
q1 . q2 diferenciagao il d’Ll i3
Malha befcb: =— + Ri; — =— =0 — _— 2 =
alha befeb: o+ R =) darjdi=ir darjdi—is | Cy | dt  Cj
di? q2 diferenciagao d2i2 i3
Malha abcda : L—+ —=F ——— —+ =—=F
atha abeda L=+ o daa/dt — i3 ez " Oy ’

onde dgo/dt = i3 porque é a corrente i3 que causa a carga gs N0 capacitor Co ™),
Temos duas equagoes com as trés incognitas i1, io € i3, mas podemos eliminar i3 substituindo a
igualdade i3 = i5 — i1 (valida no noé b) nas duas equagbes acima:

diq 1 . 1 . . 1 1\, 1 .
Ri = —— —_— — = —| — —_— —_

I 01%1 + s (12 —i1) <C1 + 02)21+ 0222

d?i 1(‘ .)+dE 1. 1.+dE

— = ——(la —1 — = i — 2+ —

A2 [P Gy ' Gyt adt

Esse é um sistema ndo homogéneo de duas EDOs lineares e duas incognitas, i e iz, mas a segunda
EDO é de 22 ordem. Para obter um sistema de apenas EDOs lineares de 12 ordem, exemplificando
o modelo em (3.1), podemos, por meio da técnica descrita na subsegao 3.4.1, converter a EDO de 22
ordem em duas de 12 ordem acrescentando a equagdo que define a nova incognita I3(t) = diy/dt(). O
resultado é o seguinte sistema nao homogéneo de trés EDOs lineares de 12 ordem e trés incégnitas i1,
iQ e 131

o —(701+C2)i SR
at — \RCCy )" T RC,?
dis

2 - L

dt 3

dry 1 1 . 1dE

i LG T IR T T

(") Terfamos dga /dt = i2 se permutassemos as notagoes i2 e i3, mas outros aspectos do problema nos levaram a escolher

a notagao usada
() Denotamos dia/dt por I3, em vez de i3, porque i3 ja denota uma das correntes no circuito.
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ou, matricialmente,

- (Cl s 02) Lo || 4 0
L RO, Cy RO,
% 19 = 0 0 1 19 + 0 |
LCy LC, 3 L dt

3.4.2.2 Tanques Misturadores

Problema: Numa instalacao industrial existe o Tanque 1, que inicialmente continha 200 L de uma
mistura de 4gua e sal com concentracao salina de 0,1 kg/L e no qual sdo despejados 12 L/min de 4dgua
pura proveniente de uma caixa d’agua, e existe o Tanque 2, que inicialmente continha 200 L de &dgua
pura e do qual sdo retirados 12 L/min do seu contetdo para um reservatorio especial. Sabendo que os
contetdos desses tanques sao misturados pela acdo de bombas que transferem 16 L/min do conteudo
do Tanque 1 para o 2 e 4 L/min do conteido do Tanque 2 para o 1, deduza um modelo matematico
que descreve as massas mq(t) e ma(t) de sal nos Tanques 1 e 2 em fungio do tempo, respectivamente.
Admita que toda a solucao salina nesse sistema mantenha-se homogeneamente misturada.

Solugao:

Note que os volumes dos tanques se mantém constantes, pois, em cada um, a vazao de entrada
é igual & de saida (se ndo fosse assim, o problema seria um pouco mais complicado). Além disso, a
massa inicial de sal no Tanque 1 é m;(0) = 200 L x 0,1 kg/L = 20 kg. Entdo, com a informagio de
que dispomos, podemos esquematizar o problema como na figura abaixo, onde, em cada tanque, E e
S indicam respectivamente pontos de entrada e saida de liquido.

Tanque 1 solugdo Tanque 2
dgua pu‘ra B Fle salinz.L
12 L/mm 4 L/IIlln
V, =200 L V, =200 L
(constante) (constante)
m,(0) = 20 kg solucdo m,(0) = 0 solulgfyo
i salina
S salina B g :
16 L/min 12 L /min

Para formular o problema, levamos em conta o seguinte:

1. A taxa de variagdo da massa de sal dm/dt é, pela regra da cadeia, a concentracao salina dm/dV
dm  dmdV
Itiplicad 1 ao dV/dt: — = ——-
multiplicada pela vazao dV/ 7 aV dt
2. A taxa de variacao da massa de sal no tanque i (= 1 ou 2) é igual a de entrada menos a de saida:

at — dt |, dt

s
3. No Tanque 1 ha dois pontos de entrada de liquido e um de saida. No Tanque 2, h4 um de entrada
e dois de saida.

4. A mistura que sai do tanque i tem a concentracdo deste tanque, igual a m;(t)/V;. Assim,
por exemplo, a mistura que sai do Tanque 1 para o Tanque 2 chega neste com a concentragao

mq (t)/Vl
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A formulagao do problema é, portanto, como segue:

dmy dmi|  dmy
. dt |, dt g

_ (dmdviy o jdmdV
o lavidt |,y [dV odt ], g

)02 )+ G ) ()] - G ©) (9]

4 1 kg
= ——m(t) + —ma(t) |—= I
5o (1) + 5gma(®) [min} " M
dmy  dmy dms
da — dt |, dt g

_ [dmdV o pdmdV
Colaviodt |,y LAV odt ], g

= (G ) o) =[G 59 () + G 1) (20
4 4

=m0 = gmatt) [ ] w D

Vemos que (I) e (II) formam um sistema de EDOs do tipo estudado.

3.5 Exercicios

1. Escrever como um sistema de EDOs na chamada forma normal, isto é, na forma dX/dt =
A)X(t) + F(¢):
(a) vy — 3y’ + 4y = sen3t (b) y" —3y" +6y — 10y =t>+1
(c) 2y +y" =8y =10 (@) y" +ty' + (1* —4)y =0

Abaixo, os problemas 2 a 4 consistem em resolver sistemas de EDOs homogéneos da forma dX/dt =
A X(t). Os sistemas encontram-se agrupados, num mesmo problema, conforme os autovalores da ma-
triz A, seguindo os trés casos estudados.

2. Matrizes cujos autovalores sao todos reais e distintos:

(@A:H ;] (b) A=

3. Matrizes que apresentam autovalores imaginérios:

@a=|] 5] o a=|3 7 (©) A= é

4. Matrizes que apresentam autovalores reais repetidos:

(a) A= { ‘I) :111 ] (ao autovalor 1, duplo, associa~se um tnico autovetor)
0 1 1

(by A=[1 0 1 (a0 autovalor —1, duplo, associam-se dois autovetores)
1 1 0
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1 1 1

(¢ A=(2 1 -1 (ao autovalor 2, duplo, associa-se um tnico autovetor)
0 -1 1
11 1

(d) A= 2 1 -1 (a0 autovalor 2, triplo, associa-se um tnico autovalor)
3 2 4

5. Agora se pede que sejam revolvidos os seguintes sistemas de EDOs néo homogéneos:

1 1 0 et
dX dX
(a) d:“ _f]x@ﬂ[ﬁﬂ b) S =11 0| X+ |
¢ ! 00 3 £ 3t
Respostas
T = x9
CC/ = 19 1
ROR S (b) { o = s
x4y = —4x1 + 3z2 + sendt o = 1021 — 612 + 323 241
1 1 1 1 1
2. (a) X =¢ [_4] e 3 4 ¢y [1] et (b) X =c1 |1| et +cp [ 2| el +c3| Ofe
1 1 -1

5cost Hsent
3. () X =a [QCost + sent} T [— cost + QSent}

o cos 2t ¢ sen 2t
(b) X =cie [cos 2t + senZt} T e [ cos 2t + sen2t

2 0 0
(c) X =cre! | =3| + coe! | —sen2t| + cze’ |cos2t
2 | cos 2t sen 2t

o wx = ea ([ [

1 -1 -1
- 0 0 1
(o)X =c e ttco| 1]eX+cs 1| te?t + [0]
2 -1 -1 1
0 0 1 0] 2 1 1
(d) X =c1 | 1| e +e 1| te® + (0] e | +c3 1 5 et 4+ |0 te? + |0] 2t
—1 -1 1 -1 1 2
4 -2 _ —12t — 43
5. (a) X =¢; [1} e3t+02{ 1]@ 3t [ 4/3/}
1 1 0 — e+ Ste
(b) X =c1 | 1| +ca |1|e* +c3 0] &3+ | =€t + %te% + ste*
0 0 1 §t263t
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Capitulo 4

Transformada de Laplace

{Ref. [13], se¢des 7.1 e 7.6}

4.1 Definicao

A transformada de Laplace de uma fungéo f(¢) definida para ¢t > 0 , denotada por L{f(t)}, ¢ a

funcido f(s) resultante da seguinte integral:

L{f() = / T et ity di = f(s) | (4.1)

para os valores de s que tornem a integral convergente. Por exemplo, se f(t) = ¢ (constante), entao

—st |O©

L{c}z/ e~*tedt = ¢
0

C .. C
:*(—6 soo_'_e()):i’
—s s T s

para s > 0 (excluem-se s = 0, por implicar em divisao por zero, e s > 0, porque o termo indicado
acima como nulo seria infinito).

Outro exemplo: se f(t) = { g Ei i gg , temos que

00 3 oo —st |90
L{f(t)}:/o e’“f(t)dt:/o (f“odw/3 e—sto g = 2

t=0

—S

4.2 A Linearidade da Transformada de Laplace

£{af(t)+b(t) /e (t)+bg(t )]dt:a/e““f( )dt+b/e g(6) dt = aL{F(E)}+bL{g(t)} .

4.3 Condicoes Suficientes para a Existéncia da Transformada
de Laplace e o Comportamento Assintético Sob Essas Con-
dicoes

Garante-se a existéncia da transformada de Laplace de uma fungao f(t) definida para t > 0 que
seja

e continua por partes, isto é, que exiba, em qualquer intervalo finito do seu dominio, um nimero
finito (zero inclusive) de descontinuidades, nunca sendo infinita.

e de ordem exponencial, isto é, que, em valor absoluto, seja menor que alguma exponencial Me*
para ¢t maior que algum 7.

Além disso, sob essas condigoes, f(s) = L{f(t)} deve necessariamente tender a zero quando s — oo .(t)

(1) Assim, fungdes de s tais como s2 e s/(s+2) ndo sdo transformadas de Laplace de nenhuma funcio f(t) [t > 0] que
seja continua por partes e de ordem exponencial.
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De fato:

LLF () M *%’a|=|/ et (t) w+/ e~ f(t) dt |

gyé rrwan+| [ e wa < | e e+ [~ )] a

< f lma <M8>‘t
7st T ef(sf)\)t
gmm/ ”%*M/ NG = | M
0 =5 =0 —(s =N |j=p

—sT 1

e _
= |f‘max + M|:
—S

e —(s—=A)oo +€ —(s=\)T
—(s—A) s—A |’
———
0 para s>\

onde | f|max ¢ 0 méaximo de |f| em [0,T7; logo,

1 ) n M
sesT (s —A)els=NT 7

SLAON < (5 -

um resultado que, além de ser finito, comprovando a existéncia da transformada de Laplace, tende a
zero quando s — oo .

4.4 Calculo de £ de e, t", senat, cosat, senhat, cosh at

Nesta seco, considere a € R™),

1) Se s > a, entao:

oo 9 —(s—a)t | —(s—a) 0
ol = [Tetertan= [ = C I L E T oL
0 0 s—a)|,— s—a s—a s—a
0 para s>a
2) Se s > 0, temos, integrando por partes, paran =1,2,3,---, que
o0 o0
—st oo n 1 n
L{tn} — /efsttndt — tn 4= /efsttnfldt — 2 lim (efsttn) L0+ = L{tnfl}
_ =0 S ) S t—o0 S
0 ™

0 (IHopital)

1 11
n th=L{l}=7 =3

2 21 2-1
=2=L{P}="L{t}=- 5 ==
n=2=L{h=_L{t}=_ 5=

3 32-1 3-2-1 3
_ 37 _ 2 2 _ _ 2
n=3=L{} =" L) =" 3 5 5

L'y = o

3) Se s > 0, entao:

e st < a [ 1 a

L{cosat} = / e ' cosat dt = cos at - = / e *'senatdt = — — — L{senat} (i)
0 —S =0 S Jo S S
e e~ st o a [ a

L{senat} = e *'senat dt = senat| + — / e *'cosatdt =0+ — L{cosat} (i)
0 -5 =0 S Jo s

. . C ' I arta c . C y s

(ii) em (i) = {cosat} P [s {cosa }} = {cosat} e ] (iii)

s a

(i) em (ii) = Lfsenat} = % 2+a2  s2+a?

(*)Se @ = 0, as transformadas de Laplace calculadas nesta segio fornecem, consistentemente, £{1} = 1/s e £{0} = 0.
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iat)

4) Se s > |a| (por causa da necessidade de que exista a tranformada de Laplace de e , entao:

et 4 =t 1 17 1 1 s
L hat) = L ———— Y = 2 [£{e®) 4+ L{e 4] = = —
{cosh at} { 5 } 2[ {e“} + L{e"*}] 2[s—a+s+a} e n
et — g—at 1 1 1 1 a
C{senhat) = £ 45— L Zgfest) — plet)] = = _ _
{senhat} { 2 } 2[ {e} {e }] Q[S—a s—&—a} 52 —qg? "

Com as férmulas deduzidas até o momento, podemos calcular uma variedade de transformadas de
Laplace sem recorrer a defini¢do, isto &, sem efetuar a integral em (4.1). Observe, em particular, o uso
da linearidade de £. Por exemplo:

) £{3t — Bsen2t} = 3.4{1} —5L{sen2} — % 12
1 Sen = Sen = 52(52 +4)
1/s2 2/(s2+4)
i) Cfsent} = £ d L2 1 pey 1 preogon = 2
N 2 72\,_/ QR/_/78(82+4)
1/s s/(s%2+4)

4.5 Propriedades Especiais

oo
Se / e %ot f(t) dt existe entdo se demonstra que:
0
oo
1) / e ' f(t)dt existe para s > sg
0

2) lim e f(t)dt = / {lim e‘ﬂ f)dt = / e “'dt para c> sg
0 0

s—cC 0 s—cC

oo ® 9 (e—st
3) %/O e—stf(t)dt:/o %S ) ft)dt paras > s

4) /8152 {/OOO €*Stf(t) dt] ds = /000 [/:2 estd5:| f(t)dt para sop < s1 < 89 <00

4.6 Transformada de Laplace Inversa

Se a transformada de Laplace da fungio f(t) é a fungao f(s), definida por (4.1), entdo a transformada
de Laplace inversa da funcdo f(s) é, por defini¢do, a fungao f(t), isto é,

L7HF(s)} = f(t)

Para determinar a transformada de Laplace inversa de uma fungao f(s) dada, é necessario resolver
a equagao integral em (4.1). Em textos mais avangados, demonstra-se que, se tal equagdo tem uma
solucdo f(t), entao ela é unica. Esse resultado é conhecido como teorema de Lerch.

Exemplos:

i) L{t}:i = L‘l{;}:t.

52

ii) L7 {af(s) +03(s)} =aL™H{f(s)} +bL™H{g(s)} = af(t) +bg(t) . [£7" ¢élinear|
i) 5—1{82‘14} — cos 2t .

iv) £71 {s—|1—3} =3t

v {3 (81
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4 3s 5 1 s 5 2
i) £t - = 4,7t —3,7! Z Lt
vl {3—2 82+16+82+4} {3—2} 2116) 2 5244

5
= 4¢% — 3cosdt + iseth .

Nos exemplos seguintes, fragoes parciais (cf. se¢do 7.4 da Ref. [11]) sdo empregadas:

R e e R b e R R T

1 1 s
i) L7 ——5——p=L""9-— =1—cost .
viii) {3(32 .y } {s o } cos
35+ 7 3s+7 4 -1
. L_l :L_l :L_l —4 3t —t.
ix) {52233} {(s3)(s+1)} {33+5+1} o

552 —4s — 17 2 35+5 5
vy 22— L et =2e3 4 3cos 2t + — sen2t .
%) {(3—3)(s2+4)} {5—3+s2+4} ¢ ocosat g sen

4.7 Fungao Degrau Unitario

A fungao degrau unitario U(z) é definida na figura abaixo, a esquerda. Na mesma figura, a direita,
mostra-se que U(xz — a) representa uma translagdo do degrau. O valor dessa funcdo em = = a é aqui
ignorado, por ser geralmente irrelevante nos problemas em que ela se aplica (veja-se, entretanto, ao
final desta secdo, outras versdes da fungdo degrau que sdo definidas no ponto de descontinuidade).
Além disso, num ponto z; de descontinuidade de uma fungéo f(z), ndo seremos rigorosos em mostrar
o valor f(xz;).

x 0 (z<a
[y 59 ey 50
1 Lj=---
0 z 0' a T

Vejamos dois exemplos de uso dessa fungao. Considere a fungdo f(z) na figura abaixo, a esquerda.

9(z)
/(@) 20—,

2 —_—
N | i i
' ' 71: L 3! T
! : R —
a b X I 1

-2

Sua expressao em termos da funcdo degrau é
f() =2[Wz —a) - Uz —b)]
Outro exemplo um pouco mais complicado é a fungéo g(z) na figura acima, a direita; ela é dada por

gx)=14+4(—2-1D)Uz+1)+ 2—(-2)]U(z—1)+ (-1 —2) U(z — 3)
=1-3Uxz+1)+ 4U(z—-1)— 3U(x—3) .

No estudo da transformada de Laplace, a variavel ¢ ndo tem valor negativo. Assim, U(¢t) =1, e as
fungoes f(t) e g(t) nos dois exemplos acima sdo, para t > 0, dadas por

FO)=2-2U(t—b) e g(t)=—2+4UEt—1)—3U{t—3) .
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Consideremos agora fungoes descontinuas mais genéricas.
Por exemplo, a fungao h(t) ao lado é dada por

h(t) = o) + [a(t) =] Ut — 1) +
[0— a()] Ut —3) + [B(t) — O] Ut —4) +
(@) = BB UE = 6) + [-3 =1 ()] Ut - 8) -

Observe que, em t = 6, nao ha descontinuidade, mas uma
mudanga de [(t) para v(t) na expressao da fungao h(t).

Testando a equagao acima com ¢t = 5, obtemos o resultado
esperado:

-3

Grafico de h(t)

h5) = ¢() +[a5) - ¢(5)] @+ [0 —a(3)] @Hﬁ@) — 0] Ef\(/l_), +[v(5) = BB U-1)

+[3-7BNU=3) = &B] + okB] — 58] — ok5] + B(5)

0

Note que esse calculo envolve ¢(5), a(5) e v(5), os quais, embora ndo sejam fornecidos na defini¢ao
grafica de h(t), ndo afetam o resultado, pois se cancelam ou sdo multiplicados por zero. Podemos,
obviamente, completar a defini¢do das fungoes ¢(t), a(t), 5(t) e v(t) acrescentando que elas se anulam

fora dos intervalos em que sao definidas graficamente.

Nota : Para quem nédo quer deixar indefinidos os valores de fungbes nos seus pontos de descon-
tinuidade, basta definir duas versdes da funcio degrau unitario denotadas por Ut (z) e U™ (x) e
mostradas nas figuras abaixo, que s6 diferem da fungdo U(z) no ponto de descontinuidade, em

z = 0, onde sdo assim definidas: Ut (0) = lim+ Uz)=1 e U (0)
z—0

lim U(z) = 0. Por meio
z—0"

delas, a func¢@o f(x) definida graficamente pela terceira figura abaixo, por exemplo, pode ser assim

expressa:

f(@) = a(z) + [B(z) - a(@)] U (z — a) + [y(z) — @) UT(z —b) .

Essa expressao fornece os valores corretos nos pontos de descontinuidade:

fla)=a(a) + [B(a) — a(a)] U (0) +[v(a) = Ba)| U (a — b)
SN—— SN——

0

Gréfico de f(z)

B() (x)
b

a 0

Encerremos esta se¢ao com o célculo da transformada de Laplace de U(t — a), com a > 0 :

o

L{U(t —a)} = /000 e S"U(t —a)dt = / e Stdt =

a

—st

e

—S

e—as

S

(s>0) m

E 6bvio que essa também é a transformada de Laplace das fungdes UF(t —a) (a > 0) .

4.8 Fungao Delta de Dirac

Com frequéncia um sistema mecéanico é atuado por uma forca ex-
terna de grande magnitude que age apenas por um tempo muito curto.
Por exemplo, o grafico da forca em fungao do tempo durante uma ra-
pida pancada é do tipo mostrado na figura & direita, com magnitude
méxima Fl,.x muito grande e intervalo de duragdo muito curto (em
torno do instante tg). Geralmente, a forma do pulso nio é conhecida,
mas isso nao importa, porque a informacao relevante é o impulso du-

rante o intervalo de duracao da forga,

t0+€
I / Flt)ydt |
t

0—¢&
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a partir do qual podemos calcular, por exemplo, o incremento da velo-
cidade com a pancada:

dv toe gy tote I
m—:F(t):>m/ —dt:/ F(t)dt =1 = m[o(to+e)—vlto—e)] =T = Av=—
dt ‘ dt ¢ m

0—¢€ 0—¢€

Av

Paul Adrien Maurice Dirac tratou de problemas desse tipo com o que denominou funcao delta, a
qual, em funcio da variavel ¢ € [0, 00) (que pode ser o tempo) e do pardmetro ¢y € [0,00), ¢ dada por

0 set#ty
o(t —to) = {oo se t =ty (4.2a)
sob a condigao da normaliza¢ao unitdria
/ S(t—to)dt =1 (tg > 0)| . (4.2b)
0

Em vista dessa defini¢do, podemos dizer que a fungdo delta §(¢ — t) esté localizada no ponto to.
Naturalmente, §(¢t — tg) ndo é fungdo, mas Dirac usou-a formalmente como tal, algo que, depois,
veio a ser rigorosamente justificado pela teoria das distribuicoes elaborada pelo matematico Laurent
Schwartz. Por meio dela podemos exprimir a forga considerada acima por F(t) = I§(t — tg). Essa
expressao tem as duas propriedades desejadas: s6 nao é nula no instante ¢y da pancada e tem impulso
JSF@)dt =1 [ 6(t—to)dt =1.
A principal propriedade da funcao delta é expressa pela equagao

/0 " F 06— to)dt = F(to) (10> 0)] | (4.3)

que é assim verificada:

| (08t — to)dt = / " F(t)5(t — to)dt = f(to) / 50— to)dt = flto)
0 0 0

—_———
1

onde, no integrando, podemos substituir f(t) por f(tp) porque apenas esse valor de f(¢) contribui para
a integral, ja que d(t — to) se anula em todo ponto distinto de ¢y. Essa é a chamada propriedade de
filtragem (ou de peneirag¢io), uma vez que a integral acima fornece (filtra) o valor de f(¢) no ponto tg
no qual §(t — tg) # 0.

Dirac conjecturou (e depois se provou) a validade de se operar normalmente com a fungao delta
como se ela fosse uma funcgao ordinaria, podendo inclusive ser diferenciada e integrada, satisfazendo as
diversas propriedades dessas operagoes. Assim, deve ser valida a equagdo {v. Ref.[2], subsecdo 1.1.2}

[e%e] to [e%¢]
1:/ 5(t—t0)dt:/ 5(t—to)dt+/ 5(t —to)dt
0 0

to

I_ Iy

que nos enseja questionar quais sao os valores das integrais Iy e I_ acima, nas quais a fun¢ao delta
estd localizada num extremo do intervalo de integragao. Quaisquer valores nao negativos satisfazendo
I, +I_ =1 podem ser atribuidos a elas, mas aqui escolhemos I, =1e I_ =0, isto &,

/oo S(t—to)dt =1 e /to S(t—to)dt =0 (tg > 0) | (4.4)
t 0

0

permitindo-nos dizer que a integral da funcao delta so é unitdria quando o intervalo de integracdo se
estende para a direita de onde ela estd localizada, o que pode ser assim expresso:

b
/ 5(t — to)dt = {é 22 ig ; {Zg; . (4.5)
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Essa equagao, em outras palavras, informa que a integral da fungao delta s6 nao se anula se ela estiver
localizada num ponto interior do intervalo de integragao ou no extremo inferior desse intervalo, em
conformidade com a escolha em (4.4).

A razdo dessa escolha é que desejamos o seguinte resultado, consistente com a normalizacdo unitaria

da funcdo delta dada por (4.2b) no caso em que ¢y = 0:
[ee]
/ S(tydt =1 | (4.6)
0

onde a integral comega no ponto ¢t = 0 onde se localiza a fungao delta. Em outras aplicagoes da fungao
delta distintas das que sao consideradas neste texto pode ser mais conveniente uma escolha diferente
daquela em (4.4), o que acarretaria uma pequena variagdo na defini¢do da funcao delta em (4.2).

Nesta descrigao bem curta da fungao delta, consideramos mais trés propriedades dela. Vejamos a
primeira:

0 se t<t

/5(740)657 - {1 se t>t°} — U(t—to) (com 0<a<t)| | (4.7)

expressando que a integral indefinida da fungdo delta é a versao U (¢t — ¢p) da fungdo degrau unitario
definida na Nota enunciada na pag. 65, ou, em outros termos, que U (t—%¢) € uma primitiva de 6(t—to).
Em vista disso, espera-se que a derivada dessa fungao degrau unitario seja a fungao delta:

%u’(t —to) =6(t—to)| . (4.8)

De fato; eis como Dirac justificou isso {v. Ref. [6], se¢io 15}:
© d p-p. B S o0 y _
| rogwe-wa = o -] - [ e - e
0 0 0

— JE) W () ~fOW (—to)~ [ o
Hl,_/ T to

Jo6T — [fle6T — f(to)] = flto) = / T 08— 1)t |

mostrando que (d/dt)U~(t — tg) e 6(t — tp) sdo expressdes equivalentes quando, no integrando, sao
multiplicadas por uma fungao continua f(t) arbitraria (tém a mesma propriedade de filtragem).
A ultima propriedade aqui considerada, dada por

Sla(t —to)] = %5@ —tg) (com a>0)], (4.9)

é assim verificada:

[ alate ] o "= [T ol —ate] (1) = o)t = [ 2ot - sy

mostrando que 6 [a(t — to)] e (1/a)d(t — to) sdo equivalentes.
Vamos encerrar esta secao com o célculo da transformada de Laplace da funcao delta, que é realizado
simplesmente com o uso da propriedade de filtragem:

’L{(S(t —to)} = /OOO eSS (t —to) = e=5t0 (tg > 0)| m
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4.9 Tabela de Transformadas de Laplace de Funcgoes Especificas

Na tabela abaixo, listamos as transformadas de Laplace de algumas funcoes especificas, ja calculadas
nas segoes anteriores:

20 fls) = £{/())
1
1 - >0
: (s> 0)
et ! (s >a€R)
s—a
n!
t pres (n=1,2,3,--)
s
cosat m (a € R, s > 0)
a
senat o (a €R, s>0)
sh > R
cosh at g (s > |a] € R)
a
senhat 22 (s > |a| € R)
e*GS
U(t — a) (a>0,s>0)
s
5(t —to) e~ sto (s >0)

4.10 Calculo de £ de f(at),e™f(t),t"f(t),U(t—a)f(t—a), f(t)/t

Seguem as dedugdes das cinco formulas dessas transformadas de Laplace:

u

12) L{f(at)}z/owe_Stf(at)dt “ Cll/oooe_(s/a)“f(u)du:if(s> paraa >0 m

2) et} = [ e etra)a= [ et = fs -
ou, equivalentemente, L_l{f(s)ls_m_a} =e"L7H ()} m
f(s)
o0 oo an (efst) dn #
38)  o{m (1)} :/0 e=sn F (1)t :/O (0T pye = (—1)“6@/0 =t F(b)dt
= (1) m
Em particular: L {tf(t)} = —f'(s), L{f(t)}=F"(s), L{EFO)}=—F"(s),

13) LUt - a)f(t—a)} = /OOC e~ U(t — a) f(t — a)dt /OO e~ F(t — a)dt

T =

= /Oo e f(r)dr = e7 /OO e Tf(r)dr = e f(s) W
) 0
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F(o)
528) L {fgf)} = /Ooo f(t) [e;s? dt /Ooo f(t) [/:O e_”tda} dt = /:O /OOO ft)e 7tdt do
Exemplos:

i) Como L{cost} =s/(s>+ 1), entao

(s/7) _ s

1 a 2
7 (s/7)24+ 1 s2+49 (usando a 1% formula)
L{e cos 3t} = L{cos 3t}

L{cosTt} =

S

s—95
s—s5—5 L +9

o5 m (usando a 22 férmula)

-5 22 formula
Problema inverso: £~ {(5_85)2_|_9} = -1 { 2 j_ 9 Sﬁs5} = e cos3t .
ii) Uso da 32 férmula:

!/ 2 9
— —s(2 —
L{tcos3t}_—( s ) 849 s(2s) S 9

5249 (2492 (s2+9)?

““&}:‘(515),:@15)2 '

Lﬁ%&}:(si5>ﬁz[—43—5rﬂ'=2@—5r3=(53m3.

Esses dois tltimos resultados também podem ser obtidos (e até mais diretamente, evitando derivadas)
por meio da 22 formula com f(t) =t e f(t) = 2, respectivamente:

1 1
L{te :Lt‘ == =
{e } {}sﬁst) 82 s—s—5 (5—5)27
2 2
L{t*e”'} = £{t? ==
{ € } { }s—>s—5 83

s—s—5 - (S — 5)3 '

iii) Calculo da transformada de Laplace da funcdo f(t) cujo grafico é o da A1t
figura a direita: uma semirreta partindo do ponto (1,4).

semirreta

12 modo — Usando a 42 férmula, isto &, L{f(t —a)U(t —a)} = f(s) e **: 6—2¢

0 0<t<1
f(t){G—Qt Et21) )

= (6-2)Ut—1).
e
= pt)=6-201t+1)=4-2t.

L)} =L{pt — DUt — 1)} = p(s)e® = <;1 - 322) e .

pt—1)=6—2t

2° modo (pode levar a mais contas) — Usando a 32 férmula:

Uma vez que f(t) = (6 —2t)U(t —1) =6U(t — 1) — 2t U(t — 1), temos que
Jis) =65 42

—S

)’:6.675_’_2'—6’53—6’5 6 _, 2 2
s

_ _ 4 2\ _
3 =-e’—-e’——5e’= e’
s s s s s 5 s

iv) Usemos agora a 42 formula na forma £~'{e™*f(s)} = U(t—a)f(t—a), isto &, para o problema
inverso:

51{658 Sig }u(t—s) (t*5)2.

S
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s2+9

et
(sen3t)/3

51{655 L }:U(t—5):1))sen3(t—5).

v) Uso da 52 formula:

t > 1
L sen :/ ——— do = arctano
t s 02+1
o+1

et —e 3t oo 1 1
_— = — :1
L{ t } /s (0+1 J+3)da nU—|—3

55?2 — 155 — 11] "o, ~1/3  1/3 4 7
. —1 parciais -1
_— = L
vi) {(s+1)(s—2)3} {8+1+s—2+(5—2)2+(s—2)3}

oo
= T _ arctans (s>0) .

S

OO: lnl—ln$+1 = 1n8+3 .
s+3 s+1

S

1 1 7
_ -3 et §e2t+ ate?t — L2e2t

onde a inversao dos ultimos dois termos foi efetuada usando a 22 formula:

4 1
LN — b =407 = =4te*
(8—2)2 52 ls—s—2

L71 77 :_ZLfl 3 :_Zt2€2t ’
(s—2)3 2 §3 ls—s—2 2

No proximo exemplo, resolvemos novamente o Exemplo (ix) da se¢do 4.6, mas, agora, completando

o quadrado no denominador (em vez de usar fragdes parciais):

3s+7 s—1 2

i) 14— 0 L -l . .

vii) {52—23—3} {3 Go1P—d P oo
2t

2t —9t -9t [
¢ +26 +5~e 26 :|463t6t.

} = e’ [3 cosh 2t + 5 senh 2¢]

et[3.

Modificando um pouco esse exemplo, obtemos o seguinte, que, nao admitindo solugao por fragoes
parciais (pois o denominador nao é, em R, fatoravel em monomios), é resolvido pela técnica de completar

o quadrado:
3547 s—1 2
Lil _— = ,571 S —_— = et 2t S 2t
viii) {32—2s+5} {3 (3—1)2—|—4+5 (3—1)2+4} e'[3cos 2t + 5sen2t]

4.11 Transformada de Laplace de Derivadas

0—-£(0) L{f(t)}

e o) = [ e = o) s [T et = s£gr0) - 0

=sf(s) = f(0) m

L{ )} = s [/ ON = £1(0) = s[sf(s) = f(0)] = £'(0)
=5°f(s) = sf(0) = f'(0) m

L0} = LS} £1(0) = sls*F(s) = 57(0) = F'(O)] - 1" (0)

— 59 f(s) = 82 £(0) — sf'(0) — £(0) m

LLFO()) = 8" f(s) =" f(0) =+ = f"7D(0) m

Essa ultima féormula, para a derivada de ordem n, é valida se
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o f (”)(t) for continua por partes

o fB)(1) forem continuas
k=0,1,-,n—1

o f(t),f'(t), -, f™(t) forem de ordem exponencial

4.12 Transformada de Laplace de Integrais

Pt deduir e £ {/t f(u)du} _ I (s>0) (4.10)
0 5 | |

Eis a deducao:

c {/Otf(u)du}»/oo et {/tf(u)du} dt = /Ooo flw) Mm e‘“dt} du = /OOO Flw) {‘iﬂiu du
[0 = [ e a= )

Mais genericamente, temos que

L{/atf(u)du}: {/f du—/ flu du}: {/ f(u)du}—[){oaf(u)du}

- f( )du m

Vejamos um exemplo:

! 1 12 2
L 2udup ==L 2t} = = = ;
{/0 sen2u u} . {sen2t} sy R e I

de fato, obtemos esse mesmo resultado efetuando a integral e entao calculando a transformada de
Laplace:

t
} =L {_COS%H} = 7%L{C082t}+%ﬁ{1}

o 2
1 s +11 1 £ +4— 4% 2
28244 2s 2 s(s2+4) (s2+4)

Outro exemplo:

t 1 1 )
L {/ e 2 cosSudu} =-L {e_Qt cos3t} = - [S] - sts .
0 S s 52 + 9 S—s+2 8 [(5 + 2)2 + 9)]

A equagao (4.10) pode ser escrita na seguinte forma:

L‘l{f!(j)} :/Otf(u)du : (4.11)

Essa formula pode ser 1til em vérios célculos da transformada de Laplace inversa. De fato, por meio
dela, o exemplo (viii) na p. 64 torna-se mais facil; o célculo das fragbes parciais (omitido naquele
exemplo) é mais trabalhoso do que o seguinte:

2 t t
L1 _r =Lt M :/ L1 ! du:/ senu du =1—cost .
s(s?2+1) s 0 s24+1 0
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4.13 Calculo de £ '{f(s)g(s)} por Convolugao

A operagao definida abaixo entre duas fungoes f(t) e g(t),

F(t) * g(t) = / F(u) gt —u) du |

é chamada de convolu¢ao ou produto convolutivo dessas fungoes. E uma operagao comutativa:

v

- / 9(v) F(t—v) dv = g(t) * f(t) .

0

f(t)xg(t) = ; f(u) g(t =) du

O chamado teorema da convolugao diz que a transformada de Laplace inversa do produto aritmético
f(s)g(s) é o produto convolutivo f(t) * g(t), isto &,

LTHF(9)a(s)} = () *g(t) -

A prova desse teorema é como segue:

ctr@ oy ={ [ rngte—wan} = [Tt [ o -

= /000 du f(u) /uoo dte gt — u) = /Ooo du f(u) /OOO dv e g(v)
= [T [ dvego) = Fo)a(s) m

0 0

fs) g(s)
Exemplifiquemos seu uso:

i) = ore) o B m e = [ece o

9 P gt—w)

te—t t

t t
:t/ ue_“du—/u26_“du:--~=te_t—|—2€_t+t—2.
0 0

1 2 1 2 1
Conferindo: L{te ' +2 '+t—-2y=— 4+ —— + - =~
onferindo {te™" +2e7" + } (s+1)2+5—|—1+52 T PR
Como exemplo adicional, recalculemos a transformada de Laplace inversa ja obtida no Exemplo
(viii) da segdo 4.6 por fragdes parciais e pela formula em (4.11):

1 1 1 !
L1 —— L — * L1~ = sent 1 :/ seny 1 du
(82—1—1)5 S2+1 s R Ovv
—_———— —

@ 9(® f(w) g(t—u)

sent 1
t

t
:/ senudu = —cosu| = —cost+1 .
0 0

4.14 Transformada de Laplace de Funcao Periédica

Se a fungao f(t) tem periodo T, isto &, f(t) = f(t+T) ¥t > 0, entéo:

e’} T o
L{f(t)}:/o e*stf(t)dt:/o e*stf(t)dtJr/T e S f(t)dt . (i)
Mas
/ Testpnar TS = / e T (4 T)dr = e T / T = e T - G)

T N—— 0
f(r)
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Logo, substituindo (ii) em (i), obtemos

L{f()} = / St + e TL (D)}

donde .
1
{0} = T [ S m

Por exemplo, calculemos, usando essa féormula, a transformada de Laplace da funcao de periodo
unitario dada por f(t) =t para 0 <t <1le f(t+1) = f(t) para todo t > 0:

1 . 1 . e—* 1—e 5
/06 LE(t)dt [/0 e tdt} [— S +7S2 ]_1—(1—1—3)65

L4} = = =

1—es 1—es 1—es o s2(1—e9)

4.15 Tabela de Transformadas de Laplace com Funcoes Gené-
ricas

Na tabela abaixo, listamos as formulas envolvendo transformadas de Laplace de fungoes genéricas
que ja foram deduzidas nas segoes anteriores:

1) L{af(t) +bg(t)} = af(s) + by(s)

2) L{f'(t)} = sf(s) = f(0)

3) L{f"}=5"f(s) = sf(0) = £(0)

4) L{f" ()} = 5" f(s) — 2 F(0) — sf'(0) — f"(0)

5) L{f™M ()} =" (s ) - 8"*1f(0) —- = [ D(0)

o eff row) -1

7) L{tf()} = —F'(s)
8) L{t*f(t)} = ["(s)
9) L{*f()} = —f"(s)
10) L{t"f(t)} = (=1)" " (s)

1) £{f(an) == 7 (2)

a a

(s)
(

12) L{e"f(t)} = f(s —a)
13) £7He ™ f(s)} = Ut —a)f(t — a)
14) L7 f(s)g(s)} = f(t) * 9(t)

T
15) L{f(t)} = ﬁ/@ e ' f(t)dt para uma funcio f(t) de periodo T

16) £ {fit)} = /:Of(a)dcr

73



4.16 Aplicagoes

4.16.1 Calculo de Integrais Definidas

Eis alguns exemplos de como a transformada de Laplace auxilia no calculo de integrais definidas:
2.1 3
= L{tcost} =2 =

i te costdt = “*'tcost dt = | ==
1)/0 e~ *" cos /o e "t cos . e ol M

onde usamos o resultado obtido no exemplo (iii) da secéo 4.10.

e t > t
ii) / St = / e_St( >en ) dt’ = T _ arctans
.t o / 2

s—0+
onde usamos o resultado obtido no exemplo (v) da secdo 4.10.
3
—mit

0 ,—t _ ,—3t o —t _ -3t
iif) / £ = u= / e*st(i) dt n
0 t 0 t s=0 S + 1

onde usamos o resultado obtido no exemplo (vi) da se¢ao 4.10.

s
9 ’

s—0t

= In3 ,

‘s——o

A aplicacao dessa técnica requer atencao com o valor de s a ser substituido, como mostra o calculo
erroneo seguinte:

oo o0
/ e20dt = / e St dt
0 0

Esse resultado nao pode ser correto, pois a integral é claramente divergente: o integrando e nao
tende a zero quando ¢ — oo, nao satisfazendo uma condi¢ao necessaria para a convergéncia da integral.
O erro esta no uso da formula £{t"} = n!/s"*1 com s = —2, violando a restri¢do s > 0 (cf. segio 4.4,
item 2).

9!
510

9!

_ 9 _
= £{t%) =5 -

s=—2

s=—2

s=—2

2tt9

4.16.2 Resolucao de Equagoes Com Derivada Ou Integral

Observe alguns exemplos de como a transformada de Laplace auxilia na resolucao de equagoes di-
ferenciais ordinarias:

) y-3y=e" = L{y-3yt=~L{"} = sy(s)—y(0)—3y(s)=1/(s—-2)

. y(0) 1 pae —1y(0)+1 £ 2t 3t
y(s) s—3+(s—2)(s—3) s—2+ s—3 y(®) € +[QQ,+_/]6

Il
o

que ¢é a solucao geral, haja vista a presenga da constante arbitraria ¢ = y(0) 4+ 1 [ndo hé restri¢do no
valor de y(0)]. Note que, na solugao geral obtida, se fizermos ¢ = 0, obtemos a identidade y(0) = y(0).

ii) Resolugdo do problema de valor inicial 3" — 6y’ + 9y = t2e3' | y(0) =2, 3'(0) =6 :

y" — 6y 4+ 9y = t2e* :L> s25(s) — sy(0) — ' (0) —6 [s7(s) — @} +97(s) = 2/(s — 3)3

~~ =~
2 6 2
2 2 2
2 - _

—6s+9)F(s) = 2As—3)+ ——r = ==
(g = 209 g = 0= g
y(t) = 2071 ! +2e% L1 1l 263"+it4e3t
s—3 s? 12
#4741
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—4s
e
£ 2 1
=  sy(s) —y0)=5y(s) ==-—5— = y(s)= 2 — He 4
5(s) = y(0) ~5(s) = < — 5 — i) = g )
0 SN——
—1/5, 1/5
5 t5=5
- —2/5  2/5 1 1 —4s 2 st 5(t—4)
= g(s) . +575+(s 575)6 = y(t) 5(6 D+ [1—e Jut—4).
—_————
Lot
1—e5t

Essa solugao também pode ser escrita, sem uso da funcao degrau, na forma
~(e5 - 1) (0<t<4)

y(t) = )
S -1 +1-Y (1> 4) .

Note que y(47) = y(4T) = 2(e?° — 1)/5, ou seja, solugdo obtida é continua em ¢ = 4.

iv) Resolugdo da equagdo integro-diferencial
t
16y" + 24y(t) +9/ y(u)du = 1
0

sob a condi¢ao y(0) = 0. Tomando a transformada de Laplace de cada termo, obtemos

7] 1
16[sy(s) — y(0) | 4 24y(s) +9 @ =5 = (165 + 245 +9)(s) =1
N , —_———
0 (4s+3)2
i 1 1/16 L s
= 0= I i < MOt

v) Resolugdo do problema de valor inicial " +y=—-§(t—m), y(0)=0, ¢’ (0)=1":

Y by = —d(t—1) > $2(s)—s §0) =y (0) +3(s) =~

0 1
1 1
m = — T = t) = t—U(t — t— .
g(s) 1 ( 1 ) e y(t) = sen (t—m) sen(t — )
‘Lﬁ_l —sent

sent
- [ sent (t<m)
y(t) = sent +U(t —m)sent = {2sent (t=m) .

vi) Resolugao do problema de valor inicial ' +y =34d(¢t) +5U(t—2), y(0)=1":

Note o uso da equagao (4.6).

L 6725
Yy +y=30(t)+5U{t—2) = sy(s)—y(0)+y(s) =3+5
1
4 9 1 4 1 1
y(s) = 5e¢ = 56725(*7 ) .
y(s) s—i—lJr s(s+1) s—i—ljL s s+1
——— N——
11 Lot
s s+1 -

3 o 4et (t<2)
_ t _ o (t=2) — = =
y(t) = 4t +5[1— e DU -2) {46—75 5Bt (1> 9)
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4.16.3 Resolucao de Sistemas de EDOs
Exemplo 1: { if“:y%’:_ tyQ(t) = sobas condigoes z(0) =1 e y(0) =0 .

A transformada de Laplace dessas equagdes sao

2[s(s) — 2(0) | + sy(s) — y(0) —g(s) = 1/5°

~ ~ N (*){2sx+(s— Vj=2+1/s>
s7(s) — x(0) +sy(s) — y(0) = 2/s3 sT(s) +sy=1+2/s

Y i

Eliminando Z no sistema (x), obtemos
N S B
sz 3 v 3(s+1) s2(s+1) s¥(s+1) "

—(s+ 1)y =

- .. 4—s A B (C D
FraQOesparCIals: m:§+? 873 m = A=-B=-D=5 e C=4.
5 5 4 5
_ e f5 5 4 I 2% _ 5t m
yt) =L {s 52+53 s+1} 5 — 5t + 2t° — Be

Agora eliminamos § no sistema (x), multiplicando a 12 equagdo por [s], a 22 por [—(s — 1)],

somando:
- 2 3 1 2 2
[s(2s) = (s—Ds]z=s(2+1/s")—(s—1)(1+2/s°) = s(s+)z=s+14+-—-——=5+—=
S e s 48P 4 s% — 2542 parcian 4,5 4.2 5
r(s) = = — - _ -
st(s+1) s 82 s st s+41

t3
= x(t):—4+5t—2t2—|—§+56_t ]

Nota: Em vez desse procedimento de calcular z(t) a partir do Z oriundo do sistema (), podemos

substituir o ja calculado y(t) na segunda EDO do sistema de EDOs:

t3
3 +5t—22+5e "t + ¢

o=t~y =t — (=5 +4t+5e) = a(t) =
t3
z(t)= = +5t—2t2+5e ' —4 m

=
3

z(0)=c1+5=1 = ¢ =-4

2 — =
A0z —dy =0 condiges z(0) =y(0) =0 e 2/(0) = —y'(0) =1.

Exemplo 2: { —dr 4y +4y =0

52z — sx(0) — 2/ (0) +107 — 45 = 0
(s> +10)7 —4y =1

0 1
—47 + %y — sy(0) — 4/ (0) +4y = 0 = { —AT + (s +4)y=—1
~~ ~—
0 -1
s2 As+B Cs+D
)= iyt - 212 T eriz ¢=0 /5D =6/5
[ -1/5 6/5
— 1 —
z(t)=4L {32—1—2 32—|—12} 5\[sent\[+ fsent\/ [
t)=[2"(t) + 10x(t)] /4= = — sentv/2 — sent [
yiE) = [ (0) + 100(0)/ 2 st VT2

76



4.17 Exercicios

Calcule L{f(t)} ou £L=1{f(s)} , pelo modo solicitado se algum for indicado:

1. f(t) =t*sen3t
2. f(t) = cos3tsenh8¢
3. f(t) =te'senh2t
4. f(t) =te 3 cosbt
5. f(t) =t5cosh3t
1—et
6. (1) ="
1 —cost
T )=

0 (0<t<?2)
) s 2<t<9)
9 1M =9 3 a<t<p
0 (t>6)
= 7s
10-10) = 1o 50 o1
- 1
L J(s) = 3s(2s — 5)
12. f(s):lnzjr:l))

13. f(s) = g - arctang

- s+ 1

14. =Iln———

f(S) n 52 +4
—3s 4
15. f(s) = €+ arccot-
s s

16. f(t) =

t—1 (0<t<?2)
{70 £55

t? (0<t<?2)
7. f(t){ 14t (t>2)
18. f(t) = U(t — a) sent

6755

19. f(s) =

s§—2
B 6—53
= s+m
21. f(S) = m €

22. f(t) =32 U(t - 5)

t
23. f(t):/0 Y du

u

T



t au __ ,bu
2. f(t):/ £ 7%
0

25. f(t) = f(t+2)VE>0 e f(t):{ o E?gig
2. F(t) = f(E+2) V>0 e ft)=t (0<t<2)

27. as fungoes periddicas f(t), g(t), h(t) e u(t) definidas pelos graficos na figura abaixo.

28. a funcdo f(s) do exemplo (vii) da secio 4.6, pelo teorema da convolugio

- 1

29. f(s) = m , pelo teorema da convolugao
_ 1 -
30. f(s) = m , pelo teorema da convolucao
1 1 onda triangular
T — O T p—
o
D G B
1 2 3 4 5 t
onda senoidal semirretificada
1 = -
t t
= i Ix r ir 3z

Exercicios sobre o uso da transformada de Laplace no célculo de integrais:

e 'sent
t

dt .

31. Calcule /
0

32. Calcule / e 20dt .
0

Resolva por meio da transformada de Laplace:

0 (0<t<1]
o)1 (1<t<?) o B o
3By +2) +y=f(t) = 1 (2<t<3) sob as condigoes y(0) =0 e y'(0)=0.
0 (t>3)
34. y" + 3y’ — 4y(t) = 0 sob as condigdes:
a) y(0) =y'(0) =1 b) y(0) =1, y'(1) = —4e™* c)y(l)=e+e ™ y(1)=e—de*
t
, (0 (0<t<1) . B
35. y'(t) —l—/o y(u)du = { 1 (> 1) sob a condigdo y(0) =0 .

36. Resolva pelo método da transformada de Laplace:
de dy dx d3y d’x  dxr dy _

drz dy dx d3y d?y dy dx

@Y g gy= ) IR G R e e A L
(@)% Y b)) g 2 2gm =0 ©ONazta a0

2(0) =0 2(0) =0 z(0) =2'(0) =0

y(0) =0 y(0) =y'(0) =y"(0) =0 y(0) = -1, ¥'(0) =5
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4.18 Solucoes dos Exercicios

Prob. 1
f(t) =t*sen3t = f(s)—iz S8 YL
B T ds2 \s2+49)
Prob. 2
o8t _ o8t - 1 s_8 548
t) = h8tcos3t = ——— - 3t _ 2 .
= senhste 2 COiL R 2{(88)2+9 (s+8)2+9
Prob. 3
f(t) = te' senh2t = f(s)——i 2 |
e T ods [(s—1)2—4]
1L
s2-4
€2t7€72t 1 _ 1 1 1
) =tel————  — T (3t t 4 B
ou f(t) e 5 2(6 e )fa = f(s) 2{(8_3)2 T
1/s2
Prob. 4
d s+ 3
Lt_?’t 6t - | T == = ...
tte C&fz—/} ds | (5+3)7 436
Prob. 5
5 L redt 4 et 1 . 1 . 51 5!
£t cosh3ry = £ §15( LY L= Do) + Do {e ) =
{t’ cosh 3t} { 2 } B {e }+2 {e } 2(5_3)6+2(8—|—3)6
Prob. 6
1—e? > 1 1 .
{5 =[G ) o= [ e
/ L) /
=In 5 =In( lim 5 —In 5 :1n5+1
s+ 11ls s'—o00 8" + 1 s+1 S
=1
Prob. 7
1 —cost >~ 1 s’ . ,1 " oo s oo
= [ = [y g 0] T
s s24+1
=In|{ lim —— | —In —1In
gm0 14 L VsZ+1 s
—
=1
Prob. 8
_ -1 (0§t<1) . _ B 1 e—5
f(t)—{ 1) = —14+2Ut-1) = f(s)_—g+2 —
ou, sem usar a funcao degrau,
_ e’} 1 [e%) e_stl e—stoo
f(s):/ e f(t)dt = e—st(—1)dt+/ e *t(1)dt = -
0 0 1 5 o 5 |4
e *—1 WO — 5 1 e—$
= - =——+2 .
$ S s s
Prob. 9
0 (0<t<?2)
. 5 (2<t<4) i _ B 6*28 6745
FO=93 (1<i<g = SUE-2-8UE-H+3UE=6) = fls)=5———8
0 (t>6)
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Prob. 10
f(s) =

7s T s T s—3 6 5/2
452 — 245+ 61 4 [(5—3)2 + (5/2)2] T4 [(5—3)2+(5/2)2 Ty (s —3)2 4 (5/2)2

: =Tt s 2 4 B Ot
.f(t)—4e {c052+5ben2}

35(2;—5)} = %Lfl {1/(585/2)} - é/ote"’“/?du _ %(est/z —1)

{
29 modo: 5_1{1)}: ‘1{_1/5+ 2/15 }:L‘l{_1/15+ 1/15 }_ _1+ie5f/2
{

Prob. 11

12 modo: £7!

5 s—5/2f 15 15

L
L :15*1 11 :15*1{1}*5*1{ 1 }:1.1*65#2
3s(2s — 5) 6 s s—5/2 6 s s—5/2 6

1/t 5u/2 L 52
=— [ "Pdu=— (" -1)
6 Jo 15

32 modo: £71

Prob. 12
f(s)—lns_3—ln(s—3)—1n(s+1) = fl(s)= _ 1
U s4+1 o _ts—3 s+ 1
-1 _ —
L )=t —et = f(t):—e te
Prob. 13
£ 7T s z 1/2 2
- = — t by ! = — e
flo) =g —arctang = S =93 GRE = i
B 2t
A f(t)=—sen2t = f(t)= Sel;
Prob. 14
7 s?+1 2 2 - 2s 2s
J)=mG g =@+ ) - +4) = [()= 5553

—1 2
BN —t f(t) =2cost —2cos2t = f(t)zi(cos%—cost)

g(s)
——

~3s 1 send
f@®) = L_l{es }+ L_l{arccots} = U{t-3)— be?t ;

U(t—3) g(t)

—4/s2 4 £t sen4t
. —/ _ _ — _ — 4 = — .
pois  g'(s) TF (/52 2516 tg(t) = sendt = g(t) .
Prob. 16
- < . ‘
=t OSI<2) o hw—2) = f(s)= L{t— 1} — pls) e 2 .
0 (t>2) ——
p(t—2)
_ 1 1
pt=2)=t-1 = pt)=t+2-1=t+1 = p(s)=—5+-.
s s
o1 1 1 1 o,
.f(S)—Sz—S—(Sz—Fs)e | ]
Prob. 17

fO) =2+ (—1+t—tHU{t—-2) = >+ p(t —2)U(t—2).
=p(t-2)

Pt—2)=—-1+t—1* = pt)= —1+({t+2)—(t+2)* = -3 -3t—12.

L{F(O)} = L{2} + L{p(t—2Ut—2)} = 533+p<s> e 2 = 833 + (—3 3 2) e m
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Prob. 18
f(t)=U(t—a) sent =U(t —a)q(t —a) = f(s)=e *q(s) . D
q(t—a)

q(t—a)=sent = ¢(t)=sen(t+a)= senacost+ cosasent .
+( ) 1 ssena + cosa (Im)
cos a = .
5241 5241

a(s) = (sena) 5

—as

Com (II) em (I), obtemos a resposta:  f(s) = :QT (ssena + cosa)
Prob. 19
- 1
LY ()} = L{ L } (e 5)e2t-9)
——
et
e2t
Prob. 20
i af - 1 _5 (t—5)3
Ll :Ll 5s =U(t—5 2(t—5)
oy = e e 2} = -y e (00
———
ot
e2tt3 /31
Prob. 21
-1y 7 _ r—1 —s s+ _ r—1 —s S ™
L7Hf(s)} =L {6 52—1—71'2} =L {e |:82+7T2 +52+7r2]}
—_——  ——
et et
cos t sen 7t
=U(t-1) |:COS m(t— 1)+ senw(t — 1)} = —(cosmt + sen7t) U(t — 1)
—cos Tt —sent
Prob. 22
SO} = £0 L U= 5)) = £(plt - Ul -9} = [p)e ™| —pls- et
p(t—5) si=s—2

. 12
Por outro lado, p(t) = (t+5)% =3+ 156> + 75t + 125 =  p(s) = S% + 3—2 + L

s 52 s
6 30 75 1251 _5ies)
(s—2)4+(s—2)3+(8—2)2+s—2}e '

Logo. £{f(1)} = |

Prob. 23
! senu 1 sent 1 [/ 1 , 1 ,
L{f(t)}—L{/O w du}—sﬁ{ n }—S/S T—Hds = garctans

Prob. 24
teau _ gbu 1 eat — bt 1 [ 1 1 1 s —al™

L{f()} =L —d =L — > = — — ds' = =1

{r@®)} {/0 w u} P { t } 3/8 (3’—a s’—b) s s[ns’—b]

1 - 222 L5t
=—|Inl—1In ==
—b s s—a
Prob. 25
1 2
1 2 / e_St(l)dt—l—/ e St (—1)dt  _Z st st
— —st _ 0 1 s =0 s =1
f(s) = 176725/ e Stf(t) dt = — _ =02
(et lte @ —e) 124 (1—es)2 e
T s—e T T sA—e®) sel-e) s(lver)
Prob. 26
2 2
— t _ 2 1 . _2 1 2
st st st
tdt —— - dt 4 —2s _ — _—st i
f(s):/o € _ 56 t:o+5/0 € _ 88 826 t=0:1_(1+2s)€_26
1—e 28 1—e 28 1 —e2s 1 _ 25 .
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2

1—e 28 1—e25 —5
e — 78 e f(1l=—e"") e *

T s(l—e ) s(lte)(l—e") s(ltes)’

t=1

~ 1 2 1 2 1 —st
o J(s)= 7/ et dt = 15 / ettt = —— &
0 - 1

_ ot o<t<y I T L
s =gt e g0 -{, 1 0EIEY 5 a0 - [ ea
1 2
—st —st _
N (3)_/0 e tdt+/1 e (2 t)dt_ 12 (14 s) e
B 1—e2s - s2(1 —e=29) )
- 1 v 1 T 1 1+e 7™
o h(s)zi/ e_sth(t)dt=7/ e Slsentdt = - = L1te
1—6_775 0 1—6_7TS 0 1_6_7TS 32+1
—~ ]' °n —st 1 T —st ]' 1+677TS
. U(S):m/ ¢ u(t)dtzm/o e rsentdl= =y T E T
Prob. 28
_ 1 1 a1 P b s
C 1{7}25 1{ }*L 1{ }:th*eSt: p2ueb(t=u) gy, — o5t [ o=3ugy,
(s —2)(s—5) 5—2 s—5 0 0
ot e~ 3t t s e~3t _ 1 B _th — bt
=3, -3 3
Prob. 29

1 1 1 t
e e ) = et sent = [ sntt - wpsenud
(s*+1)? 241 ¥ 5241 sent s sen 0 sen (t — u) senu du

t t t
= / [sentcosu — senw cost]senudu = (sent)/ senu cos u du — (cost)/ sen’u du
0 0 0

(sent) sen?u]" (cost) [ sen2u]® 1 ot t  sen2t cost
= n —_ —_— = — Ssen [— —_——
. 2 4 |, 2° 2 4
Prob. 30
Mo =N = et < Haror)
(s2+4s+5)2 [(s+2)241)2 (s+2)2+1 (s+2)2+1
= (e"?**sent) * (e %' sent) = t e " senu e 2% sen (t — u) du
0
¢ 1 t  sen2t

= e_2t/ senusen (t —u)du = e 2| = sen®t — | = — sen cost

o 2 2 4

ja calculada no Prob. 29
Prob. 31
/ooetsentdtL sent :/00 1 ds’ — arctans/| = ZT_I_T

o t t ., ), 21 L2 171
Prob. 32
0 o 9! 9!
—2t49 7, _ —st49 — 49 _ _
/e tdt—/e t7dt = L{t"} =0 = 310
0 0 s=2 s=2 s=2
Prob. 33
0 (0<t<])
<
v+ 2y +y=ft) = _1 g - i i g sob as condigoes y(0) =0 e ¥’ (0) =0 :
0 (t>3)
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%
Ll +2y +y} = L{UE—1)—2U{t—2) +U{t—3) }

e~ 5 6_25 6—35
= 575(s) —sy(0) —y'(0) + 2[sy(s) —y(0)] +4(s) = (s+1)°y(s) = P e s
Y el
e~ 5 6—25 6—35

> v =£" {s(s +1)2 28(8 +1)2 + s(s+1)2 } = L7 {e7g(s) — 2e7*g(s) + e TG ()}
onde
o1 paene 1 1 1 R
I=rir T e T SOTmeme

y(t) = Ut — 1)g(t — 1) — 2U(t — 2)g(t — 2) + U(t — 3)g(t — 3) ,

ou yt) = UE-1)[1—e N - (- 1))

2U(t - 2) [1 e (72 (9 e—“—?)}
+ Ut - 3) [1 — e (73 (¢t 3) e*<t*3>} .

Prob. 34

Y3y Ay =0 S Pg(s) — sy(0) — ¢/ (0) + 3 [s5(s) — y(0)] — 47(s) = 0

y(0)s + 3y(0) + ¥'(0)

2 —4)7 — ! 7l = 1
= (P34 =uOs 30 410 = gl = LOTEIEEE )
(s—1)(s+4)
Item (a): Substituindo y(0) = %’(0) = 1 na equagao (1), obtemos
. s+4 . 1 -1 oy
Vo) = e ~so1 o Y=
Item (b): y(0) =1, 3/(1) = —4e~* . A equacdo (1) com y(0) = 1 fornece
c1 1—c1
y'(0)+4 y'(0) -1
o s+3+9/(0) 5 -5 o 11— ot —4t
y(s)i(s—l)(s—kll)i Py + P s—1+s+4 = yt)=ce+(1—c)e ™.

Acima, mudamos da constante arbitraria y’(0) para a constante cj, também arbitraria, pois a
determinacao de ¢; envolve menos contas que a de y’(0). Agora usamos a outra condicdo, y'(1) =
—4e™*, para determinar c;:

yYt)=ciel —4(1l—c1)e™ = ¢y () =cie—4(1 —c1)e = —de™*
= cle+de™)=0 = =0 = yt)=e* .

Item (c): y(1)=e+e? o/(1)=ec—4de?

Cc1 C2

4y(0) +¢'(0) —y(0) +4(0)
y(0)s + 3y(0) + ¢'(0 5 -5
y(s) = L0 3 )_ +
(s—1)(s+4) s—1 s+4
Aqui também mudamos das constantes arbitrarias y(0) e y’(0) para as constante arbitrarias ¢y e co,
assim simplificando as contas. Usando as duas condigoes iniciais, obtemos um sistema algébrico com
as incoégnitas c; e ca; resolvendo-o, acabamos a resolugao:

= y(t)=cre' +co e 4.

{y(l) = cie+cpe ™ = e+e?

o ot -4t
y' (1) = cle—4dcge™ = e—4de™? = a=a=1 = ylt)=ec+e )
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Prob. 35

t y(s e * _ e ?
Y+ /y(u)du =U(t—1) = sy(s) + @ = = y(s)= 55— = yt)=U{t—1)sen(t - 1) .
0 s s s2+1
Prob. 36 \
2t 2.3t
w=—2e3t+§ 5 v=8+ ot +
Respostas: (a) (b) ' .
_ 8t S 1 __ 2
B 2 6 Y= T
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Capitulo 5

Séries de Fourier

{Ref. [14], se¢des 11.1 a 11.3}

5.1 Construcao da Série de Fourier

5.1.1 Série de Fourier de Fungao Peri6dica

sen x4 P menor periodo =2/
< (uma onda completa
a cada 2/ radianos)
n=1

»
»

Zz

o
N sh-o---
~)
K
~

onda

A

3

I

)
>
\____________V_____
y

menor periodo = £
(uma onda completa
a cada ¢ radianos)

sen —— P

o
PN
Sl
R
Il
~
TR
~
2\

sen3ﬁ—x“ P E menor periodo =2£/3

C s (uma onda completa
/\ /\ / a cada 2¢/3 radianos)
n=3 ' -
\/ 20z

7
Y

85



Na figura acima vemos alguns graficos das fungoes trigonométricas sen (nwx/f) [n =1,2,3---]. Os
graficos de cos(nmx/¢) sdo os de (sennmz/{) transladados de (2¢/n)/4 = £/2n para a esquerda (de
modo que o ponto P de cada figura fique em 2 = 0), pois cosnmz/f = sen[nw(z + £/2n)/¢]. E facil
mostrar que, para m e n inteiros, essas funcoes satisfazem as chamadas relagées de ortonormalidade™:

20
/ sen 2 cos oL gy = 0 ; (5.1a)
0 ¢ l

20 20
/0 sen m;m sen—m;c dr = /0 cos m;rm cos —m;x der = {2 Zi ziZ#O . (5.1b)

\Lsem:nséo \Lsem:n
steandx:e 20 2 nra go. Lsen#0
’ ‘ fo cosT T AT = 20 sen=20

Considere a série infinita

nwx
Sk n by sen—— . 5.2
24 Z an €08 2L 1 b, sen 7 (5.2)

Como ela é periddica, de periodo 2¢ (¢ é indeterminado por enquanto), isto é,

z+2€) L Senmr(er%) _ Sp(2)

0
Sr(r+2¢) ?JFZ ancos 7

é valida a tentativa de usa-la para aproximar uma func¢ao f(z) também periddica, de periodo p:

flz) ~ Sp(z) = = + Z A, cos 2% 4 b, senm;m . (5.3)

O primeiro passo é igualar os periodos, 2¢ = p, assim determinando ¢ = p/2. N&o usaremos mais o
parametro p, pois o que passa a importar é que o parametro ¢ em (5.2) deve ser o semiperiodo da
fungao f(z) que se deseja aproximar por Sg(z).

Para determinar os coeficientes a, e b,, usamos (5.1a) e (5.1b). Calculemos b, (n = 1,2---)
multiplicando ambos os lados de (5.3) por sen(nmx/¢) e depois integrando no intervalo (—¢,¢):

o0

nmx ap [*  nmx 2 mmr nnx

f(z)sen— = — sen ——dx + E am, cos sen ——dx
1 2 1 1 1

0 0 1 0

0

20
+bm/ sen mre sen wdm = b, L .

{ se m=mn

={O se m#mn

Multiplicando agora ambos os lados daquela equagao por cos(nmz/¢) e integrando em (0, 2¢), ob-
temos a, (n=1,2---):

20 20 0 20
f(x)cosw ) cos 2 g +Z a 08 2 cos L iy
0 l 2 Jo l = " /s 4 14
—_— =
_J 0 sen#0 _JO se m#n
T 12¢ se n=0 T 1€ se m=mn

J4 J4 apl se n=0.

0

2¢
+bm/ sen 2" cos Ly = {ané se n70
0

(*) expressando tanto ortogonalidade quanto normalizacio
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Em resumo, se f(z) tem periodo 2¢, entdo, Vx € R, temos que

a nr nwr
f(a:)rv?—&-; ancosT—F bnSGHT = Sp(x) , (5.4a)

onde

¢ ¢ ¢
aozz/j f(z)dx an:/o2 f(m)cos% (z)dx bn:/o2 f(x)senn—;m (x)dx .
(5.4b)

Nessas integrais, o intervalo de integracao pode ser qualquer um de largura igual ao periodo 2¢ —
isto é, podemos, acima, fazer a substituicao fou dz — f;ﬂz dz (com qualquer ¢ € R) —, pois as
fungoes que figuram nos integrandos [f(x), cos(nmx)/¢ e sen(nmwz) /] tém periodo 2¢.

A expansao da funcao f(x) dada por (5.4a) e (5.4b) foi obtida formalmente, sem cogitar da validade
das operacoes realizadas na sua dedugio*). Mais adiante enunciaremos um teorema estabelecendo sob
que condi¢oes uma funcdo admite esse tipo de expansdo. Neste caso, (5.4a) e (5.4b) constituem a
chamada série (desenvolvimento, ou expansdo) de Fourier de f(z). O sinal "~" indica que Sp(x) é
uma aproximacgao de f(z); é substituido pelo sinal de igualdade no caso de a série Sg(z) convergir
para f(x) em todo x. Observe que a formula de ag é a de an‘n>1 com n = 0, sendo esta unificacao de
formulas o motivo de por ag/2 como o primeiro termo da série em (5.2).

Como exemplo de série de Fourier de fungao periodica, considere a fungao dada pelo grafico
abaixo.

1
<

Il
3

—_——-n—_——_—————0-

AY

Ela é claramente periédica, de periodo 27 . Logo, de-
vemos fazer 2¢ = 27 e, portanto, usar £ = 7 em (5.4a) e
(5.4b). Nas formulas dos coeficientes, podemos escolher
como intervalo de integracao qualquer um de largura
igual ao periodo 27; tomemos o intervalo [—m, 7], onde
o grafico de f(z) é aquele & esquerda, sendo essa funcao,
portanto, dada por

Ei"

3
\
3
ﬁ R g S

x se z € [—,0)
f(I)Z{ e flz+2m) =f(z). (5.5)

msex € [0,m)

17 I I
ag = — f(x)dx:f/ a:dx+f/ wdx:g.
0

(*)em particular, admitimos que, ao integrar a série, a integral da soma da infinidade de termos que a compdem ¢é igual
a soma das integrais de cada termo
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0

™ ™
an:l f(:c)cosn:cdx:l/ a:cosn:cd:cqtl/ 7 cosnx dx
TJ TJ T Jo
0
pp- 1| zsennz|’ O senna d cosnz|®  1—cosnm
" n ﬂ_/ﬁ n 2 l-x  wn2

O 1 T
rsennx dxr + — / T sennt dx
™ Jo

4 1
b, = — f(x)sennzdx = 7/
i

—r -
0
p-p- 1 | z(— cosnz) O —cosnx —cosnz |
b Ljzlzcosna)it 7 Zcosnw, | Zcosnt
n . n n
N —

—T

_ 1 —r(=1)" +—(—1)"+1 o l=2(=1)" 3/n (n=1,3,5---)
o n n N n ~1/n (n=2,4,6---) ,
onde usamos a formula cos(+nw) = (—1)™. A série de Fourier de f(z) é, portanto,
s 2 3 -1
Sr(z) = 1 + Z 3 COSTT + Z , senne + Z ~, sennz ® (5.6)

n=1,3,5 n=1,3,5- n=2,4,6--

5.1.2 Série de Fourier de Funcao Nao Periédica

Mostraremos que uma fungdo ndo periddica g(z) também pode ser desenvolvida na série Sp(x)
(periodica) em (5.2), mas apenas num intervalo finito [a,b] do seu dominio, denominado intervalo de
expansdo, contanto que 2/ = b — a e as integrais que fornecem os coeficientes sejam efetuadas no
intervalo [a, ] :

Seérie de Fourier de uma fungdo nao periodica g(x) num intervalo finito [a,b] do seu dominio:

g(x) ~ Sp(z +Z ancos T b, senn—;m para z € [a,b], com 20=b—a , (5.7a)

n=1

b b
ag = %/ g(x)dx , a, 6/ ) cos —d:c e b, %/ g(x)sen?dm . (5.7b)

Note que o primeiro termo dessa série, o termo constante ag/2, é igual ao valor médio da fungao

no intervalo de expansao:
b
ao 1
— = dx . 5.8
e R (58)

Nota: Neste ponto da exposicao cabe fazer a seguinte observacao: Até o momento estamos
sempre nos referindo a expansao de Fourier de uma fungao num intervalo fechado [a, b], mas
depreende-se da formulagao que a série de Fourier é a mesma para qualquer dos intervalos
[a,b], [a,b), (a,b] e (a,b) pelo simples fato de que cada coeficiente da série é resultado de
uma integral, e esse resultado nao se altera quando a integral sofre alteragao oriunda de
modificagoes num nimero finito de pontos do intervalo de integragao. Isso se tornara mais
evidente quando estudarmos a convergéncia da série de Fourier.

Para mostrar a validade de (5.7), considere a funcéo f(x) assim definida:

f(x) =g(x) se x€la,b)
flx+20)=f(z) Ve eR, onde2{ =b—a .
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Vé-se que essa fungdo f(z) é periodica, de periodo 2¢ = b — a, e coincidente com g(z) no intervalo
[a,)); ela é a denominada extensdo periddica de g(x) [ou, sem abreviar, a extensio periddica dos valores
de g(x) no intervalo [a,b) a todo o eiro real]. A figura abaixo exemplifica graficos de f(x) e g(z).

y = f(z) 20 y=g(x)

------------- A

v

Uma vez que f(z) é periddica, ela admite a expansdo dada por (5.4a) e (5.4b) com 2¢ = (b—a), no
caso. Ora, tal série de Fourier de f(z), valida em todo eixo real, vale em particular no intervalo [a, b),
onde f(z) = g(z); isso justifica (5.7a). Por outro lado, como ja dissemos, as integragoes nas formulas
dos coeficientes da série de Fourier de f(z) podem ser efetuadas em qualquer intervalo de largura b— a.
Se, em particular, empregarmos o intervalo [a,b), onde f(z) = g(z), tais formulas tornam-se aquelas

m (5.7b).

Como exemplo de série de Fourier de fungao nao periddica, desenvolvamos tal série para
a fungdo g(x) = 22 no intervalo [—7, 7). Usando (5.7a) e (5.7b) com @ = —m, b = 7 e, portanto,
20 = (b — a) = 2w, temos que

1 1 4 272
ag = */ / 1’2d1':l
m . 3
1 (= 2 [T M 2| z2 T 9 7
a, = 7/ 22 cosnxdr = = / 22 cosnxdr = {xsenn:c —f/ xsennxdm}
Y ™ 0 ™ n 0 n Jo
—_———

0

() —4 | —zcosnz|" 1 [T —4 sennx |" 4 n
= —Q —| 4= cosnrdr p = —{ —mcosnm+ =—(=D".
nm n o nJo ™ (\/)—’ no n
71 n
———
0
/M, (#)
b, = — r“sennxdx = 0.

s —T
Explicagdes das passagens marcadas acima:
(%) fungdo par integrada num intervalo simétrico em relagdo a origem
(1) integragdo por partes
(#) fungao impar integrada num intervalo simétrico em relagdo a origem

Logo,
o0
w2
~ ? E —cosnx, x€|[-m,7 M
Se truncarmos a série de Fourier Sp(ac) de f(x), isto &, se a Ay

calcularmos com um namero finito de termos, o seu grafico tera
um aspecto oscilatério em torno do grafico de f(z), como ilus- f(@)
trado & direita. O aumento do niimero de termos causa oscilagoes
de menor amplitude na maior parte do intervalo de expansao. Ja /

quando o namero de termos da série tende a infinito, ela pode con- 7‘
vergir, fornecendo o valor correto da fungao ou um valor incorreto, \
ou divergir, dependendo da fungao. Mais adiante mencionaremos 5
condigoes que, se uma fungao satisfizer, garantem a convergéncia
pontual da sua série de Fourier.

() truncada

»
>
X
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5.2 Convergéncia Pontual da Série de Fourier

Seja f(x) uma func¢do continua em todos os pontos de um intervalo limitado [a, b], exceto possivel-

mente nos pontos a, b e num namero finito de pontos x1, T, -+, Ty, coma < 1 < Ty < -+ < T, < b,
nos quais ela nao é continua nem necessariamente definida. Assim, ela é continua em cada um dos
intervalos abertos (a, 1), (z1,22), -+, (zn,b). Se ela tiver limites laterais finitos em z1, - -+, x,, pela

direita de a e pela esquerda de b, entao essa fungéo é dita continua por partes em [a, b].
A direita, na figura superior, a fungdo f(z) é continua por
partes, com todos tipos de anomalias possiveis (pontos de des-

continuidade e de indefinigao). I i M
Note que, por essa defini¢do, uma funcdo continua em |[a, b] fy C:/Z\L/?
é necessariamente continua por partes nesse intervalo. Mas, em i
(a,b), uma fungao continua nao é necessariamente limitada e, :
portanto, nao é necessariamente continua por partes; a direita, a
a funcdo g(x) na figura inferior ilustra isso. 4
Ja num intervalo ilimitado I, uma fungao é dita continua por !
partes se ela o for em todo subintervalo de I. '
Se uma funcao f e sua derivada f’ sdo continuas por partes |
num intervalo, entao f é dita suave por partes nesse intervalo. :
No que segue é usada a seguinte notacao de limites laterais: @

lim f(x)=f(kT) e lim f(x)=f(k") . (5.9)

z—kt z—k—

- -

SA 4

o~ -

9(z)

»
>
T

-2

Segue um teorema e um corolario desse teorema estabelecendo condigbes para a convergéncia da
série de Fourier (c.f. Ref.[3], se¢.10.3; Ref.[5], se¢s.12,13,15):

Teorema. Se uma funcdo periodica f for suave por partes, entdo sua série de Fourier Sg(z)
dada por (5.4) convergira segundo a formula

Sy = EVHIET) 510

Corolario. Se uma fungao néo periddica g(z) for suave por partes num intervalo finito [a, b] do
seu dominio, entdo sua série de Fourier Sp(x) desenvolvida nesse intervalo usando (5.7) convergira
segundo (5.10) se x € (a,b) e conforme a férmula

Sp(a) = 28 +9l0)

se t=aouzxz=">. (5.11)

A equagao (5.10) informa que Sg(z) converge para o valor médio dos limites laterais de f a direita
e a esquerda de x; em particular, converge para f(x) onde f ¢ continua, pois, neste caso, f(zt) =
f(@™) = f(x). Seguem algumas figuras que ilustram a convergéncia da série de Fourier.

Para a funcio f(x) = 22 desenvolvida em série de Fourier no intervalo I = [—m, 7] no exemplo na
pag. 89, o grafico da série de Fourier Sp(x) obtida é como mostra a figura abaixo. Nota-se que Sr(z)
converge para f(z) no intervalo de expanséo I, pois essa fungao é continua nesse intervalo, e, fora desse
intervalo, fornece a extensao periddica, de periodo igual a largura 27 de I, do valores de Sp(x) = f(x)
para x € I.

SF(Z)
____________________________ e
—3n —T 0 it Ris T
|

intervalo I de expansao
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Ja a figura a direita mostra as ondulagoes do gréfico da
série de Fourier Sz (x) truncada de uma funcao f(x) que apre-
senta um salto de descontinuidade no ponto xy. Ela exibe
0 que se exp0s acima sobre a lei de convergéncia em (5.10):
que o grafico de Sg(x) passa pelo ponto médio do salto, o que
parece ser o mais légico, e isso é demonstrado independen-

>
- s . >
temente do nimero de termos da série truncada. Tal figura MW i po‘nto T, o
P . . s . . 2 1
também ilustra o seguinte: como a série de Fourier é comple- fz)|---6  médio
tamente determinada por seus coeficientes a, e b,, e como 0 do salto

esses coeficientes exibem a fungdo f(z) em integrandos, esses
coeficientes néo seriam sensiveis a uma mudanga no valor de f(x) em abscissas isoladas, tais como x
e x1 (v. a figura): nestes, o valor da fungéo é irrelevante para a série de Fourier.

A convergéncia pontual da série de Fourier segundo (5.10) de uma fungao periodica (aquela do
exemplo na pag. 87) também é ilustrada na seguinte figura:

—y=T

v

\

Por fim, abaixo apresentamos mais uma figura mostrando os graficos de uma fun¢ao f(z) e o de sua
série de Fourier Sg(z) (truncada) desenvolvida num intervalo [a,b]. Como a largura do intervalo de
expansao determina o periodo da série de Fourier, o perfodo de Sp(z) é 2¢ = a—b. A figura possibilita
entender que Sg(x) — por replicar contiguamente a por¢ao do seu grafico em [a,b] a cada intervalo
de largura 2¢ — s6 seria continua nos extremos de [a,b] se f(a™) = f(b7); sendo diferentes esses
dois valores, ha um salto de descontinuidade f(b~) — f(a™) nos extremos de cada intervalo replicado,
convergindo a série para o ponto médio de cada salto, de acordo com (5.11) (e a periodicidade da série
de Fourier).

S, (z) convergida

Sy () truncada

Convém ressalvar que as condigdes para a validade das equagoes (5.10) e (5.11) sdo suficientes, mas
nao sao necessdrias, pois existem fungdes que nao as satisfazem e, no entanto, convergem segundo as
regras estabelecidas por essas equagoes. Ressalte-se também que tais condigoes podem ser substituidas
por outras que garantem essas mesmas regras de convergéncia, tais como as condi¢oes de Dirichlet.
Ainda n&o h& um teorema de convergéncia pontual estabelecendo condigoes suficientes que também
sejam necessarias.
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5.3 Séries de Fourier em Senos e em Cossenos

Considere a expansido de uma funcdo f(x) no intervalo [—¢, ¢] , obtida usando (5.7):

f(x)NSF(x)C;OJr;ancosTJr bnsen? , xe[-41L],

onde

1 /¢ 1 /¢ nwx 1 /¢ nwx
0= z /;z f(x)dx ,  Qp = z /;Z f(x) COS de y bn = Z /Zf(.f) COS le’ .

Se f(z) for par, entao
1 [ nwT
by, = Z[ef(x)beHde =0,

—_————

impar

isto &, todos os coeficientes b,, de sen(nmx/f) na série se anulam; além disso,

an E/f E/f cos—dx.

Ou seja, a série é uma expansao em cossenos apenas, cujos coeficientes a,, sao obtidos com a integragao
efetuada somente de 0 a ¢ e multiplicando-se o resultado por dois.

Se f(z) for impar, entao
¢
ap = %/ f(:r)cos?dx:() .
—£ —_————

impar

Agora sao os coeficientes a,, de cos(nmx/f) que se anulam, sendo a série uma expansio em senos apenas,
com seus coeficientes dados por
nmx
/ f Sen—dx— / flz sen—d

Essas expansoes sao séries de Fourier no intervalo [—/, £] validas para funcdes com paridade. Mas,
observe, as integrais que fornecem os coeficientes sio efetuadas no intervalo [0, ¢], o que nos permite
desenvolver qualguer™ funcdo somente em cossenos ou em senos no intervalo [0,¢]. Essa proposigao
é formulada abaixo e justificada logo depois.

Qualquer™ funcao f () pode ser expandida somente em cossenos ou somente em senos no
intervalo [0,¢]:

S5(x) = = + Z an, cos =L . série de Fourier de f(z) em cossenos (5.12a)

fx) ~
nwT
= Z bn, sen—— : série de Fourier de f(z) em senos , (5.12b)
=1

onde z € [0,¢] e com os coeficientes dados por

9 rt 9 [t
— Z/0 f(z)dz an:Z/(; f(z) cosn—gxdx ; (5.13a)

¢
by, = Z/ f(x)sen%dx . (5.13b)
L Jo 1

(*)A palavra qualquer é usada no sentido de que a funcio pode ser qualquer uma para a qual a série obtida convirja;
para isso acontecer ¢é suficiente que estejam satisfeitas as condi¢des do teorema na segao 5.2.
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Essa formulacao é justificada assim: Na série de Fourier em cossenos de f(z) tudo se passa como
se estivéssemos expandindo em série de Fourier no intervalo [—¢,¢] uma funcdo par que coincide com
f(z) no intervalo [0, ¢], e, analogamente, na série de Fourier em senos de f(x), como se expandissemos
em série de Fourier no intervalo [—¢, ] uma fungao ¢mpar que coincide com f(x) no intervalo (0, /] .

Uma peculiaridade dessas séries: Elas tém periodo 2¢ e sdo desenvolvimentos de fung¢oes no intervalo
[0,£], o que lhes justifica as denominagoes desenvolvimentos de Fourier de meio periodo ou semisséries
de Fourier. Mas, se na metade de cada periodo, isto &, de cada intervalo periddico (—nf,nl] (n =
1,2,3--+), ha a fungdo expandida, o que ha na metade inferior desses periodos? Para responder,
vejamos os seus graficos. Para desenhéa-los, basta lembrar que essas séries sao séries de Fourier de
fungoes pares ou impares em [—¢,£], de periodo 2¢. A figura abaixo mostra o grafico de uma fungao
f(z) qualquer e suas séries de Fourier em cossenos e senos, S%(x) e S%.(z), respectivamente. O primeiro
passo ¢é considerar apenas a restri¢do de f ao intervalo [0, ¢]; em seguida, para obter S%(z) , estendemos
ao intervalo [—/, £] aquela restrigdo de modo que a extensao de f ao intervalo [—{, ¢] seja par, e, para
obter Si.(z), de modo que tal extensao seja impar; por fim, replicamos o grafico dessa extensdo
contiguamente em intervalos de largura 2¢, seguindo as regras de convergéncia pontual da série de
Fourier em (5.10) e (5.11). Na Figura, os graficos de S%(z) e S%(x) assim obtidos sdo mostrados com
pequenos risco ao longo deles. Entao temos a resposta: na outra metade do periodo de uma semissérie
de f ha a extensao par ou impar de f.

extensao (par .~ extensao (impar) .o~
restricdo restricao
S5() e /() y /(=)
N

-3¢ 20 -~ | ¢ 2 3¢
—
periodo 2(de Sp(z)

5.4 Exercicios

v

8

%_J
periodo 2{de S, ()

1] Escreva a série de Fourier de uma fungéo f(z):
a) no intervalo [a, b]
b) no intervalo [0, 5] em cossenos
¢) no intervalo [0, b] em senos
d) no intervalo [0,b] em senos e cossenos (série completa)
e) no caso de f ter periodo p
f) no caso de f ser par e ter periodo p

2] Calcule Sp(0) e Sp(0,5), sendo Sp(z) = ag/2+ Y17 [an cos2nmx + by, sen2n7x| a série
de Fourier da fungao dada por f(z) =2?+1 se z € [0,1) e tal que f(z + 1) = f(z).

3] Expanda a funcao f(z) = x para z € [0, 10]:
a) numa série de Fourier
b) numa série de Fourier em cossenos
¢) numa série de Fourier em senos

0 (z<0)
(

4] Expanda em série de Fourier, para € [—m, 7|, a funcdo f(z) = {1 2> 0)

5] Usando a série de Fourier (5.6) da funcéo em (5.5), mostre que o = Z — =—"
n=1,3,5--

6] Considere a seguinte fun¢ao definida por uma série infinita: u(z,t) = Y {° B, sennzsennt, com
ou

x € (0,7). Sabendo que ela satisfaz a condigao T

(z,0) = 1, calcule u(%, g), usando o valor do

somatoério o deduzido no exercicio anterior.
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5.5 Solucoes dos Exercicios

[1]
a) Sp(x) de f(x) em [a,b]:

_ao_|_Zancos + b, sennzx, com 20=b—a m

1t nwT
Z/a f(x)cosde, bnfz/a f(I)SeIlexl

b) Si(z) de f(z) em [0,0]:
b .
Se(x) = ao +Zancosw, oy = 2/0 f(x)cos%dm |
Nota: Tal série coincide com a Sp(z) em [—b,b] se f for par.
c) S%(x) de f(x) em [0,0]:

:Zanen@, / f(z sen—dml

Nota: Tal série coincide com a Sp(x) em [—b,b] se f for impar.
d) Sp(z) de f(z) em [0,5]:

nmwx
by, , 2W=bm
+ Z [e2% cos + sen — 7 com

1 b
ao:Z/O f@)dx, a,= E/f cosTda; b, = /f sen—dm

e) Sr(z) de f(x) com periodo p:

+Zancos +b sen EI, com 2/ =p m

1

1 c+2£ c+2¢
Z/ f(x)cosanac7 bn:—/ f(m)sennlﬁdx (ceR)m

ap =

L

£) Sp(z) de f(z) par e com periodo p:

—|—Zanc%— |

1 (‘+2/ nm
an:z/ f(m)cosde (CER), com 2£:p7
C
onde podemos fazer ¢ = —/¢, obtendo a seguinte formula para os coeficientes:
1 e
an:Z/ f(l‘)COSwdx— / f COS@dJ?— /f COSidJ).
-

[2]

fOF)+f(07)  1+2
2 3
Sp(0,5) = £(0,5) = [2* + 1, p,=125m

Sr(0) =

=3/2m
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[3]
a) Sp(x) de f(x) =z em [0,10]:

+Zancos T b, senm;x .z €(0,10).

2=10 = €:5.

10

1 10 nwx 5 10 nwx nmx |10
a, = — rcos—dr=—-4 —rsen——| —— sen — dx p = 55 C =

b} 5 |g nm o 5 lo

0
0

1 10 nmwT 10 nmwT —10
b, = = rsen—dr = —{ —xCcos — — cos —dr p = —

5 Jo 5 |10 n7 Jo nm

S _5_727 nwT

b) S%(z) de f(z) =z em [0,10]:
_wy nmz _
—2+;ancos 7 x € (0,£), com £=10.

2 l 2 10 210 1
apg = — xd:c:—/ xdz:z— :@:10.
0

1 /10N\2 nmz10] 20 n [ —40/(7*n?) (n=1,3,5---)
5{(7177) 70 ’0}772712[(1) 1}{ 0 (n=2,4,6---).
. 40 1 nw
SF(')ilof; Z nfCOSi.
n=1,3,5---

c) S5(z) de f(z) = z em [0,10]:

95)221),&&1?7 z € (0,0), com £=10.

/xben 2 /wxsenmdas—l —1—0a:cosw‘10—|—E Coswdx
"é ~ 10 J, 0" 5 nm 10 o nrm /), 10
0
2
=—— [IOcosmr] = ——O(—l)"
nm

[4]

=0, Z an cosnx + by sennx , x € [—m, 7| .

n=1

aO:l f(m)d:c:l/ dr=1.
0

T J_x ™
1 [" 1 ("

Op = — f(z) cosna:dm:f/ cosnxdr =0 (n#0).
i —r i 0
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1 [7 1 [" ™ —1 D" -1
by, = — f(z) sennmdx:f/ sennzde = — — 0" CO8NT :—( )
) . 7 Jo nw lo nmw nw
2/nm (n=1,3,5--+)
]o (n=2,4,6---).
S )_7+z i sennx
P& = 0 n
n=1,3,5---
[5]
Fazendo x = 0 em (5.6), obtemos
T 2 = T T
ss0=7+2( > &) = o=5[s0-7]
n=1,3,5--
—_——
Por outro lado, podemos calcular Sr(0) usando (5.10) tomando f(z) como sendo a fungao em (5.5):
fOH+f07) 7+0 =
Finalmente, substituindo este resultado na equagao anterior, terminamos a demonstragao:
O 2
~313-31-%-
212 4 8
N——
/4
[6]
ou 0o ou 00
E(I,t) => [ npfpsennrcosnt = a(x,()) => I nfpsennz =1, com z € (0,7) .
Os coeficientes ng,, dessa série de Fourier em senos da fungao constante igual a 1 sdo
2 (7 2 T 2 -1
nB, = f/ 1-sennrdr = —— cosnr) _ _ccosnr T 2
T Jo T n o | ™ n
21" —-1 _ [4/mn) (n=135-)
g n 0 (n=2,4,6--+)
4/(mn?) (n=1,3,5---)
= ﬁn =
0 (n=2,4,6--+)
Portanto,
oo oo
u(z,t) = Y778, sennwsennt = Z — sennzsennt = — isennaz sennt
’ L n2 T n? ’
n=1,3,5 n=1,3,5--
donde,
4 = 1 4 & 2
u(ﬁ, 7r) == Z ~sen Lgen L = 2 Z —[ senn—w}
272 T n?2 2 2 T n?2 2
n=1,3,5-- n=1,3,5 —_———
+1
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Capitulo 6

Resolucao de Equacoes Diferenciais
Parciais Classicas por Separacao de
Variaveis

{Ref. [14], se¢bes 12.1, 12.3 2 12.5, e 13.1}

6.1 Autofuncoes

Se, em (3.2), V' é o espago vetorial das fungoes reais de uma variavel real, isto é, o vetor v é uma
funcao ¢ (x) genérica definida num intervalo qualquer I C R , e L é um operador diferencial linear,
entao, conforme delineado no texto quadriculado ao final da subsegao 3.1.2, o problema de autovalor
em (3.3) consiste em resolver a equacdo diferencial Ly(x) = Mp(z), com x € I, para determinar
os autovalores A, (n € N) e as respectivas autofungoes ¢n;(z) (j = 1,¢,). Quando um problema
como esse surge nas aplicagoes, em sua formulagdo, além da condigao de (z) diferir da solugéo trivial
Y(x) = 0 em I, também se encontra a condi¢ao de 1) ser finita em I, e geralmente ainda existem
condigoes que ¥ (z) deve satisfazer nos extremos (na fronteira) do intervalo I, denominadas condigoes
de fronteira(f). Problemas de autovalor sob condicdes como essas e baseados numa EDO de forma
padronizada (porém de ampla aplicagdo) formam a classe dos denominados Problemas de Sturm-
Liouwille, algo muito maior do que podemos considerar nesta disciplina. Portanto, restringimos aqui
o desenvolvimento desse assunto apenas resolvendo, no espago das fungoes, os problemas de autovalor
que encontrarao aplicagao nos problemas fisicos discutidos mais adiante.

Assim, uma vez que nas aplicagoes fisicas abordadas s6 emergirao problemas de autovalor baseados
na EDO ¢ (z)+A(z) = 0, em que L = —d?/dx?, apenas este operador sera considerado (os problemas
de autovalor a serem resolvidos diferirao nas condigdes de fronteiras a serem impostas). Além disso,
nessas aplicagoes fisicas, ndo havera necessidade de considerar um intervalo I diferente de (0, ¢), com
excegdo de I = (—00,00). Por tdltimo, neste estudo introdutorio, consideramos que a condi¢ao de
fronteira em cada extremo (z = 0 ou ¢) de I = (0,¢) seja apenas de um dos dois tipos: a condi¢do
de Dirichlet ¢y = 0 ou a condi¢ao de Neumann 1’ = 0, e, quando I nao possuir extremos, isto &,
I = (—o0,00), consideramos que t(z) tenha o periodo 2¢ (definido pelas condigoes reais do problema
fisico): ¢ (z) = ¢(x + 2¢) Vz € R, que é a chamada condigao periodica.

Listamos abaixo, antes de resolvé-los, os problemas de autovalores de interesse — os que sao baseados
na EDO ¢"(x) + Mp(z) = 0 sob as condigbes mencionadas acima — juntamente com suas solugoes,
compostas pelos autovalores e respectivas autofunc¢oes:

i)‘w”+/\w(a:):0, z e (0,0), w(O):W):o\ N An = (nm/0)? (n=1,2,3 )

6.1

(condigoes de Dirichlet) () = Senm;fx (6.1)

i) [ + () =0, 2 € (0,0), ¥'(0)=v'()=0] An = (n/0)? (n=0,1,2 ) o)
(condigoes de Neumann) wn(ﬂﬁ)’,elz cos ? , Yo(z) =1 .

(M A EDO juntamente com condigoes desse tipo formam o que se diz ser um Problema de Valor de Fronteira; recorde-se
que ha também o conhecido Problema de Valor Inicial
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A= (nm/0)? (n=0,1,2 ---)
nmTxr
o V@m0 mer || U@l Tt i =1
111 nmx
V() = d(a+20) = Wna(a)],,5, = sen == (6.3)
(COHdiQéO peri()dica: periodo 2£) J, ¥ (x) genérico do autoespago Sy, de Ay
nmnxr nmnxr
1/Jn($)‘n21 = Qn €08 —— + b, sen——, Po(z) =1

Passemos agora ao calculo dos autovalores e respectivas autofuncoes desses trés®) problemas de
autovalor. Nesse calculo é usada a seguinte expressio da solugao geral da EDO ¢”(x) + Ap(z) =0 :

c1 + cox se A=0
P+ () =0 = (x) = cicoshkr + casenhkz (ou c1e*® + coe™ ) se A = —k% (k> 0)
cy coskx + co senkx se A=k*(k>0) ,

onde expressamos A = k? ou A = —k? (com k > 0) para respectivamente atribuir a A\ qualquer valor
real positivo ou negativo (consideramos k > 0 para que a relagdo entre A e k seja biunivoca: a cada
valor de A corresponde um tnico valor de k, e a cada um de k, um tnico de A). Essa solugao geral é
deduzida na secao 6.7.2.

e Resolucio do Prob. (i):

Para A = 0:

Y(x) =c1 + e > N {¢(I) =0 (V) é a unica solugio;

logo, zero nao é autovalor.

Para A < 0: A= —k? (k> 0):

Y(x) = ¢1 cosh kx + co senh kx:

P(0)=¢c1 =0 N ¥(x) = 0 (Vz) é a Gnica solugdo;
Y(l) =casenhkl =0 = c3=0 nao ha autovalores negativos.
#0

Para A > 0: A =k? (k> 0):

Y(x) = c1 coskx + cysenkw .
Y(0)=a=0 = Y =cysenkz.

) ()
Y(l) =casenkl =0 = senkl=0 = kl=nr = k=k,=nr/{ (n=1,2,3---).

(%) admitimos c2 # 0 para viabilizar solugdo (z) nao nula
(1) excluimos n =-+—2,—1 e 0, pois k> 0

Portanto, A = A, = k2 = (nm/f)? (n=1,2,3---) sdo os autovalores, e 1, () = ca, sen (nrx/{) sdo
as autofuncoes correspondentes, nas quais as constantes ¢y, podem ser ignoradas, pois basta tomar
uma tnica autofungao do autoespago de \,,. Estéo assim justificados os resultados em (6.1).

Note que obtemos uma infinidade de autovalores A\, (n = 1,2,3---), todos de multiplicidade
geométrica igual a 1, pois a cada um desses autovalores s6 corresponde uma autofungao ¥, (z) =
sen(nmz/l) (cada autoespago Sy, é de dimensdo unitaria). A infinidade de autovalores neste
problema é uma ocorréncia caracteristica de operadores em espacos vetoriais de dimenséao infinita,
tal qual o espaco das fungoes.

®Outros dois poderiam ser considerados sem muita dificuldade: um com as condiges de fronteira ¥(0) = 3’ (£) = 0
e o outro com '(0) = ¥(¢) = 0, mas estes casos sdo mais bem abordados quando se estudam as séries de Fourier
generalizadas, que esté fora dos objetivos desta disciplina.
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o Resolucao do Prob. (ii):

Para A =0:
P(@)=c1+cx = P(x)=co ¥(x) = ¢1 é solu¢do ndo nula,
P'(0)=co=0 > = { pois ¢; permanece arbitrario;
Y'(l)=c2=0 logo, zero é autovalor.

(z) = ¢1 cosh kx + cosenhkx
!/

x) = ciksenhkx 4 cok cosh kx > N {w(x) =0 (V) é a tnica solugao;

)=c2k=0 = c3 =0 (pois k #0) nao héa autovalores negativos.

0
) =crksenhkl{ =0 = ¢; =0
20

Para A > 0: A = k% (k> 0):

P(x) = 1 coskx + casenkx .
' (x) = —c1ksenkx + cok coskx .
' (0) = cok =0 _k#0, co=0 = 9(x) =ccoskx.

$(0) = —crksenkl =0 = - - — k= St
=—ciksenkl{ =0 = senkl{=0 = kl=nrw = k=k,=nn/{ (n=1,2,3---).

(%) admitimos ¢; # 0 para viabilizar solucdo ¢ (z) nao nula
(t) excluimos n = ---—2,—1 e 0, pois k>0

Portanto, A = A, = k2 = (n7/0)? (n = 0,1,2---) sdo os autovalores, e v, (z) = cos(nmz/{)
(ignorando-se quaisquer constantes multiplicativas) sdo as autofungoes correspondentes. Note que
nessa resposta esté incluido o autovalor nulo A\g = 0 e a autofun¢éo correspondente ¥g(x) = 1 (¢1 foi
ignorado), associados a n = 0. Estao assim justificados os resultados em (6.2).

e Resolucao do Prob. (iii):

Para A =0:

P(x) =c1 + e .

YE+20)=¢(x) = catca(z+20)=ci+cx = ©20=0 = c2=0.

¥(x) = ¢1 € solugdo ndo nula, pois ¢; permanece arbitrario, existindo, portanto, o autovalor zero.
Para A <0: A= —k* (k> 0):

Y(x) = ¢1 coshkx + ¢y senhkx .

V(@ +20) =tp(z) = cicosh [k (x+20)] + cosenh [k (z +20)] = ¢1 cosh(kx) + casenh (k) .

¢1 cosh(k x) cosh(k 2¢) + ¢1 senh (k ) senh (k 2¢) 4 co senh (k x) cosh(k 2¢)
+ cosenh (k20) cosh(kx) = ¢1cosh(kx)+ casenh(kz) .
deve anular-se

[c1 cosh(k 20) + co senh (k20) — ¢ ] cosh(k x)+

[c1senh (k2€) + cacosh(k20) — o] senh(kx) = 0 V.
deve anular-se
[cosh(k20) — 1] 1 + [senh(k20)]ca = 0
[senh(k20)] ¢ + [cosh(k2() —1]ca = 0 .
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Esse ¢ um sistema algébrico homogéneo de incognitas c¢; e co, cujo determinante deve anular-se
para existirem solucoes distintas da solugao trivial ¢; = ¢ = 0. Entéo obtemos

cosh(k20) —1  senh(k2()

_ . — 112 _ ¢ 2 _
senh(k20)  cosh(k20)—1 | = [cosh(k2¢) — 1)° — senh*(k2() = 0

= cosh?(k20) — 2cosh(k20) + 1 — senh?(k2¢) = cosh?(k2¢) — senh?(k2¢) +1 — 2cosh(k2¢) = 0
1
= 2—2cosh(k2()=0 = cosh(k2()=1 = k20=0 = k=0 : contra nossa hipotese

= nao hé autovalores negativos .

Para A > 0: A=k% (k> 0):

(%) ¥(x) = c1 coskx + casenkx .

V(@ +20) =¢(z) = cicos[k(z+20)] +cosen |k (z+20)] = cicos(kz)+ cosen(kx) .

c1 cos(k x) cos(k 2€) — ¢q sen (k x) sen (k 2¢) + co sen (k ) cos(k 2¢0)
+ cosen(k2f)cos(kx) = cicos(kx)+ cosen(kz) .
deve anular-se
[c1cos(k20) + casen(k20) — ¢y ] cos(k )+
[—cisen(k20) + cycos(k2f) —cy] sen(kx) = 0 Vaz.

deve anular-se

[cos(k2¢) —1] ¢ + [sen(k20)]ca = 0
Hok
—[sen(k20)] ¢c1 + [cos(k2() —1]ca = 0 .
Novamente igualamos a zero o determinante desse sistema, obtendo
[cos(k20) —1]* + sen?(k20) =0 = cos*(k2() —2cos(k20) + 1+ sen?(k2¢) =0
= cos(k20)=1 = k2=2nm = k=k,=nr/l (n=1,2,3---).
Observe que, com k = k,, as equagOes do sistema (xx) tornam-se a identidade 0 = 0, significando
que permanecem arbitrarias as constantes ¢; e co em (x). Logo, ¥, (z) = c1pcosk,z + copsenk,x

(v. Observagao [#] abaixo) expressa uma autofun¢ao genérica correspondente ao autovalor \, = k2 =
(nw/0)? (n=1,2,3---).

A cada autovalor \,, = k2 = (nm/f)? (n =1,2,3---) corresponde o autoespago Sy, formado
pelas autofungdes ¥, (x) = ¢y, coskpx + con senky,x, de dimensdo 2, no qual podemos escolher
Yn1(x) = coskpx e Wpa(x) = senk,x como "as duas" autofungoes associadas a A,,.

Ja ao autovalor Ay = 0 corresponde o autoespaco Sy, formado pelas autofungées o (z) = cio,
de dimensdo 1, no qual escolhemos ¢ (z) = 1 como a autofungao associada.

Os resultados em (6.3) estdo comprovados.

Observagao[#]: Para cada autoespago Sy, ser gerado por todas as combinacoes lineares do par
de autofungoes 1,1 (z) € 1 (x), devemos empregar, em cada autoespago, duas constantes realmente
arbitrarias, o que nao aconteceria se escrevéssemos que uma autofuncao qualquer de Sy, fosse dada
pela combinagao linear ¥, (z) = ¢1 cos k,x + ¢1 senk,x, usando as mesmas constantes ¢; e co (em vez
de ¢1y, cop,) em todos autoespagos.

(*) Um sistema homogéneo de n equagdes lineares em n incognitas A z = 0 [onde A é a matriz quadrada dos coeficientes,
z & a matriz coluna das incognitas, e 0 ¢ a matriz coluna nula] admite solugdo nao nula se e somente se det A = 0. (Se

det A # 0, s6 ha a solugao nula z =0.)
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6.2 Equacao do Calor Unidimensional

A equagao do calor é

10T
Cadt
A grandeza relevante a se calcular é a temperatura T'(7,t), no instante ¢, no ponto 7 de um objeto cons-
tituido de um material de difusividade térmica o constante. Nessa equacdo, V2T denota o laplaciano
de T [v. subsegdo 6.7.1].

Nosso objetivo aqui é calcular a temperatura T'(z,t) numa barra sem fontes ou sorvedouros de calor
em seu interior, paralela ao eixo z*), entre as abscissas = 0 e 2 = ¢, sendo conhecida a temperatura
inicial Tp(z,0), que nio se anula identicamente(!), o que é formulado como segue:

V2T (7, t) (6.4)

0*T 10T
@(xat)*aav JJE(O,@), tG(0,00) (65)

T(z,0) =Tp(z), =€ (0,¢) ,
onde escrevemos V2T = d?T/dxz?, porque T s6 varia ao longo do eixo z. Essa formulacio deve

ser complementada pelas condigoes de fronteira, sendo essas que distinguirdo os problemas que sao
resolvidos nos exemplos a seguir.

— Exemplo 6.1. Extremos da barra mantidos em 0°.

0° 0° Nesse caso, as condig¢oes de fronteira sdo dadas por
\@ )‘/ > T(0,t) =T, t) =0, t € (0,00) . (6.6)
z=0 =0 g

Sob essas condigoes (homogeéneas), a equagao do calor em
(6.5) admite a solucao trivial T'(z,t) = 0 (identicamente nula), mas ¢é fisicamente 6bvio que esta nao
pode ser a solucao do problema em questao, pois a temperatura na barra é, inicialmente, dada pela
funcado nao nula Ty(x). O que se espera é que a temperatura tenda a zero assintoticamente no tempo
(t — 00) a medida que a barra entre em equilibrio térmico com os reservatorio térmicos a 0° em contato
com seus extremos. Alude-se varias vezes abaixo ao fato de que s6 se aceita solugdo T'(z,t) # 0.

a) Separacao de variaveis:
Admitamos que a solugdo possa ser assim expressa:
T(x,t) = ¢(2)7(t) , (6.7)

isto &, pelo produto de uma fungao s6 de x por outra funcdo s6 de t (a parte espacial e a parte temporal
da solugao, respectivamente). Substituindo (6.7) em (6.5), obtemos

02 10 . L
52 V@] =~ [@rt)] = P'T=—yr
= 12)” = % = —\ (constante) |, (6.8)

onde " = d?y/dz? e 7' = dr/dt. A conclusio de que ambos os membros da equacio acima é constante
segue desse raciocinio: Tal equacao apresenta a peculiaridade de que o primeiro membro s6 depende
de = e o segundo, s6 de t. Logo, se ¢t for mantido fixo, o segundo membro mantém-se constante e,
por causa da igualdade dos membros, também o primeiro permanece constante, mesmo que x varie,
significando que o primeiro membro nao depende de z. Similarmente, fixando x, mantemos constantes
ambos os membros, ainda que t varie no segundo membro, que nao deve depender de t, portanto.
Chamamos A de constante de separagdo [que, na equagdo acima, encontra-se precedida de um sinal
negativo, sem qualquer perda de generalidade, por mera questao de conveniéncia notacional: v. a Nota

(*) Admite-se que a temperatura na barra s6 varie longitudinalmente, isto é, com a abscissa, o que é razoavel se a
superficie lateral da barra estiver isolada termicamente e um equilibrio térmico ja tiver se estabelecido transversalmente.
() Dizemos que uma funcéo f(x) se anula identicamente se ela for nula em todo seu dominio. Usamos as notagdes
f(x) =0e f(z) #Z 0 para denotar que f(z) se anula identicamente e que f(z) ndo se anula identicamente, respectivamente.
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na pag. 107]. De (6.8) resultam duas EDOs, uma, para a parte espacial da solu¢ao, e a outra, para a
parte temporal:

{w” FA(2) =0 v EDO espacial
(6.9)

T A7) =0 oo, EDO temporal .
b) Problema de autovalor para a parte espacial:

Substituindo (6.7) nas condigbes de fronteira dadas por (6.6), obtemos

T(0,t) =(0)7(t) =0 e T(0,t) =4(f) 7(t) =0 .
—~ —~—
#0 Z0
Como essas equagoes devem valer para ¢ > 0, e, conforme indicado acima, a parte temporal nao
pode anular-se identicamente [pois, caso contrario, obteriamos T'(x,t) = ¥(x)7(t) = 0, a indesejada
solugdo trivial|], constatamos que ¥ (z) deve satisfazer as condicoes de fronteira 1(0) = 0 e (¢) =0
(as mesmas impostas a temperatura T'). A parte espacial da solugao deve, portanto, ser solugao do
seguinte problema de valor de fronteira [v. o rodapé (1) na pag. 97] :

"+ XMp(x) =0, z€(0,0), »(0)=vl)=0 . (6.10)

Este problema, por ser homogéneo, admite a solugao trivial ¥(x) = 0. Mas ela deve ser rejeitada,
pois, novamente, se ¥(x) = 0 entdao T(z,t) = ¥(z)7(t) = 0. Para determinar uma solugao de (6.10)
distinta da trivial, dispomos da constante de separag@o, introduzida sem qualquer restricdo. A ela
podemos, portanto, impor condi¢oes que nos interessem; no caso, exigimos que A apresente apenas os
valores (os ditos autovalores) que acarretem solugoes do problema em (6.10) distintas da trivial (as
autofungoes). Temos assim caracterizado um problema de autovalor; (6.10) é exatamente um dos que
ja resolvemos: v. (6.1). Portanto, os autovalores e autofungoes sao

nm\ 2

/\:)\n:(7> — wn(x)zsen# n=1,2,3---).

c) A parte temporal correspondente ao autovalor A = A, :

Resolvendo a EDO temporal em (6.9) com A = \,, = (n7/f)?, obtemos

\2
T Mar,(t) =0 = T,(t) =cre M ou 7,(t) = e () ot ,

onde ignoramos a constante de integracao c,, porque, mais adiante, ela se apresentaria multiplicada
desnecessariamente por outra constante arbitraria, B,,, na formacao da solu¢do mais geral (v. item (e)
abaixo).

d) A solugdo T, (z,t) correspondente ao autovalor A = A, :

nE (5

Tn(x,t) = ¢ (x)7,(t) = sen 7

e) A solugao mais geral:

Ao admitirmos uma solugao na forma de (6.7), obtivemos uma infinidade delas, {Tn(aj,t)}zo:l,

linearmente independentes. Logo, pelo principio da superposicao, uma combinagao linear delas é
também solugao; na verdade, trata-se da solucao mais geral do problema sem levar em conta a condigao
inicial:

> nm\2
T(z,t) = ZBn senm;fx e ("F) et g (6.11)
n=1

Nota: Acima, chamamos de "solugdo mais geral" a solu¢do que se obtém na forma de uma
série infinita pelo método de separagao de variaveis e que satisfaz todas as condigoes de
fronteira homogéneas. Por simplicidade, daqui por diante, passaremos a designa-la pela
terminologia mais simples e mais usada solugao geral, com a ressalva de que nao se provou
que a solucao obtida pelo procedimento apresentado é realmente a solugao geral. Tal
solugao se torna a solugao especifica do problema fisico quando os coeficientes da série sao
determinados a partir das condi¢oes nao homogéneas, tais como, por exemplo, as condigoes
iniciais, que é o proximo passo dessa resolugao.
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f) Calculo dos coeficientes na solucao geral em (6.11):

Usando a condigao inicial, determinamos B,, :

nmwx

T(x,0) = ZBn sen —— = To(z), com z € (0,¢) ,

n=1

onde vemos que B,, sdo os coeficientes da ja estudada série de Fourier de Typ(x) em senos. Portanto,
de acordo com (5.13b), temos que:

2 £
B, = 7/ To(x) sen Lz m (6.12)
¢ ) 1

g) Observagoes:

i) A solugao do problema de temperatura que acabamos de resolver consiste na série em (6.11) com
os coeficientes dados por (6.12) (sao as equagoes finalizadas por quadriculas pretas, que serdo usadas
também nos problemas seguintes com essa intengao).

ii) Note que tlim T(x,t) =0, como ha de ser, pois a barra inteira tende a ficar em equilibrio térmico
— 00

com o0s seus extremos mantidos em 0°.

Exemplo 6.2. Extremos da barra isolados termicamente.

Nesse caso, as condicoes de fronteira sio dadas por(*)

isolados termicamente T T
@’ T oty = L=y =0, te (0,00 . (6.13)

ox ox

Com a separagao de variaveis T'(z,t) = ¥ (z)7(t), obte-
mos novamente a equagao (6.8) e as mesmas EDOs em (6.9).
Nada impede que a EDO temporal seja a primeira a ser resolvida, obtendo-se

»
»
x

ma(t) = Ay et —>‘“p;:01 To(t) = Ao | (6.14)

apesar de A ainda se encontrar indeterminado. Os valores dessa constante tornam-se definidos
resolvendo-se o problema de autovalor

"+ Mp(x) =0, z€(0,0), ' (07)='(¢7)=0, (6.15)

formado pela EDO espacial e por condigoes de fronteira semelhantes as impostas a T' (a exigéncia de
que a derivada em relagdo a z se anule nos extremos), que sao deduzidas de modo anélogo aquele no
item (b) do Exemplo 6.1:

8—T(x,t):¢'(x)7'(t):() = Y'(z)=0se z=0ouxz="/{.
Ox ~—~
Z#0

O problema de autovalor em (6.15) é um dos que ja resolvemos: v. (6.2). Portanto,
2
A=y = (”7”) () :cosn%m (R=1,23-) e A=0 ¢ volz)=1. (6.16)

O problema de calor em questao, sem considerar a condi¢do inicial, apresenta entao a infinidade
de solugoes,

Tnu,t):wn(m(t)=cos7e*<”7’“>2“ (n=1,2---) e Tyx,t) =do(x)mo(t) =1,

sendo a solugao geral a combinacao linear delas:

T(w,) = Ao To(w,t) + Y AnTul,t) = A+ Y Ancos 7" o~ (F) ot g (6.17)

n=1 n=1

(*) Essa condigao de fronteira, brevemente explicada, é consequéncia da lei de Fourier, pela qual, num ponto do sistema,
o fluxo de calor é proporcional ao gradiente de temperatura, igual a VT = 10T /dx nesse nosso problema unidimensional.
Assim, se a fronteira é isolada termicamente, entdo ndo hé fluxo de calor através dela e, portanto, 9T /0z = 0 nela.

103



Pela imposi¢ao da condigao inicial, determinamos as constantes A,,:
2A =
T(z, 204 ZA cos L =To(z), com z € (0,¢) ,
onde vemos que 2Ag, A; --- s@o os coeficientes da ja estudada série de Fourier de Ty(z) em cossenos;

usando (5.13a), obtemos

¢ ¢
240 = 2/ To(z)dz e A, = 2/ To(x) cos "y w (6.18)
l Jo L Jo 1

A solucao do problema ¢é dada por (6.17) e (6.18).
Observe que

2

que é a média da temperatura inicial na barra, como deve ser, pois a barra, sendo isolada termicamente,
retém todo o calor, e este tende a nela se distribuir uniformemente com o passar do tempo.

hm T(z,t) = Ao —g/ To(x ,

6.3 Equacgao da Onda Unidimensional

Nesta secao resolvemos problemas de corda vibrante, nos quais o
objetivo principal é o célculo da forma da corda num instante arbitra-
rio. A corda geralmente encontra-se vibrando, permitindo-se na for-
mulagao, porém, o caso excepcional de apresentar-se estatica, quando
entao ela se encontra estirada ao longo do eixo horizontal x entre as
abscissas ¢ = 0 e x = £. Sua forma pode ser descrita por uma fungao
y(z,t) (v. figura a direita), que fornece, no instante ¢ e na abscissa z,
a deflexao y da corda em relagao ao eixo x. Admitimos que a corda encontra-se livre de qualquer forca
externa sobre ela, sendo conhecida a sua forma inicial yo(z) e a sua distribuicao inicial de velocidades
verticais(*) vo(z), fungdes que, por hipotese, ndo se anulam identicamente ao mesmo tempo. Note que
tanto y(x,t) quanto v(x,t) = dy/Ot podem ter valores positivos, nulo ou negativos, pois, em relagao
ao eixo x, ela pode se encontrar acima (y > 0) ou abaixo (y < 0), e um ponto seu qualquer pode subir
(v > 0) ou descer (v < 0).

Esse problema é formulado como segue:

deflexao y em fungao de
£ num instante ¢ fixo

0%y 1 8%y

TH@t) =555, z€(0,4), t€(0,00), ¢>0

T ; (0,0), te(0,5) o1
y(z,0) = yo(x) e (x 0) = vo(x) para z € (0,¢) .

ot

Essa formulagao deve ser complementada pelas condigoes de fronteira, sendo essas que distinguirao os
problemas que sao resolvidos nos exemplos.

Exemplo 6.3. Extremos da corda presos & mesma altura y = 0.

Nesse caso, as condi¢oes de fronteira sao dadas por

(instante t = 0)

y(0,t) =y(¢,t) =0, t € (0,00) . (6.20)

Com a separagao de variaveis y(x,t) = ¢ (x)7(t), a equagdo
da onda acima toma a forma

02 1 92 ” 1,
922 [Y(z)7(t)] = Pl [W(@)rt)] = ¢'r= o) pT
,l/)// _ 7_// B w//“l_)\d)(x) :O
= o & —\ (constante) = AT =0 (6.21)
pois, pelo modo ja explicado nos exemplos anteriores, substituindo y(z,t) = ¥(x)7(t) em (6.20),

deduzimos as condigdes de fronteira para ¥ (z): ¥(0) = ¢¥(¢f) = 0. Estas, juntamente com a EDO

(*) Considera-se apenas corda com ondulagoes sem movimentagao horizontal.
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espacial separada acima, formam o mesmo problema de autovalor do Exemplo 6.1, formulado em (6.10),
cujas solugdes sdo os autovalores A\, = (n7/f)? e as respectivas autofungoes v, () = sen (nmwx/f), com
n=1,2,3-.

A EDO temporal acima com A = \,, = (nm/f)?, isto &,

2
74 (%) () =0, (6.22)

tem a seguinte solugao, bem conhecida pelos que ja aprenderam a resolver EDOs lineares de coeficientes
constantes:

14
Tn(t) = A, cos ne + B, sen m;c (6.23)
A solugéo geral é entdo
= nmw nmct nwx
y(x,t) = Z (An cos —— ( +B sen —— ) sen —,— W (6.24)

Il
-

n

Necessitamos da distribuigao de velocidades na corda, que é a derivada desse resultado em relagao a t:

oo
nmct nmwct nmct nnx
v(z,t) = —y Z ( N7 sen T B, cos ) sen .

8 L 4 l 4

Determinamos A,, e B, usando as condigoes iniciais, a partir das quais obtemos as equagoes

nwT
y(z,0) = Z An sen—— = Yo(z)
n=1
e
oy = nmc nwT
E( ,O) = Z TBn SGHT = 'U()(ZC)
n=1

Vemos que A,, e (nmc/l)B,, sao respectivamente os coeficientes da série de Fourier em senos de yo(z)
e vo(x), com x em (0, ¢); logo,

nmc 2

¢
—B, = 7/ vo(m)sen@da@ | (6.25)
7/, ]

2 ‘Z
A, = 7/0 yo(x) senntgdx 7

L

Essas equagoes determinam as expressoes que A,, e B,, devem ter para que (6.24) fornega a solucao do
problema de onda dado por (6.19).

Exemplo 6.4. Os extremos da corda tém anéis que podem deslizar sem atrito em hastes
verticaisem z =0 e z = /.
Nesse caso, as condicoes de fronteira sao*)

inclinacao ~ ______ p) P
nula ay (0,t) = 8y () =0, te(0,00). (6.26)

As EDOs espacial e temporal continuam aque-
_______ las em (6.21), mas as condigbes de fronteira para
¥(x), agora deduzidas de (6.26), passam a ser
=0 =L gy (0) = ¢'(¢) = 0. Vemos, assim, que o problema
de autovalor que fornece ¥ (x) é aquele em (6.15),

cuja solugdo, ja vimos, consiste nos autovalores e autofungoes em (6.16).
A parte temporal correspondente ao autovalor \, = (nm/f)? também continua sendo dada por
(6.23), exceto se n = 0; neste caso, a solu¢gdo da EDO temporal com A = Ay = 0, isto &, da equagéo

" =0, é dada por

To(t) = Ao + Bot . (6.27)

(*)Ngo fornecemos os detalhes de como deduzir essas condigbes de fronteira, mas elas seguem intuitivamente do fato de
que cada arruela, ndo podendo ser freada pela haste, ndo tem como ficar abaixo ou acima da porc¢do da corda vizinha a
ela, ou seja, essa por¢do mantém-se na horizontal (v. a figura): inclinagdo nula significa derivada em relacdo a z nula.
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A solugao geral é entao
y(,t) = 1o () + 3 Tatin(x) |
n=1

ou seja,
o0
t t
y(x,t) = Ag+ Bot + Z (An COS % 4+ B,, sen %) coS n—gx [ (6.28)

n=1

Usando as condigoes iniciais, obtemos as seguintes séries de Fourier em cossenos em (0, £):

240 > nwx
y(z,0) = 5 + ,; A, cos —— = yo(z)
e
oy 2By = nmc nwT
a(x,O) == +; TBnCOST =vp(z) .
Logo,
2 [t 2 [t
24, = f/ yo(x)dx e A, = f/ yo(x) cos @daz , (6.29)
¢ Jo £ Jo 14
bem como,
2 [* 2 [*
2By = f/ vo(x)dx e @Bn = f/ vo(x) cos @dx ] (6.30)
7 )y ] 7 )y ¢
6.4 Equacao de Laplace
A equagdo de Laplace tem a seguinte forma:
Viu(f) =0, 7€ D; (6.31)

em palavras: o laplaciano da fungéo u [v. subsegao 6.7.1] deve se anular em
todo ponto 7 do dominio D do problema. Neste texto consideramos apenas
problemas em que D é uma parte do plano zy (problemas bidimensionais).
Quanto as coordenadas a se empregar na representagao de 7, as indicadas
para os problemas considerados sao as cartesianas x e y ou as polares r e 6
(v. figura a direita), conforme a geometria do problema.

Nos problemas que seguem resolvidos nao ha mencao a qualquer aplicacao fisica. Mas a funcéao
u(7) poderia ser a temperatura a se calcular numa placa ocupando a regido D do plano zy e cujas
bordas se encontram submetidas a temperaturas conhecidas. Tal problema é bidimensional, porque se
admite um equilibrio térmico transversal (ao longo do eixo z), e estacionario (sem varia¢do temporal).
Para entender por que (6.31) modela a temperatura estacionaria T'(¥) numa placa, basta igualar a
derivada temporal 07'/9t a zero na equacao do calor em (6.4), uma vez que a temperatura nao varia
com o tempo.

»
»

6.4.1 Equagao de Laplace em Dominios Retangulares

Nesta subsegao resolvemos a equacao de Laplace em duas coordenadas cartesianas,

*u  d*u
Vz(z’y):@+87y2:0, IEG(O,E), y€(0,h) ’ (632)

sob diversas condicoes de fronteira, que sao fornecidas em cada exemplo que segue.
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Exemplo 6.5. u(0,y) = u(,y) = u(z,0) =0, u(z,h) = f(a

Substituindo a forma separada que se admite para a solugao,

u(z,y) = X (@)Y (y) ,

nas condigoes de fronteira homogéneas, e lembrando que X (x) # 0 i )
e Y(y) # 0, obtemos as condigdes de fronteira para X (z) e Y (y): | u=0 L =z
u(0,y) = X(0)Y(y) =0 >
= X(0)=X(¥¢) =0, 6.33
u(t,y) = X(OY (5) =0 =X (6.3
u(z,0) = X(z2)Y(0) =0 = Y(0)=0 . (6.34)

Substituindo agora aquela forma separada na equacao de Laplace, em (6.32), obtemos

52 o2 = XY X" Y”
XY)=X"Y + XY" = - + =

(7 * ) XV = XY + = o x vy Y
=-A =A

onde, na ultima equagao, podemos concluir que ambos os termos aditivos sao constantes, iguais em
modulo e simétricas; digamos +A\.

Nota (padronizagao da equagdo diferencial de um problema de autovalor): Ha uma razao
para igualar o primeiro termo acima & constante —\ (o que leva o segundo termo a ser igual
a A): Sempre escreveremos a equagao diferencial de um problema de autovalor na forma
usada no Problema de Sturm-Liouville (citado no primeiro paragrafo da secao 6.1), em que
o parametro A é precedido pelo sinal "+". No caso do presente problema, sabemos que
X (z), e ndo Y (y), provém de um problema de autovalor, porque, de acordo com (6.33), as
condigoes que X (x) deve satisfazer em ambos extremos do intervalo (0, ¢) sdo homogéneas,
o que torna homogéneo |[v. a Nota na pag. 43| o problema a se resolver para determinar

X(x).
O problema de autovalor que se obtém para X (z) é o ja resolvido em (6.1), o que nos permite

escrever X"+ XX (x)=0, z€(0,0) Ao = (/)% (n=1,2,--)
{X(O) =X()=0 - {Xn(a:) = sen(nmz/l) . (6.35)

Ja para determinar Y (y), temos que resolver o problema formado pela EDO Y” — AY (y) = 0 com
A igual aos autovalores )\, em (6.35) e pela condi¢ao de fronteira em (6.34), isto ¢, o problema

Y, — (nm/0)*Y,(y) = 0, y€(0,h), Yo(0)=0, (6.36)
uma tarefa simples:

Y, (y) = A, cosh(nmy/l) + By, senh (nwy /) ;
Y,(0)=4,=0;
Y, (y) = By, senh(nmy/l) .

Determinadas as expressoes de X, (x) e Y, (x), podemos formar a solugdo geral, dada pela combi-
nagao linear das solugoes u, (x,y) = X, ()Y, (z) (n =1,2,3---):

oo
nmy nwT
u(x,y) = B h—= — n 6.37
(@)=Y Busea " sen "7 (637
n=1
Para obter a solugao especifica do problema, devemos calcular as constantes B,, o que é feito

impondo a condigao de fronteira ndo homogénea (ainda nao usada):

nmx

i ' senh —h} sen —— = flx) .

n=1
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Esta equagao mostra que o termo entre colchetes é o n-ésimo coeficiente da série de Fourier em senos
de f(z); usando (5.13b) para calcula-los, determinamos as constantes B, finalizando a resolugao do
problema:

h 2 ¢
By, senh ﬂ / f(z)sen L SN B, / f(z)sen " g m (6.38)
4 € b __nmh 0 Y4

Exemplo 6.6. Com h — oo, u(0,y) = u(f,y) =0, u(z,0) = f(z) .

As condigbes de fronteiras homogéneas nas bordas verticais so
as mesmas do exemplo anterior, ocorrendo, portanto, o mesmo pro-
blema de autovalor para X(x), e valendo os resultados em (6.35):
An = (n/0)? (n = 1,2,---) e X,,(x) = sen(nmz/f). Mas o problema
para Y (y), em vez daquele em (6.36), é agora o seguinte:

Yvil - (nﬂ'/f)zYn(y) =0, ye (07 OO) :

Nesse caso, y ¢ ilimitado, sendo conveniente expressar a solucao geral
dessa EDO em termos das fungoes exponenciais, ao invés das hiperboli-
cas [v. subsegdo 6.7.2], isto é,

Yn(y) =A, enﬂy/l + B, efnTry/l ,
porque torna-se mais simples evitar solugdes infinitas, bastando, para que lim Y(y) seja finito, fazer
Yy—00

A, =0, obtendo-se Yy, (y) = B,, e "™¥/¢,
Assim, a solucdo geral da equagao de Laplace satisfazendo as condigoes de fronteira homogéneas e

de finitude é -
Xo( e~ my/l g nmr - 6.39
=3 K = X B e (629

Finalmente, impondo a condl(;ao de fronteira nao homogénea,

Z B, s en— f(z)

determinamos as constantes B,, como sendo os coeficientes da série de Fourier em senos de f(z):

/ flz n—dx

ou Ju
—— Bxemplo 6.7 50(r,0) = (e, h) = u(t,y) =0, u(0,) = /()
Ty Bu /8y —0 Neste exemplo, sao as bordas horizontais que estao submeti-
h L das a condigoes de fronteira homogéneas. Isso indica a ocorréncia

de um problema de autovalor para Y (y), e ndo em X (z), como
nos dois exemplos anteriores.

Substituindo w(z,y) = X(z)Y(y) primeiramente nas con-
di¢oes de fronteira homogéneas e lembrando que X(z) £ 0 e
Y (y) # 0, obtemos:

> = Y'(0)=Y'(h)=0 ;

0
a—Z(m, h) = X(2)Y'(h) =0
u(l,y) = X(0)Y(y) =0 = X{)=0.
Separemos agora as varidveis na equacao de Laplace:
32 82 " Y = XY b Y
(5 + 5 S)(XY) = XY+ XY =0 = 4 =0,
A =2

108



onde, dessa vez, é a EDO para Y (y) que é separada com —\ em conformidade com a Nota no Exemplo
6.5. Temos entao o problema de autovalor

YAV (y) = 0, ye (0,h), Y/(0)=Y'(h)=0
que é aquele em (6.2); logo, os autovalores e autovetores sio
M=0 ¢ Yo(y)=1, X\, = (nn/h)? & Yu(y) =cos(nmy/h) (n=1,2,3---) .

E a vez de resolver a EDO para X (x) com A = \,, (n > 0), ou melhor, para X,,(x), sob a condicio
de fronteira deduzida acima:

X! — (nm/h)*X,(x) =0, 2€(0,0), X,({)=0 .
Para A = Ay =0:

X{(x)=0 = Xo(z)=Ap+ Box .

Xo(0) = Ag+ Byt =0 = AOZ_BOK> = Xo(z) = Bo(z —{) .

Para A = A, = (nm/h)?:

AL B _ LT . nmx )
X, ( h ) Xn(z)=0 = X,(z)= A, cosh - + B, senh - (1)
nml nwl B, senh (nml/h) .
X,(0) = A, cosh — + B, senh— = Ay=—7—7-—-—""-+ .
(0) cosh —- + B, sen W 0 = cosh(nrl/h) (ii)

Subst. (ii) em (i) :

B, senh (nml/h) nwe nwe
Xp(z) = | - 2222 cosh —— + B, senh ——
(z) { cosh(nml/h) ] cosh =~ Dnsen
B, nmd nwx nwl
= |- —" b cosh % — senh 7Y cosh -
[ cosh(mf/h)} [Sen B TR T h —co h
= = senh [ 2t —npe]

= C, senh {n%(f - x)] .

Logo, a solugao geral é

u(z,y) = Xo(2)Yo(y) + > Xa(2)Y,

+ i C,, senh [%(f — x)} cos Lzy | (6.40)

Para obter a solugao especifica do problema, impomos a condigao de fronteira ndo homogénea (ainda
nao usada):

u(0,y) = —BOE +Z [C senhhg] sn—zy:f(y) ,

[235] n=1
2

e assim concluimos que os termos entre colchetes sdo os coeficientes da série de Fourier em cossenos de
f(y). Finalmente, usando (5.13a), determinamos as constantes em (6.40):

_ h
— 2Byl = = / fly = By= 7;/0 Fly)dy m (6.41a)

nrl 2

Cn senhT f/ f(y)cosn—zydy = C,= /f cos—dyl (6.41Db)

h senh
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6.4.2 Equacao de Laplace em Dominios com Bordas Circulares

Nesta subsegdo resolvemos a equagao de Laplace em coordenadas polares (o laplaciano nessas
coordenadas ¢ deduzido na subsecdo 6.7.3):

0%u 1 0u 1 0%y

2 _ogu 1ou 10U
Viu(r,0) = or? +7“ 8r+r2 002

=0 . (6.42)
Dividimos aqui em dois tipos os problemas de célculo da solugéo u(r,#): um em que o problema de
autovalor se da na variavel angular, 8, e o outro, na variavel radial, . Nos problemas aqui considerados,
veremos que o primeiro tipo ocorre quando a condicao de fronteira nao homogénea é especificada numa
borda circular, e o segundo tipo, numa borda retilinea. A caracterizacao desses dos dois tipos de
problemas prende-se ao fato de que, num setor circular, ha dois tipos de borda: retilinea e circular.

6.4.2.1 Equacao de Laplace com Condicao de Fronteira Nao Homogénea em Borda Cir-
cular

Exemplo 6.8. V2u(r,6) = 0 no disco de raio b centrado na origem sob a condigao de fronteira

u(b,0) = £(0).

Substituindo na equagdo de Laplace a forma separada u(r,0) = R(r)©(6) que se admite para a
solugao, obtemos

y“ U= 0 2 62 1 (9 1 62
10) Vulr0) = (5 + 5 5+ 2 g2 (BO)
na
bord 1 1
- o — R'6+-RO+RO"=0
T T
0
> xr?/(RO) R’ +rR 0"
b ’ — — 5 *tg7"
—_—— ~~
A —A
O +X0(0)=0......cc..... EDO angular
= {TQRH 4 7R~ AR(r) =0......EDO radial , (6.43)

onde, conforme a nota na pag. 107, usamos a constante —\ para separar o termo dependente de 6
porque é nesta variavel que se estabelecera um problema de autovalor [um problema de autovalor nao
pode acontecer na variavel r por causa da condi¢do de fronteira ndo homogénea u = f(f) em r = b
(na borda do disco) |. De fato, no presente problema, podemos considerar que a variavel angular tome
qualquer valor real (§ € R), mas exigindo que a solugao u(r, ) tenha periodo 27, isto é, que satisfaca
a condi¢ao periddica u(r,0) = u(r, 0 + 27). Note que essa condi¢ao se transfere para ©(6):

u(r,0) = u(r,0 +27) = 0(0) = Brjo0+2r) = O(0) =06(0+2m) .
=

A EDO angular em (6.43) sujeita a essa condigdo periddica forma um problema de autovalor ja
resolvido, aquele na equagao (6.3) com o periodo 2¢ = 27 (= ¢ = 7). Assim, temos

0" +16(#)=0,0€cR An=n% (n=0,1,2---)
{@(9)@(9+27r) = {90(0)=1, 6,(0)]

n>1= ¢y cosnb + d,, sennf .

Agora resolvemos a EDO radial em (6.43) com X igual aos autovalores \,, = n? oriundos do problema
de autovalor acima, que é uma equagao de Euler-Cauchy (v. subsegdo 6.7.4); portanto,

Co+ Dglnr (

PR +rR, —n’R,(r)=0 = R,(r)= {C 4 D, fr (Z _

Devemos eliminar os segundos termos dessas solugoes radiais fazendo D, = 0 (n = 0,1,2---) para
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evitar infinitude na origem®*). Portanto, a solucio geral é dada por

u(r,0) = Ro(r)6o(0) + Z R.(r)O,(0) = Cp-1+4 Z Cpr"(cy cosnb + dy, sennf)
n=1

n=1
(o]
= Co+ Z Chenr” cosnf + Cpd,r™ sennf .
n=1

Note que C), ¢, e C,d, sao constantes arbitrarias, para as quais convém uma notacao prépria; digamos
Cncn = A, e Cpnd, = B,,. Assim o resultado acima toma a forma

u(r,0) = Co + Z Apr™cosnf + B,r" sennf m (6.44)

n=1

Essa é a expressdo da solugdo do problema, s faltando determinar as constantes Cy, A, e By, o
que é realizado com a imposigao da (anica) condigao de fronteira:

[2C0]
2

u(b,0) = + i [b"A,] cosnb + [b" By]sennf = f(0) .
n=1

Essa equagao mostra que os termos entre colchetes s@o os coeficientes da série de Fourier de f(6), uma
funcao de periodo 27; logo, usando (5.4) com 2¢ = 27, isto &, £ = 7, obtemos

1 2 1 2m
20, = = f(6)do = Co=— f(6)do m (6.45a)
™ Jo 27 0
1 2 1 2
A, = — f(@)cosnbdd = A,=— f(0)cosnbfdf m (6.45D)
™ Jo mb" 0
1 27 1 2m
"B, = — f(@)sennfdd = B,= — f(@)sennbdb m (6.45c¢)
m™Jo i

Se u(b,0) = f(6) = 10+ 5cos — 8sen26, em vez de calcular os coeficientes usando as equagdes em
(6.45), obtemo-los por comparagao direta:

oo Co =10
u(b,0) = Co + Z A, b" cosnb + B,,b" sennf = 10 + 5cosf — 8sen20 = bA1 =5
n=1 2By = —8.

5 8
u(r,0) = Co+ Ajrcosf + Bysen26 = 10+5TCOSQ— b—256n29 [ |

Exemplo 6.9. VZu(r,0) = 0, com r € (0,b) e 6 € (0,7), sob as condi¢des de fronteira
u(r,0) =0, u(r,y) =0 e u(b,0) = f(0) .

Trata-se do setor circular mostrado na figura a direita, cujas bordas

retilineas em 6 = 0 e 6 = v estdo submetidas a condi¢oes de fronteira 4 Y u=f(0)
homogéneas, indicando que o problema de autovalor se estabelecera na u=—0
variavel 0 apos a separagao de variaveis por meio da expressao u(r,6) = K

R(r)©(0). No caso, surge o problema de autovalor em (6.1) com £ = ~:

nmH 2
{9//+)\9(9):0’9€(077)§ )\n:(7) (n=0,1,2--) ¥
00) =8ty =0 6,(0) = sen "™ . (-
Y

52 4

|
o
o

Calculemos R, (r) resolvendo a EDO radial em (6.43) com A = \,, = (nm/v)%:

nm\ 2

2Ry 4R, — (5) R0V =0 = Ra(r)=Cur™ +Du/r7 .
v

) o que, numa notacdo corriqueira, pode ser assim expresso: |Ry(0)| < oo
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Para evitar infinitude em r = 0, devemos fazer D, = 0. Assim, a solugao geral é
nx 0
u(r,0) = Y Ra(6a(0) = Y. CorTsen " m (6.46)
n=1,2,3- n=1,2,3- v
Determinamos as constantes C,, impondo a condi¢ao de fronteira ndo homogénea, obtendo
nm 0
ulb,0) = > [Cub™ ] sen ™= = f(0), 6€(0,7) ,
n=1,2,3--- v

onde vemos que os termos entre colchetes sdo os coeficientes da série de Fourier de f(f) em senos no
intervalo (0,). Logo, usando (5.13b), obtemos

nm

v vy
Cob™ = 2/ f@sen™a0 = ¢, = %/ F@) sen™ o w (6.47)
7 Jo v ~b v Jo v

—— Exemplo 6.10. O seguinte problema: y

V2u(r,0) =0, com 7€ (a,b) e § €R
{u(a,@)zo e u(b,0)=f(0) . b

Este problema difere daquele no Exemplo 6.8 por ser o
dominio da EDP uma arruela (em vez de um disco), o que
acarreta uma condicao de fronteira a mais: aquela na borda a
interna da arruela, que, no caso, é dada por u(a,) = 0. Por-
tanto, separando as variaveis, obtemos, na variavel 6, o mesmo
problema de autovalor em (6.3), de condicao periodica:

0"+X60(0)=0, R Ap=n% (n=0,1,2--+)
O(0) = 0(0 + 27) 6o(0) =1, 6,(0) = ¢, cosnb—+d, sennb ;

Também obtemos a mesma EDO radial com a mesma solugao geral:

Co+ Dgolnr (

2 pI r 2 _ —
r°R;, +rR, —n“R,(r)=0 = R,(r) {Cnr"—i—Dn/r” (

Antes da condigao de fronteira ndo homogénea (na borda circular em r = b) ser levada em conta,
convém impor todas as que sao homogéneas. Tomando entao a condigao homogénea na borda circular
em r = a, obtemos

u(a,0) = R(a) () =0 = R(a)=0,
——
#0
uma condi¢ao de fronteira que a parte radial R(r) deve satisfazer. Impondo-a, obtemos

Ro(a) = Co+ Dylna=0 = Cyop=-Dplna (n=0)
n\4) = Cpa"+D,/a" =0 = D,=-a*"C, (n=1,2---) .

Com esse resultado, R,,(r) toma a forma

[ Doln(r/a) (n=0)

Neste momento formamos a solugdo u(r, ) geral (a que satisfaz as condigdes homogéneas):

u(r,6) = Ro(r)6o(8) + Y _ Ru(r)6n(6)

r > a?m
= Doln— + Z c, (r” _ T) (cn cosnb + d, sennd)
a — r
r n 2n 2n
=Dyln— + Z Chcn (r" — 7) cosnb + C,d, (T" — T) sennf
¢ n=l 4, " B, "
r x a2n 2n
=Dgln— + Z A, (r" — T) cosnb + B, (7’" — T) sennf m (6.48)
a r r
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onde definimos as constantes arbitrarias A,, e B,, conforme indicadas. Para determinar essas constantes
e finalizar o problema, impomos a condigao de fronteira nao homogénea:

2n 2n

u(b,8) = W;M + i [An (b” - ‘;nﬂ cosnd + [Bn (b” - ‘Zn)] sennf = f(6) |
n=1

equacao que mostra serem os termos entre colchetes os coeficientes da série de Fourier da f(#), uma
funcao de periodo 27; logo, usando (5.13a), obtemos

1 2m 1 27
9 1 2 1 2w
1 27 1 27
B, (b" +a®™/b") = = f(@)sennfdd = B,=——°—— f(0)sennfdf m  (6.49¢)
™ Jo W(bn - azn/b") 0

Exercicio: Prove que a solucao deste problema no limite de quando a tende a zero é a solucao do
problema no Exemplo 6.8.

6.4.2.2 Equacao de Laplace com Condicao de Fronteira Nao Homogénea em Borda Re-
tilinea

Exemplo 6.11. Resolugdo da equagdo de Laplace no setor de arruela mostrado na figura
abaixo, sob as condig¢oes de fronteira indicadas.

A substitui¢ao de u(r,0) = R(r)©(f) na equagdo de Laplace fornece

r’R"+rR 9" r?R"+rR' + AR(r) =0
T*E*O {9”—/\9(6)=0 , (6.50)

- A

onde usamos a constante —\ (de acordo com a Nota na pag. 107) para
separar o termo dependente de r por ser nesta variavel que se estabelecera
um problema de autovalor, haja vista a homogeneidade das condigoes de
fronteira nas bordas circulares (onde r se mantém constante). De fato, impondo as condi¢oes nessas
fronteiras circulares, obtemos

(a)©(0) =0

u(a,0) = R
{u(b7 0) = R(b)O(0) =0 > = R(a)=R()=0,

as quais, juntamente com a EDO radial separada acima, formam o seguinte problema de valor de
fronteira na variavel radial:

r’R"+rR +AR(r) =0, r € (a,b), R(a)=R(b)=0, (6.51)

o qual admite a solugao trivial R(r) = 0, mas que também pode admitir solu¢oes nao triviais corres-
pondentes a certos valores de A; ou seja, trata-se de um problema de autovalor, que pode ser escrito na
forma LR(r) = AR(r), com L = —r%d?/dr* — rd/dr. Ainda nio consideramos nenhum problema de
autovalor com esse operador. Passamos entao aos célculos dos autovalores e autofungoes do problema
em (6.51). Empregamos abaixo a solucao geral da EDO em (6.51) obtida na subsegdo 6.7.4.

ParaA=0: R(r)=c¢1+calnr.

R(a)=c1+c2lna=0 N e =0 = R(r) =0 (Vz) é a tnica solugao;
R(b)=c1 +c2lnb=0 a=a= logo, zero nao é autovalor.

Para A= —k% (k> 0): R(r) = c1r* +co/r".

R(a) = c1a* + c3/aF =0 L om0 = R(r) =0 (Vz) é a tnica solugao;
R(b) = c1b% 4+ ¢2/bF =0 L= logo, ndo ha autovalores negativos.
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Para A=k* (k> 0): R(r) = cicos(kInr) + cosen(kinr) . (6.52)

No que segue, formamos o sistema linear homogéneo com as duas incognitas ¢; e co (marcado com
o simbolo ) usando as duas condigoes de fronteira em 7 = a e r = b, e exigimos que seu determinante
principal se anule, assim possibilitando a existéncia de solugao distinta da solugao trivial ¢; = co = 0
e, por conseguinte, de autofuncao [solugao R(r) #Z 0 da EDO radial]:

R(a) = ¢y cos(klna) + casen(klna) =0 N cos(klna) sen(klna)
* R(a) = ¢y cos(kInd) + casen(kInd) =0 cos(klnd) sen(klnb)

-

= sen(klnbd)cos(klna) — sen(klna)cos(klnbd) = sen[klnb—klnd] = sen[kIn(b/a)] =

2
= kln(b/a)=nr = k=k nr = autovalores ), = k2 = ( nr ) )

" In(b/a) In(b/a)

Com k = k,,, as solugoes do sistema linear % correspondentes nao sao constantes ci, e ca, inde-
pendentes; de fato, podemos relaciona-las usando a primeira equacdo daquele sistema (poderia ser a
segunda, pois as duas sdo equivalentes):

k1
cincos(kyIna) + copsen(k,lna) =0 = ¢, = 0271W .

Substituindo k = k,, na expressdo da solugéo radial em (6.52), e eliminando ¢1,, usando o resultado
acima, obtemos as autofungoes:

sen (ky, Ina)

Ry(r) = cipcos(knInr) + copsen(kyInr) = —cap cos(ky, In a) cos(kn In7) + o sen (K In7)
= m [ sen (ky, Inr) cos(ky, Ina) — sen (k, Ina) cos(k, Inr) ]
T sen (kp Inr—ky, Ina)
itrelevante
r nrln(r/a)
= (r) = sen ( n a) = (r) In(b/a)

Note que R, (a) = R,(b) = 0.

Esta assim calculada a parte radial de u(r,6). Passemos ao célculo da parte angular, resolvendo
a EDO angular em (6.50) com A = )\, = k2 sob a condi¢io 0,,(0) = 0 que se deduz da condigio de
fronteira homogénea u = 0 na borda retilinea em # = 0. Ou seja, resolvamos o problema

97/1/ - k?L@TL(G) =0, f¢ (07’7) ’ Qn(o) =0.
Temos que

6,(0) = A, cosh k0 + B, senhk,0 ;
6,(0)=A4,=0 ;
nmo

6,(0) = B, senhk,0 = B, senh .
(b/ a)

A solugao geral é, portanto,

O nmln(r/a)
u(r,ﬁ)—gl ZB senh b/a) en In(b/a) ] (6.53)

Agora determinamos as constantes B,, nessa solugao geral impondo a condi¢ao nao homogénea na
borda retilinea em 6 =~

n=1

nmy nmln(r/a)

m/a) * ey ")

Esta é uma série de Fourier em senos de f(r), o que fica evidente mudando a notagao:

=In(r/a) € [0,4] {onde ¢ =1n(b/a)} <= r=ae’€la,b]; f(r)=f(ae’)=F(p). (6.54)
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De fato, a série acima agora pode ser escrita na forma
= nm nm
Z [Bn senh%} senTp =F(p), pe(0,0),
n=1
onde o termo entre colchetes pode ser calculado usando (5.13b), assim finalizando o presente problema:

anenhm = f/ F(p)sen@dp = B,= 7/ F(p)sen@dp ,
14 v Jo 14 nTy Jo 14
'ysenh—e

ou, na notagao original, tendo em conta que dp = (dp/dr)dr = (1/r) dr:

B 2 In(b/a) nwln(r/a) dr
7 In(b/a)

Nota: Resolvemos detalhadamente o problema de autovalor em (6.51), mas sem necessidade, uma
vez que ele se transforma naquele em (6.1) mediante a mudanga de variavel em (6.54), isto é, ele
se converte no seguinte problema:

R"+XR(p)=0, pc(0,£), R(p)=0 se p=0ou £ .

Essa nova forma da EDO ¢é obtida rapidamente usando os resultados da segio (6.7.4):

R(r) = R(ae”) = R(p)
rR'(r) = R'(p) > = r?R'(r)+rR (r)+ AR(r) = R"(p)+ AR(p) .
PR (r) = R'(p)

Os calculos por esse modo seriam mais rapidos.

Continua verdadeira, portanto, a afirmacéo no inicio do segundo paragrafo da segédo 6.1, a de que,
nas aplicagdes fisicas que seriam abordadas, nao seria necessario considerar problemas de autovalor
formados com operadores diferenciais distintos de L = —d? / dz?, em que pese o problema em (6.51),
formado com L = —r%d?/dr* —rd/dr.

6.5 Exercicios

6.5.1 Enunciados

1] Resolva a equagéo unidimensional do calor

%zé%(@ﬂ, z€(0,0), t>0,
sob as seguintes condigoes:
a) {=a=1, T(0,t)=T(1,t)=0, T(z,0)=3.
oT oT

b) %(Qt) = %(Lt) =0, T(z,0)= 6—1—10008477791j .

2] Resolva a equagao unidimensional da onda

Py 1 0%
@:Cjw(%t% ze(0,0), t>0,
sob as seguintes condigoes:
o dy Oy B B oy B 1
a) {=c=1, ax(O,t)— 8x(1’t)_0’ y(x,0)=0 e 8t(w,0)—x 5 -
b) (=c=1, y(0,t) =y(1,t) =0, y(z,0) =6sen2wz e %(m,O)zO.
o W N _ Ay,
c) {=c=2, a—ZZ:(O,t)—&—z(Zt)—O7 y(x,0)=—245cos3mz e E(m,O)—4 TcosTx .
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3] Resolva a equagdo de Laplace nas coordenadas cartesianas
0%u 02

da?

u

(x’yHaT/?:O :

u(z,0) = u(z,2) =0, —U(O,y) = bsenny — 3sen 2wy .

com z € (—00,0), y € (0,2), e sob as condigdes:
)
Ox

) com z € (0,1), y € (0,1), e sob as condigdes:
u(0,y) = u(l,y) =0, u(x,0) = 8sen27z, u(x,1) = 6senwx + Hsen2wrx — 9sendnx .

4] Resolva a equagdo de Laplace nas coordenadas polares

0%u 10u 1 0%u
82(7’9) 67‘+T72w70 re(a,b),ﬁel,

sob as seguintes condigoes:
a) b—>oo e I=R, u(a,§) =—-3+2cosf —4sen26.
b) a=0eb=3,1=(0,7/6), u(r,0) = (r,7/6) =0, u(3,0) =10.

6.5.2 Solucgoes

1(a)
0?°T 10T T(et)=y(@)r@) " 17
ErEar ¥ aT
1//'+>\¢( )=0,2€(0,0), ¥(0)=9()=0.

Ay = (nm/0)? & 4, (x) = sen(nmx/l) (n=1,2,3---).
D Aat,(t) =0 = 1,(t) =e Mt

g B, sen—e Anact

n=1

) £ =1 9 1 1
B, = f/ 3sen TV dy = I/ 3sen(n7r:z:)dx:6[—cos(mm)]
0 > = 0

nm

= - leostom) <1 = = ) = {20

U 12
T(x,1) = = Zanen(nm:) e~ (™t Z ~= sen(nrz)e” ™t u

1(b)

o*T 19T T(et)=y(@)r@) " 171

57 " aarwl T Tar N

"+ Mp(x) =0, 2 €(0,0), ¢'(0) =4'(() =0.

M=0 & Yo)=1, X\ = (nn/0)? < Y,(x) =cos(nmz/l) (n=1,2,3---).

7'7/1 + >\71,CX7'n(t) =0 = To(t) =1e 7-n(t)|n>1 — e*)\nat )
oo
NTT o
T(z,t) = AO+TLX::1A7LCOST(2 Anact
S 4
T(xz,0) = Ao+ZAncos? = 6+10cos%x, (%)

n=1
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Ag=6, A;=10, Aulnzo=0.
n#4

T(x,t) = 6+ 10cos 4£ —(n/0at g

Nota: Alerta-se que é mais trabalhoso calcular os coeficientes da série de Fourier de T'(z,0) em

cossenos na equagao (x) usando (5.13a) do que obté-los por comparagdo como fizemos acima; de
fato, observe:

47rm t Ang 2
4/ (z,0)d 6/ 6+10 os— /d +*10/0087d1'—26£—12
ﬁ_/
0
e
¢ Y
4
An|n21 = %/0 T(x,O)cosnlﬂdaj = %/0 (6—1—10005 %) cos%dm
2 [F 2 £y 2908 — 10 sen=4
= 26/ cos#deerO/ cos%xcos?dx = 4 2 o
0 0 0 sen#4,
0 £/2 se n=4
{0 se n#4

onde, para obter os resultados das integrais, usamos as relagbes de ortonormalidade em (5.1b).

2(a)

%y _10% e =@ Y 1T
—:——(x,t) R ——
ox? 2 0t? P 2T

'+ Mp(x) =0, 2 € (0,0), ¥'(0)=v'({)=0.

M=0 < Yo(x)=1, X\, =(nr/0)? < Y(2) =cos(nmz/l) (n=1,2,3---).

t
T4+ A\ T(t) =0 = T7o(t) = Ao+ Bot e T,(t) = A, cosn + B, sen 22¢
—_ 14
(nme/l)?
t
y(xt)—AO—l—Bot—i—Z(A cosné + B, senmzc)c nlg
nw
y(x,O):A0+ZAncos7:O = AO:OQA"’nZIZO'
8y( ,t) = B +Zn CB cos met cos 1%
z,t) = o
ot . ] ¢
By( [mrc } mm_x_l
ot ¢ 72
2 [ (=1 2 [ 1 a2 ozl
[ [ Bl
0 z/o 2)% 1), ("7 2)% 2~ 2l
2 [* 1 _ 2 [ 1
?Bn = Z/o (m - 5) cos ?dw i:—i> nrB, = I/o (x - 5) cos(nmz)dx
_ o|sennmz zcosnmr  cosnmz ! _ gcosnm — 1 (=) +1
n2m2 nm 2nm |, 2nm B nmw '
B — 0 se n=1,3,95---
" —2/(nm)? se n=2,4,6---
yla,t) = Z By, sen (nrt) cos(nmx) = — 5 sen (nmt) cos(nrx) W
=2,4,6--- n=24,6"- (nﬂ-)
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2(b)

yen=v@re 9" 1"

%y 10%

a2~ @or " M
"+ Xp(z) =0, z € (0,0), (0)=¢)=0.
A = (n/0)? < p(x) = sen(nwx/l) (n=1,2,3---).

t t
A Anc® Ta(t) =0 = T,(t) = A, cos ore B, sen m;c .
—_
(nmwe/l)?
> t t
y(z,t) = Z (An cos m;c + B,, sen m;c ) sen —m;m .

n=1
=1 X2
. g (A, cosnmt + B, sennnt) sennmx .
n=1

C

a o0
%(m,@)zZnﬂanennﬂsz = B,=0 (n=123---).

n=1

y(z,0) = ZAnsenmr:c = 6sen2mx = Ay =6 e An’nﬁ:().

n=1

y(z,t) = Aycos2nt sen2wx = 6cos 27t sen2mz W

2(c)
Py _10% . wen=uvere ¢ _ 1T
a2 - 2o ™Y T

U+ Mp(x) =0, z € (0,0), ¢'(0) =4'(6) =0.
M=0 < Yox)=1, X\ =(nr/l)? < Y,(x) =cos(nmz/l) (n=1,2,3---).

t t
h A Ta(t) =0 = 1(t) = Ag+ Bot e Tn(t)ZA”COS%—FBnSQHHZC
(nmc/)?
= t t
y(z,t) = Ao—l—Bot—i—nE_:l(Ancosm;C+anenm;c) Cosn—;mj
2’ A4 B t+§:(A t+ B t) cos 1L
=, Ao 0 > n COS N n Sennmt) cos —— .
> nwe
y(x,0) = A0+2Ancos7 = —2+5cos3mr, = Ag=-2, Ag=5, An|2§g =0.
n=1 SCOS%‘"—J:
By/2=14
0 = _ _
ﬁthJ(%O) = Bo—i—Zmancos? = 4—Tcosmr = 27TBQ*:7 = By =—7/(27)
n=1 2nx Bn|n 0 =0 .
7 cos 7>
2 n#2

6 2
y(x,t) = Ag+ Bot + Agcosbrt cos %I + By sen2wt cos %x

7
= —2+4 4t + 5cos 67t cos3mxr — o sen2nt cosTx M
T
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3(a)

—00 —
u=0
v 0%u wzy) = X(@)Y(y) X! Y
92 Vo =0 x Ty =0
X Y

Y+ XY (y) =0, y€ (0,h), Y(0)=Y(h)=0.
Ap = (n/h)? < Y, (y) = sen(nwy/h) (n=1,2,3---).

X" — (nm/h)?*X,(z) =0, x € (—00,0) = X,(z)= A e~nme/h 4 B oenmr/h

S

(.
=0*
"Xn(-00) <00 = A, =0.
o] h=2 X
Z e /M gen (nry/h) = ZB" e"™/2 sen (nmy /2) .
- n=1

(—n7 B, /2)sen(nmy/2) = 5 sen(my) — 3 sen(27y) .
———

||M8 .

sen (27y/2) sen (4my/2)
—27B3/2=5 se n=2 = By =-5/7
— By /2 = —47B,/2=-3 sen=4 = By =3/(2n)
0 sen#2oun#4 = Bplnz =0.
n#4

u(z,y) = Bae*™/2sen(2my/2) + By e*™/? sen (47y/2)

5 3
= €™ sen (my) + o e?™ sen (27y) m
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3(b)

Yy [—u(m, 1) = 6sen mz + 5sen 2z — 9 sen 47z

u=0 -0
u(z,0) = 8sen 27z 0 0—1 .
— T . >
@+@:0 u(z,y) = X(2)Y (y) X7H+Y7H:0.
Oa* ~ Oy* XY
A -2

X"+ XX (z)=0, z€(0,0), X(0)=X(¢)=0.
Ao = (nm/0)? & X, (z) = sen(nwx/l) (n=1,2,3---).

Y — (nm/0)*Yn(y) =0 = Y,(x)= A, cosh(nmy/l) + B, senh(nmy/l) .

u(z,y) = [A,, cosh(nmy/{) + By, senh (ny/{)] sen (nwa/€)
1

n

=1

NE

(A, coshnmy + B, senhnmy) sennnx .

Il
_

n

u(z,0) = ZA" sennmr = 8sen27tx = Ay =8 e A”|n7ﬁ2 =0.

n=1
u(z,h) =u(z,1) = Z[An coshnm + By, senhnr]sennrax = 6sennx 4+ Ssen2mx — 9sendnx .
n=1

Ay coshm + Bysenhm =6
0
As cosh2m + By senhnm =5
~—

8
Ay coshdm + Bysenhdnr = —9
0

Sen #£1,2 ou 4

u(z,y) =

B; =6/senhw
By = (5 — 8cosh27)/senh 27
B, = —9/senhd4rw

B,=0 .

(A cosh my + By senh7y) senmx

+ (A3 cosh 27y + B senh 27y ) sen 2ma
+ (A4 coshdmy + By senh4ny) sendnx

6
= senh7y senwx

sennm

+ (8 cosh 27y +

senh4m

5 — 8 cosh 27

ohor senh 27ry) sen2mx

senh4rmy sendnwr |
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= —3+2cosf—4sen20
\:::..
s ' N
0%u 10u 1 0%u u(r8)= R(re®  T:R'+rR 0"
Iy -2 228 M Z .
6?2(T7)+r8r+r2892 R +9
A Y

0"+ X6(0) =0, OO0 +27)=0(), 6eR.
=0 Gz)=1, N\,=n* & 6,(0)=C,cosnd + D,sennf (n=1,2,3---).

. ) ) B _Jeo+dolnr (n=0)
Ry + TR, —n Ry (r) =0 = Ry(r) = {dnr"—i-dn/?“" (n>1).

c n=~0
R l<o = d=ely =0 = R0O={3 "2

o0 o0 dn
u(r,0) = Ro(r)6p(0) + Y Ru(r)0n(0) = co+ > —(Ccosnd + Dy sennd)
n=1 n=1

o Ap B,
= Ao—i—z Fcosn@—i—r—nsennﬂ [AOECO, A, =d,C,, BnEann] .

n=1

= A, B,
u(a,0) = A0+Z —cosn + — sennf) = —3 +2cosf —4sen26 .
Ag=-3
Al/a:2 = A1:2a
Bg/a2:—4 = B2:—4a2

An‘zi‘i = B"|n;£2 =0.

2acosf  4a®sen26 .

1 1
u(r,0) = Ao+ ;Al cosf + 7232 sen2 = —3+ . 2
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4(b)

0%u 10u 1 0% u(r0)=Rr(me®  r*R'+rR 0"

T o)+ -2y : — =0.

oz O F gt age 0 R +ta Y
—_——— \7,)\./

0" +260(0)=0, 6 €(0,7), O(r,0) = O(r,y) =0 [onde v = 7/6] .
A = (nm/7)? < 0,(0) = sen(nmf/y) (n=1,2,3---).

PR+ 1R, — (nm/y)*Ra(r) =0 = Ry(r) = Cur™™7 + Dy /r"™/7 .

IRa(0)) <00 = Bn,=0.

= 0
u(r, 9) Z C,, /Y sen 27
n=1 v
u(b,0) = Z C,, b/ senn—we = 10.
v
n=1

Y _ Y
Cp b/ = 2/ 1Osenn—m9d€ -2 {cos(mr@/’y)} -
v Jo gl nm/vy
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6.6 Problemas Propostos

Resolva os seguintes problemas:

0*T 18T( 0.
0z a ot
com z € (0,0) e t>0.

T(t,t) =0

2
T(x,0) = 5sen% .

1] a)
7(0,t) =

9y
Ox?
com z € (0,0) e t>0.

1 0%y
=z ™

2] a)
y(0,t) = y(¢,t) =0.
dy
ot

2rx

y(z,0) =0, (z,0) = 5sen

o o
0x2 Oy ©Y

com z € (0,¢) e ye(0,h).

:O7

3] a)
w(z,0) = u(z,h) =0

2
u(0,y) =0, =y

u(ﬁ,y):5sen7.
or2 r or  r? 092 "

4] a) com r € (0,b) e 0€(0,7/2).
u(r,0) = u(r,7/2) =0.

u(b,0) = 5sendf .

Eis as respostas:

2
1] a) T(x,t) = 5e@m/0%at gop ZTT

Y4 2mct 2me
2] a) y(x,t)—%ben 7 Sen—
2ml 2mx 21y
3] a) u(z, )—5cschTSe hT en—=
5
4] a) u(r,0) = ru 4 sen46

b)

b)

b)

b)

b) T(z,1)

b) y(z,t) =

b)

b)

123

u(z,t) =5

9*T 16T( 9

022 4ot
com z € (0,2) e t>0.
oT

oT
o -T2 =0.

T(x,0) =10 — 5cos 3mx .

(0,8) =

%y 1 0%
5t = § oe @)
com z€(0,2) e t>0.

y(0,t) =y(2,t) =0.

y(z,0) = 5sen3nx , %(x,()) = —6sennx .

0?u  0%u
ax2+a2(a?t) 0,
com z € (0,2) e y € (0,00) .

y) =u(2,y) =0.

u(z,0) = 5sen3mz .

u(0,

or?2 r or 2892 " ’
com 7 € (a,00) e §€(0,7).
u(r,0) = u(r,m) =0.

u(a,d) = 5send .

2
=10 —5e73%" L cos 3
2
——sen3dntsenmwx + 5cos 9t sen3mwx
T
e 3™ sen3mx

5
—a 4 sen40
r

u(r,0) =



6.7 Apéndice

6.7.1 Gradiente, Divergéncia, Laplaciano

Nas coordenadas cartesianas, para um campo escalar u(x,y, z) ou um campo vetorial V(x,y,z) =

(Vm(x, v, 2), Vy(z,y, 2), Vo (z, y, z)), sao definidas as seguintes grandezas:

e gradiente de u =

(@ 9u @)
Ox’ Oy’ 0z

oV, n vy n oV,
ox oy 0z

e laplaciano de u = divergéncia do gradiente de u

o divergéncia de V =

du u 9 d (0 9 (9 9 (duy  Pu  Pu D
o oy 02) = oxan) * oy (5,) + 5:(50) =t ot

0z
A notagao dessas grandezas por meio do chamado operador nabla,

o 0 0
Vz(a’@’@)’

= divergéncia de (

é obtida como segue:

. o o0 0
gradiente de u = (%’ a—y, %) u=Vu .
—_———
v
. . -~ 0 0 o, (0 9 0 B .
divergéncia de V = axvx—kayVy—l—anz— <3x+3y+8z> Ve, Vi, Vo) =V -V .
1%
v

laplaciano de v = V - Vu = Vu .

2

Nesta ultima equacdo, empregamos a notagao v = ¢'- ¥ para denotar o chamado quadrado escalar

do vetor v.

Em resumo:

gradiente de u(z,y,2): Vu = (%, %, ?)
' Oy 0Oz

ovy 9V n av,
or oy 0z

<t

divergéncia de V(x, y,z): V-

0%u @ 9%u

laplaciano de u(z,y,2) : Vu = ozt 7 + 53

Essas expressoes sao validas apenas se (z,y, z) forem as coordenadas cartesianas. Em outros siste-
mas de coordenadas, tais como o das coordenadas polares, cilindricas e esféricas, as expressoes corretas
devem ser deduzidas. Naturalmente, para usar as expressoes acima em problemas bidimensionais cujo
dominio esteja contido no plano zy, basta desprezar as derivadas parciais em relagao a z.

6.7.2 Solugao Geral da EDO ¢" + A\(z) =0

A forma da solugéo geral da EDO " 4+ \p(x) = 0 varia conforme X seja nulo, negativo ou positivo.
Vejamos.

e Para A =0:
Nesse caso a EDO tem a forma ¢’ (z) = 0, sendo sua solugao geral obtida rapidamente por duas
integragoes consecutivas, obtendo-se
Y(@)=c +cor m
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e Para A< 0: A= —k% (k> 0):
Nesse caso a EDO tem a forma 1" — k%(z) = 0. Calculemos as raizes da equacio caracteristica:

-k =0 = r=+Vk®=+k.
Logo, a solucao geral é
Y(E)=c1e? fcge ™ m
Convém também expressar essa solugdo em termos das fungdes hiperbolicas [v. Ref. [11], segdo 3.11]
como segue:

Y(x) = c1 " 4 cge ™ = ¢ (cosh kx + senhkz) + ¢y (cosh kx — senhkz)

= (1 + ¢2) coshkx + (¢1 — ¢2) senhkx = ¢; cosh kx + ¢o senhkz m
S—— ~——

Cc1 C2
e Para A >0:A=k%(k>0):
Nesse caso a EDO tem a forma 9" + k?¢(x) = 0. Calculemos as raizes da equagdo caracteristica:

P4+k2=0 = r=+v—k2=+ik.

Logo, a solucao geral é
Y(x) = c1 coskx + cosenkz m

Em resumos, temos

1+ cax se A=0

P+ M(z) =0 = (x) = ¢ cicoshkx + casenhkx (ou cref” + coe ™) se A= —k? (k> 0)

cycoskx + cysenkx se A=k?(k>0) ,

onde expressamos A = k2 ou A = —k?, com k > 0, para atribuir a A qualquer valor real positivo ou
negativo, respectivamente, admitindo k£ > 0 para que a relagao entre A e k seja biunivoca, isto é, que
a cada valor de A corresponda um tnico valor de k, e a cada um de k, um tnico de \).

6.7.3 O Laplaciano em Coordenadas Polares

Para mostrar que
ou? 10 1 ou?

=5 t+t-5+t5 55 1
3r2+r8r+7’2392’ M
tomamos a férmula do laplaciano em coordenadas cartesianas,

V2(r,0)

ou?  ou?

2 —_ -
v (xay) - 81‘2 + 6y2 9

e realizamos nela a mudanga para as coordenadas polares, definidas por z = rcosf e y = rsenf. Pela
regra da cadeia, podemos escrever o que segue:

Uy = UpTy + Ul

Ugy = (urrrz + ureez)rw T+ UpTre + (uﬁrra: + u909w)ra: + U99m

2 2
=T, Upp + erGO + QTIGZEUTG + TraUy + Qmue .

Neste ultimo resultado, trocando x por y, obtemos
Uyy = riu,.r + 9;’6&99 + 2ry0yurg + Tyyur + Oyyug
Logo,
Ugg + Uyy = (r2 4 ri)um + (6% + Hg)ugg + 2(rg + 1y)0trg + (Toz + Tyy)Ur + (Ozz + Oyy)ug - (IT)

Para calcular r,, 0,, etc, usamos a lei de transformagao inversa:
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r=y/z?+y> e 0 = arctan(y/x) + 8§ ) .

Logo,

rm:(?(\/m>:(2x)/(2 x2+y2)=x/r :

Tow = O(xr™ 1) 0z =17 —ar2r, = (r — 2?)/r® = 2 /1% .

_ 9 s
0, = o [arctan(y/z) + 0] = 1+ (y/z)? T2 + 2 -2 0
0 9 _3 2y x 2wy
exm:%(_yr ) =2yr Tx:ﬁ;:rT'

Nas duas primeiras expressoes acima, podemos simplesmente substituir « e y um pelo outro, ja que
a expressao de r é simétrica com respeito a essa troca, para obter

— _.2/,3
ry =y/r e Tyy =2°/1° .
Ja 0 nao exibe tal simetria; suas derivadas em relagao a y devem ser calculadas normalmente:

e oz x

0, = g[zamct::m(y/ﬂc) +0] =

dy L+ (y/e)? 224y 2
0 _ _ —2xy —2xy
nyza—y(xr 3 = —2zr 3ry:—r3 S

Assim,

12l = a ey e = 0 ) e = =1
02 —|—9§ =yt et =t =107
T40p + 1,0, = —2y/r* + Y /r3 =0 |
Tow +Tyy = Y2 /12 + 2203 =2/ = 1/r |

Tgw +Tyy =0 .

A substituicdo desses resultados na equacao (II) fornece a equagao (I) desejada.

6.7.4 Solugao Geral da EDO 7?R" +rR + AR(r) =0

Essa é a EDO de Euler-Cauchy. Vamos resolvé-la para o caso em que r é a coordenada polar radial,
a qual, por hipotese, ndo toma valores negativos. Assim, vamos resolvé-la para r > 0:

d 1
p=Inr=r=c¢e e W_ e,
dr r

R(r) = R(e”) = R(p) .
_dR _dRdp _ . 1

/ oir_ an Y +
R(r) = dr dp dr (T)r

= rR'(r)=R(p).

R'(r) = (45 = L) _ D (pp)er) = [R(p)e — R (p)e7]e

T dr\dr)  dr dp dr/ — dr
= [R'()-R(p) (" = rPRU)=R'()-R().
1/r2

[r?R"] + [rR'] + AR(r) = 0= [R"(p) — BXp)| + [BAP)] + AR(p) = 0
c1+ cop se A=0

= R'(p) + A\R(p) =0 = R(p) = { c1 e +coekr se A=—k? (k> 0)
cicoskp+casenkp se A =k? (k> 0)

() Uma vez que 6 € [0,27), é necessario definir a constante aditiva § como sendo igual a 0, w, 7 ou 27 conforme 6 seja
do 19, 22, 32 ou 4° quadrante, respectivamente, uma vez que os valores principais da fungdo arctan estao no intervalo
(—7/2,7/2). Se bem que esse cuidado é irrelevante na presente dedugdo, pois § desaparecerd com as diferenciagoes.

126



Voltando as fungoes em fungao de r, obtemos finalmente

r*R"+rR + AR(r) =0

= R(r)=

c1+colnr
c1rk 4 ey JrF

ci1cos(kInr) + cosen(klnr)

se A=0
se A= -k (k>0)
se A=£k%(k>0)
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