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Prefácio

Trata-se de um texto didático para a disciplina "Cálculo 4" (ministrada pelo Departamento de

Matemática Aplicada da UFF sob o código GMA00158), cujo objetivo é a descrição das seguintes

técnicas para resolver equações diferenciais ordinárias (EDOs) e parciais (EDPs): série de potências

(para EDOs), transformada de Laplace (para EDOs e sistemas de EDOs), método dos autovalores

(para sistemas de EDOs de 1a
¯ ordem), e separação de variáveis (para EDPs). Este texto contém

exatamente o que se apresenta nas aulas, evitando que o aluno as copie, assim se obtendo mais a sua

atenção e economizando tempo, bem como definindo com clareza o que se deve estudar. Para o seu

aprendizado, são imprescindíveis as explicações dadas nas aulas, quando, então, se detalham muitas

das passagens matemáticas. As principais referências bibliográficas são apresentadas abaixo do título

de cada capítulo.
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4.13 Cálculo de L−1{f̄(s)ḡ(s)} por Convolução . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.14 Transformada de Laplace de Função Periódica . . . . . . . . . . . . . . . . . . . . . . . . 72
4.15 Tabela de Transformadas de Laplace com Funções Genéricas . . . . . . . . . . . . . . . 73
4.16 Aplicações . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.16.1 Cálculo de Integrais Definidas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.16.2 Resolução de Equações Com Derivada Ou Integral . . . . . . . . . . . . . . . . . 74
4.16.3 Resolução de Sistemas de EDOs . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.17 Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.18 Soluções dos Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Séries de Fourier 85
5.1 Construção da Série de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Série de Fourier de Função Periódica . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.2 Série de Fourier de Função Não Periódica . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Convergência Pontual da Série de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Séries de Fourier em Senos e em Cossenos . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Soluções dos Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Resolução de Equações Diferenciais Parciais Clássicas por Separação de Variáveis 97
6.1 Autofunções . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Equação do Calor Unidimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Equação da Onda Unidimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 Equação de Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Equação de Laplace em Domínios Retangulares . . . . . . . . . . . . . . . . . . . 106
6.4.2 Equação de Laplace em Domínios com Bordas Circulares . . . . . . . . . . . . . 110

6.4.2.1 Equação de Laplace com Condição de Fronteira Não Homogênea em
Borda Circular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.2.2 Equação de Laplace com Condição de Fronteira Não Homogênea em
Borda Retilínea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.1 Enunciados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.2 Soluções . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Problemas Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.7 Apêndice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7.1 Gradiente, Divergência, Laplaciano . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.7.2 Solução Geral da EDO ψ′′ + λψ(x) = 0 . . . . . . . . . . . . . . . . . . . . . . . 124
6.7.3 O Laplaciano em Coordenadas Polares . . . . . . . . . . . . . . . . . . . . . . . . 125
6.7.4 Solução Geral da EDO r2R′′ + rR′ + λR(r) = 0 . . . . . . . . . . . . . . . . . . . 126

Referências Bibliográficas 128

3



Capítulo 1

Sequências e Séries {
Ref. [12], seções 11.1 a 11.10.

}
1.1 Sequências

Se a cada inteiro positivo n associarmos um número an, dizemos que esses números formam
uma sequência, que é ordenada segundo seus índices:

a1, a2, a3, · · · , an, an+1, · · · .

Exemplos:

i) an = 1/2n : a1 = 1/2, a2 = 1/4, a3 = 1/8, · · ·

ii) an =
(
n+1
n

)2
: a1 = 4, a2 = 9

4 , a3 = 16
9 , · · ·

Chamamos an de termo geral da sequência, o qual é usado também para indicar a própria sequência,
isto é, dizemos simplesmente, por exemplo, "que a sequência an = n2 é formada pelos quadrados dos
naturais."

Se o que denominamos limite da sequência, dado por

lim
n→∞

an = a ,

for finito, isto é, se para qualquer ϵ > 0 é possível achar N ∈ N tal que

|an − a| < ϵ para n > N ,

dizemos que a sequência an converge para a. Se aquele limite não existe, dizemos que a sequência an
é divergente.

Observe que uma sequência an pode ser vista como uma função a(n) da variável natural n. Com
isso, a definição do limite acima é formalmente a mesma que aquela adotada no caso de uma função
f(x) da variável real x.

Sejam m e n naturais quaisquer, com m < n. Dizemos que uma sequência an é

• crescente se am ≤ an [Ex: 2, 5, 5, 6, 7, 7, 11, · · · ] (estritamente crescente se am < an)

• decrescente se am ≥ an [Ex: 6, 6, 3, 2, 2, 1, · · · ] (estritamente decrescente se am > an)

• monótona se for crescente ou decrescente

• limitada superiormente se ∃λ ∈ R tal que an ≤ λ ∀n ∈ N

• limitada inferiormente se ∃λ ∈ R tal que an ≥ λ ∀n ∈ N

• limitada se existem λ1 e λ2 tais que λ1 ≤ an ≤ λ2 ∀n ∈ N

Note que, na definição de sequências crescente e decrescente, permite-se a igualdade entre termos, o
que possibilita considerar a sequência constante (aquela cujo termo geral é constante; por exemplo: 3,
3, 3, · · · ) tanto como uma sequência crescente quanto decrescente e, por conseguinte, também como
monótona.
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Teorema 1

É convergente uma sequência que

• é crescente e limitada superiormente

• é decrescente e limitada inferiormente

É divergente uma sequência que

• é crescente e que não é limitada superiormente (ela diverge para ∞)

• é decrescente e que não é limitada inferiormente (ela diverge para −∞)

1.2 Séries de Números Reais
Dada uma sequência ak, a sequência de termo geral

sn =

n∑
k=m

ak (n = m, m+ 1, · · · )

[ ou seja,

sm = am (1o
¯ termo)

sm+1 = am + am+1

...
sn = am + am+1 + · · ·+ an (termo geral)

... ]

é denominada de série associada à sequência an. Os números an são chamados de termos da série, e
os números sn, de somas parciais da série.

O limite da série é o limite da sequência das somas parciais sn:

lim
n→∞

sn = lim
n→∞

n∑
k=m

ak =

∞∑
k=m

ak = am + am+1 + · · · ,

o qual, quando existe, denomina-se soma da série, caso em que a série é dita convergente. Se o somatório
∞∑
k=m

ak não existir [limite inexistente, isto é, não único ou infinito (±∞)], a série é dita divergente.

O símbolo
∞∑
k=m

ak usado para indicar a soma da série é usado também para indicar a própria série.

Por exemplo, a soma da série geométrica ,
∞∑
k=0

qk, é igual a 1/(1− q) se |q| < 1:

∞∑
k=0

qk = 1 + q + q2 + · · · = 1

1− q
se |q| < 1 (∗) .

De fato:

sn =
n∑
k=0

qk = 1 + q + q2 + · · ·+ qn

q sn =
n∑
k=0

qk+1 = q + q2 + · · ·+ qn+1


(−)
==⇒ sn − q sn = (1− q) sn = 1− qn+1

⇒ sn =

n∑
k=0

qk =
1− qn+1

1− q
⇒

∞∑
k=0

qk = lim
n→∞

1−���* 0

qn+1

1− q
=

1

1− q
[

lim
n→∞

qn+1 = 0 se |q| < 1
]
.

(∗)Convencionalmente, x0 ≡ 1 ∀x ∈ R , isto é, x0 denota a função constante f(x) = 1.
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Vejamos duas aplicações da fórmula acima:

∞∑
k=0

(
−1

2

)k
= 1− 1

2
+

1

4
− 1

8
+ · · · = 1

1−
(
− 1

2

) =
1

3/2
=

2

3
,

∞∑
k=0

1

2k
= 1 +

1

2
+

1

4
+

1

8
+ · · · =

∞∑
k=0

(
1

2

)k
=

1

1− 1
2

=
1

1/2
= 2 .

Uma fórmula da soma da série geométrica com o termo inicial mais genérico qi (i ∈ N), em vez do
termo inicial q0 = 1, é a seguinte, deduzida a partir dos resultados já obtidos acima:∣∣∣∣∣

∞∑
k=i

qk =

∞∑
k=0

qk −
i−1∑
k=0

qk =
1

1− q
− 1− qi

1− q
=

qi

1− q
se |q| < 1

∣∣∣∣∣ .
Observe que trabalhar com a série

∞∑
k=m

ak = am + am+1 + · · · ,

cujo somatório começa com o índice m, é equivalente a trabalhar com a série de termo geral am+k,

∞∑
k=0

am+k = am + am+1 + · · · ,

cujo somatório começa com o índice 0. Por isso não há perda de generalidade em se estabelecer um

teorema para uma série que comece com o índice 0:
∞∑
k=0

ak.

Teorema 2

Se α é um real dado e as séries
∞∑
k=0

ak e
∞∑
k=0

bk convergem, então:

a)
∞∑
k=0

αak = α
∞∑
k=0

ak converge

b)
∞∑
k=0

(ak + bk) =
∞∑
k=0

ak +
∞∑
k=0

bk converge

Teorema 3

Para que a série
∞∑
k=0

ak convirja, é necessário que o termo geral tenda a zero, isto é, lim
k→∞

ak = 0.

Segue desse teorema o critério do termo geral para a divergência: se lim
k→∞

ak difere de zero ou não

existe então a série
∞∑
k=0

ak é divergente.

Exemplos:

i)
∞∑
k=0

[
1 + (−1)k

]
diverge, pois os termos dessa série são os da sequência

ak = 1 + (−1)k =

{
2 se k for par
0 se k for ímpar ,

cujo limite lim
k→∞

ak não existe. Além disso, vemos que

s1 = 0 , s2 = 0 + 2 = 2 , s3 = 0 + 2 + 0 = 2 , s4 = 0 + 2 + 0 + 2 = 4 , · · · ,

isto é, a sequência sn das somas parciais é crescente e não é limitada superiormente; logo, lim
n→∞

sn =

lim
n→∞

n∑
k=0

ak =
∞∑
k=0

[
1 + (−1)k

]
=∞, de acordo com o Teorema 1.
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ii)
∞∑
k=0

k2

k2 + 3
diverge, pois lim

k→∞

k2

k2 + 3
= 1 6= 0. Em vista disso e do fato de sn =

n∑
k=0

k2

k2 + 3
ser

uma sequência crescente (por ser formada de termos positivos), temos que
∞∑
k=0

k2

k2 + 3
=∞.

iii) A série
∞∑
k=1

1/k satisfaz a condição necessária de o seu termo geral tender a zero
(
lim
k→∞

1/k = 0
)
;

entretanto, ela diverge para ∞ , como veremos adiante.

iv)
∞∑
k=1

1/k3 satisfaz a condição necessária de o seu termo geral tender a zero
(
lim
k→∞

1/k3 = 0
)

e é

convergente, como veremos adiante.

Uma série do tipo
∞∑
k=m

(−1)kak = am − am+1 + am+2 − am+3 + · · · ,

em que ak nunca muda de sinal, é dita alternada. Exemplos:

i) 2− 3 + 4− 5 + · · · =
∞∑
k=2

(−1)kk

ii) −1

4
+

1

5
− 1

6
+ · · · =

∞∑
k=4

(−1)k
(
−1

k

)

Teorema 4: Critério de convergência para série alternada

A série alternada
∞∑
k=m

(−1)kbk [bk > 0] é convergente se a sequência (de termos positivos) bk é

decrescente e lim
k→∞

bk = 0 .

Exemplo: A série
∞∑
k=2

(−1)k 1

ln k
converge, pois satisfaz as condições do Teorema 4: é alternada, e a

sequência bk =
1

ln k

∣∣∣∣
k≥2

é positiva, decrescente e tende a zero.

1.3 Critérios de Convergência e Divergência
Teorema 5: Critério da integral

Considere uma série
∞∑
k=0

ak com ak > 0 para k maior ou igual a algum natural l. Se existe uma

função f contínua, positiva, decrescente satisfazendo f(k) = ak para k ≥ l então aquela série será

convergente ou divergente conforme a integral imprópria
∫ ∞

l

f(x) dx seja convergente ou divergente,

respectivamente.

Exemplos:

i) A série
∞∑
k=2

ak, com ak =
1

k ln k
. A função f(x) =

1

x lnx
é contínua, positiva, decrescente em

[2,∞) e tal que f(k) = ak para k ≥ 2 . Como∫ ∞

2

f(x) dx = lim
b→∞

∫ b

2

1

x lnx
dx = lim

b→∞
ln(lnx)

∣∣∣b
2
= lim
b→∞

ln(ln b)− ln(ln 2) =∞ ,

temos que a série dada é divergente.

1
 

 

( , 1] : diverge!"  (1, ) : converge"

p

ii) A chamada série harmônica de ordem p ,

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+ · · · ,
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converge se p > 1 e diverge se p ≤ 1 . De fato:

Se p ≤ 0, o termo geral
1

np
não tende a zero quando n → ∞; portanto, segundo o Teorema 3, a

série diverge.

Se p > 0, o critério da integral, com f(x) =
1

xp
, fornece

• para p = 1 :

∫ ∞

1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx = lim

b→∞
lnx
∣∣∣b
1
= lim
b→∞

ln b︸ ︷︷ ︸
∞

− ln 1 =∞ ,

mostrando que a série diverge.

• para p ∈ (0, 1) ∪ (1,∞):

∫ ∞

1

1

xp
dx = lim

b→∞

∫ b

1

x−p dx = lim
b→∞

x−p+1

−p+ 1

∣∣∣∣b
1

=



1

1− p

(
lim
b→∞

b1−p︸ ︷︷ ︸
∞

− 1

)
=∞ se p ∈ (0, 1)

1

1− p

(
lim
b→∞

1

bp−1︸ ︷︷ ︸
0

− 1

)
=

1

p− 1
se p ∈ (1,∞) ,

mostrando que a série diverge se p ∈ (0, 1) e converge se p > 1 .

Teorema 6: Critério da comparação

Se 0 ≤ ak ≤ bk para k maior ou igual a algum natural l, então:

a)
∞∑
k=0

bk converge ⇒
∞∑
k=0

ak converge

b)
∞∑
k=0

ak diverge ⇒
∞∑
k=0

bk diverge

Exemplos:

sen     

1 

  em 

radianos

i) A série
∞∑
k=1

1

k
sen

1

k
.

A figura à direita ilustra o fato de que senθ < θ se θ > 0 . Assim,
sen 1

k <
1
k , o que nos permite escrever

0 ≤ 1

k
sen

1

k
≤ 1

k2
.

Logo, como a série
∞∑
k=1

1/k2 converge (por ser a série harmônica de

ordem 2), a série dada também converge.

ii) A série
∞∑
k=2

k − 1

2k3 + 1
.

Para k ≥ 2, temos que:

k − 1

2k3 + 1
≤ k − 1 + 1

2k3 + 1− 1
=

1

2k2
.

Logo, como a série
∞∑
k=1

1

2k2
=

1

2

∞∑
k=1

1

k2
converge (por ser a série harmônica de ordem 2), a série dada

também converge.

iii) A série
∞∑
k=2

1

ln k
.

Temos, para k ≥ 2, que:
1

ln k
≥ 1

k
(pois ln k ≤ k ∀k > 1) .
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Logo, como a série
∞∑
k=1

1

k
diverge (por ser a série harmônica de ordem 1), a série dada também diverge.

iv) A série
∞∑
k=1

k

k2 + 2k + 5
.

Temos, para k ≥ 1, que:

k

k2 + 2k + 5
≥ k

k2 + 2k2 + 5k2
=

k

8k2
=

1

8k
.

Logo, como a série
∞∑
k=1

1

8k
=

1

8

∞∑
k=1

1

k
diverge (por ser a série harmônica de ordem 1), a série dada

também diverge.

v) A série
∞∑
n=3

1

n 2n
converge, pois

0 ≤ 1

n 2n
≤ 1

2n
para n ≥ 1 ,

e a série
∞∑
n=3

1

2n
(geométrica) é convergente:

∞∑
n=3

1

2n
=

∞∑
n=3

(1
2

)n
=

(1/2)3

1− 1/2
=

1

4
.

Dizemos que uma série
∞∑
k=0

ak é absolutamente convergente se
∞∑
k=0

|ak| for convergente. Uma série

convergente que não é absolutamente convergente é dita condicionalmente convergente.

Teorema 7: Critério da comparação no limite

Sejam
∑
k

ak e
∑
k

bk séries de termos positivos. Se lim
k→∞

ak
bk

for um número finito diferente de zero(∗),

então essas duas séries convergem ou as duas divergem.

A condição de lim
k→∞

ak
bk

ser finito e diferente de zero garante que as séries
∑
k

ak e
∑
k

bk sejam assin-

toticamente de uma mesma ordem kp. Assim, para aplicar o teorema acima, precisamos inferir uma
série

∑
k

bk que seja assintoticamente da mesma ordem que a série
∑
k

ak investigada, o que se consegue

igualando bk ao termo assintoticamente dominante em
∑
k

ak, que é a estratégia empregada nos exem-

plos que seguem.

Exemplos:

i) A série
∞∑
k=2

k − 1

2k3 + 1
[este é o Exemplo (ii) do Teorema 6] ·

Com ak =
k − 1

2k3 + 1
> 0 e bk =

k

k3
=

1

k2
> 0 ∀k ≥ 2, temos que

lim
k→∞

ak
bk

= lim
k→∞

k − 1

2k3 + 1

/ 1

k2
= lim
k→∞

k3 − k2

2k3 + 1
= lim
k→∞

1− 1/k

2 + 1/k3
=

1

2
: finito.

Logo, pelo critério da comparação no limite, uma vez que
∑
k

bk converge (por ser uma série harmô-

nica de ordem p = 2), concluímos que a série
∑
k

ak dada também converge.

(∗) O critério da comparação no limite pode ser estendido aos casos em que lim
k→∞

ak/bk seja zero ou infinito, que são

aqui omitidos, não por serem complicados, mas pelo pouco tempo de aula para o estudo deste texto. O aluno interessado
pode inteirar-se deles na Ref. [7], seção 3.2, ou na Ref. [12], seção 11.4, Exercícios 40 e 41.
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Esse exemplo mostra que o desafio na aplicação do teorema em questão é encontrar uma série de
referência

∑
k

bk cuja convergência (ou divergência) seja conhecida e que torne lim
k→∞

ak/bk finito e não

nulo, o que então revela se a série investigada
∑
k

ak é convergente (ou divergente), pois essas duas séries,

de acordo com o teorema, devem exibir o mesmo comportamento assintótico. Na aplicação do Critério
da Comparação no Limite (CCL), a busca da série de referência exige a mesma intuição necessária
no uso do Critério da Comparação (CC). Contudo, no CCL, identificar essa série costuma ser mais
direto: ela é formada apenas pelo termo dominante da série investigada, permitindo imediatamente
ignorar os demais termos, que se tornam desprezíveis no processo de limite. Em contrapartida, no CC,
esses termos secundários precisam ser eliminados por meio de uma cadeia de desigualdades nem sempre
evidentes para que se isole o termo dominante na comparação. Em resumo, embora ambos os critérios
sempre conduzam à mesma série de referência baseada no termo dominante, o percurso no CCL é, via
de regra, mais simples. Uma ressalva: o preço da simplicidade do CCL é o cálculo do limite, que pode
se tornar complexo diante de funções mais exóticas, caso em que o CC possa ser uma alternativa mais
viável.

Continuemos com os exemplos:

ii) A série
∞∑
k=1

k

k2 + 2k + 5
[este é o Exemplo (iv) do Teorema 6] ·

Com ak =
k

k2 + 2k + 5
> 0 e bk =

k

k2
=

1

k
> 0 ∀k ≥ 1, temos que

lim
k→∞

ak
bk

= lim
k→∞

k

k2 + 2k + 5

/1

k
= lim
k→∞

k2

k2 + 2k + 5
= lim
k→∞

1

1 + 2/k + 5/k2
= 1 : finito.

Logo, pelo critério da comparação no limite, uma vez que a série
∑
k

bk diverge (por ser harmônica

de ordem p = 1), a série
∑
k

ak dada também diverge.

iii) A série
∞∑
k=2

3
√
k3 + 2k

5k3 − 8k2
·

Com ak =
3
√
k3 + 2k

5k3 − 8k2
> 0 e bk =

3
√
k3

k3
=

1

k2
> 0 ∀k ≥ 2, temos que

lim
k→∞

ak
bk

= lim
k→∞

3
√
k3 + 2k

5k3 − 8k2

/ 1

k2
= lim
k→∞

k2 3
√
k3 + 2k

5k3 − 8k2
= lim
k→∞

3
√
k3 + 2k

5k − 8

= lim
k→∞

�k 3
√
1 + 2/k2

�k(5− 8/k)
=

1

5
: finito.

Logo, pelo critério da comparação no limite, uma vez que
∑
k

bk converge (por ser uma série harmô-

nica de ordem p = 2), a série
∑
k

ak dada também converge.

iv) A série
∞∑
k=1

√
6k − 2

3
√
9k4 + 5k2

·

Com ak =

√
6k − 2

3
√
9k4 + 5k2

> 0 e bk =

√
k

3
√
k4

=
k1/2

k4/3
=

1

k(4/3)−(1/2)
=

1

k5/6
> 0 ∀k ≥ 1, temos que

lim
k→∞

ak
bk

= lim
k→∞

√
6k − 2

3
√
9k4 + 5k2

/ 1

k5/6
= lim
k→∞

k5/6
√
6k − 2

3
√
9k4 + 5k2

= lim
k→∞

k5/6
√
k
√
6− 2/k

3
√
k4 3
√

9 + 5/k2

= lim
k→∞

k(5/6)+(1/2)
√

6− 2/k

k4/3 3
√
9 + 5/k2

= lim
k→∞

���k4/3
√
6− 2/k

���k4/3 3
√

9 + 5/k2
=

√
6

3
√
9

: finito.

Logo, pelo critério da comparação no limite, sendo
∑
k

bk uma série harmônica de ordem p = 5/6 ≤ 1

e, portanto, divergente, a série
∑
k

ak dada também é divergente.
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v) A série
∞∑
k=2

ln k

k2 − 3
·

Com ak =
ln k

k2 − 3
> 0 e bk =

√
k

k2
=

1

k3/2
> 0 ∀k ≥ 2, temos que

lim
k→∞

ak
bk

= lim
k→∞

ln k

k2 − 3

/ 1

k3/2
= lim
k→∞

ln k

k7/2 − 3k3/2

l’H
= lim

k→∞

1/k

(7/2)k5/2 − (9/2)k1/2
= 0 : finito.

Logo, pelo critério da comparação no limite, uma vez que
∑
k

bk converge (por ser uma série harmô-

nica de ordem p = 3/2), a série
∑
k

ak dada também converge.

Teorema 8

É convergente a série que converge absolutamente.

Exemplo: Considere a série
∞∑
k=1

senk

k2
. Constatamos, por comparação, que ela converge absoluta-

mente: 0 ≤ | senk
k2
| ≤ 1

k2
. Logo, ela própria é convergente.

Teorema 9: Critério da razão

Considere uma série
∞∑
k=0

ak, com ak 6= 0, tal que L = lim
k→∞

|ak+1/ak| exista ou seja infinito. Podemos

afirmar que

a) Se L < 1 , a série dada converge absolutamente

b) Se L > 1 ou L =∞ , a série diverge

c) Se L = 1 , o critério nada revela

Exemplos:

i) A série
∞∑
k=0

ak , com ak = 2k/k! , converge, pois

L = lim
k→∞

|ak+1

ak
| = lim

k→∞

2k+1/ (k + 1)!

2k/ k!
= lim
k→∞

2k+1

2k
k!

(k + 1)!
= lim
k→∞

2

k + 1
= 0 < 1 .

ii) A série
∞∑
k=1

ak , com ak = kk/k! , diverge, pois

L = lim
k→∞

|ak+1

ak
| = lim

k→∞

(k + 1)k+1/ (k + 1)!

kk/ k!
= lim
k→∞

(k + 1)k+1

kk
k!

(k + 1)!

= lim
k→∞

(k + 1)k����(k + 1)

kk
1

���k + 1
= lim
k→∞

(
k + 1

k

)k
= lim
k→∞

(
1 +

1

k

)k
= e > 1 .

iii) Cálculo de x de modo que a série
∞∑
n=1

an , com an = nxn , seja convergente.

Se x = 0 então an = 0, e a soma da série é zero (série convergente).
Se x 6= 0, pelo critério da razão, temos que

L = lim
n→∞

|an+1

an
| = lim

n→∞
| (n+ 1)xn+1

nxn
| = |x| lim

n→∞

n+ 1

n
= |x| · 1 = |x| ,

mostrando que a série é convergente para |x| < 1 . Mas, para |x| = 1, o critério da razão nada revela,
e uma análise separada é necessária:

Para x = 1, temos que
∞∑
n=1

nxn
∣∣∣
x=1

=
∞∑
n=1

n =∞ (série divergente).
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Para x = −1, temos que
∞∑
n=1

nxn
∣∣∣
x=−1

=
∞∑
n=1

n (−1)n , que é uma série divergente, de acordo com

o Teorema 3, pois lim
n→∞

n (−1)n não existe.
Resposta: a série dada é convergente para |x| < 1.

iv) A série
∞∑
k=0

5 + (−1)k

6 · 2k
= 1 +

1

3
+

1

4
+

1

12
+

1

16
+

1

48
+ · · · ,

formada por duas séries geométricas de razão 1/4 (uma constituída pelos termos com k par e a outra,
pelos com k ímpar), é tal que

lim
k→∞

|ak+1

ak
| = lim

k→∞
|5 + (−1)k+1

6 · 2k+1
· 6 · 2k

5 + (−1)k
| = 1

2
lim
k→∞

5 + (−1)k+1

5 + (−1)k

=


1

2
· 5− 1

5 + 1
=

1

3
se k →∞ tomando valores pares

1

2
· 5 + 1

5− 1
=

3

4
se k →∞ tomando valores ímpares ;

logo, esse limite não existe, o que inviabiliza a aplicação do critério da razão enunciado acima(∗).
Mas outros por procedimentos podemos provar que essa série converge e, mais ainda, calcular a sua

soma: cf. Prob. 24.

Teorema 10: Critério da raiz

Considere uma série
∞∑
k=0

ak tal que L = lim
k→∞

k
√
|ak| exista ou seja infinito. Podemos afirmar que

a) Se L < 1 , a série dada converge absolutamente

b) Se L > 1 ou L =∞ , a série diverge

c) Se L = 1 , o critério nada revela

Exemplo: A série
∞∑
k=0

ak, com ak = k3/3k, é convergente, pois

L = lim
k→∞

k
√
|ak| = lim

k→∞

k

√
k3

3k
=

1

3
lim
k→∞

k3/k =
1

3
lim
k→∞

e3(
ln k
k ) =

1

3
e
3
(

lim
k→∞

ln k
k

)
=

1

3
e0 =

1

3
< 1 . (†)

Outro exemplo: vimos, no Exemplo (iv) logo acima, que o critério da razão (Teorema 9) falha com

a série
∞∑
k=0

5 + (−1)k

6 · 2k
. Vamos, entretanto, empregar o critério da raiz; uma vez que

k
√
|ak| =

k

√
|5 + (−1)k

6 · 2k
| =


k

√
5 + 1

6 · 2k
= k

√
1

2k
=

1

2
se k for par

k

√
5− 1

6 · 2k
=

1

2

(
4

6

)1/k

→ 1

2
quando k →∞ tomando valores ímpares ,

isto é, L = 1/2 < 1, concluímos que a série é convergente(‡).

(∗)O critério da razão admite uma formulação mais genérica pela qual se verifica a convergência da série acima: cf. a
seção 6-8 da referência bibliográfica [9].

(†) Usando a regra de l’Hopital, vemos que lim
k→∞

ln k
k

= lim
k→∞

1/k
1

= 0 .

(‡)Foi usado o seguinte resultado: se a > 0 então lim
k→∞

k
√
a = lim

k→∞
e
ln a
k = e

lim
k→∞

ln a
k = e0 = 1 .
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1.4 Séries de Potências
Seja x uma variável real e considere um valor x0 fixo dessa variável. Entendemos por série de

potências uma série cujo termo geral é o da sequência an(x−x0)En (uma potência de x−x0 multiplicada

por uma constante):
∞∑
n=0

an (x − x0)
En . Neste texto, o expoente En consistirá simplesmente nos

números naturais, En = n ∈ N, ou nestes acrescidos de um número real r fixo, En = n + r. Ou seja,
trabalharemos com as séries de potências

∞∑
n=0

an (x− x0)n = a0 + a1(x− x0) + a2(x− x0)2 + · · ·

e
∞∑
n=0

an (x− x0)n+r = a0(x− x0)r + a1(x− x0)1+r + a2(x− x0)2+r + · · · .

A série
∞∑
n=0

an (x − x0)
En é dita série de potências relativa a x0 (ou em torno de x0, ou ainda

centrada em x0), na qual x0 é denominado ponto de expansão da série. É bastante frequente a série

de potências centrada em zero; por exemplo:
∞∑
n=0

an x
n = a0 + a1x+ a2x

2 + · · · .

Seguem dois teoremas fundamentais no estudo das séries de potências:

Teorema 11

Toda série de potências
∞∑
n=0

an (x − x0)n tem um raio de convergência R tal que a série converge

absolutamente se |x− x0| < R e diverge se |x− x0| > R .
O número R pode ser 0 (caso em que a série converge somente para x = x0), um número real

positivo, ou ∞ (caso em que a série converge para todo x), podendo ser calculado pela fórmula

0
x

 
  

0
x R!   

0
x R"   x 

convergênciaR = lim
n→∞

| an
an+1

| ou R = lim
n→∞

1
n
√
|an|

,

contanto que, para algum natural N , an 6= 0 se n ≥ N , e o limite
forneça um único resultado, finito ou infinito.

Observe que o teorema nada diz se |x − x0| = R : nos pontos x = x0 ± R, a série pode ser
absolutamente convergente, condicionalmente convergente ou divergente. Além disso, se an se anula
uma infinidade de vezes, o raio de convergência R não pode ser calculado com as fórmulas acima; nesse
caso, exemplificaremos como R pode ser determinado por meio dos critérios da razão e da raiz: v. os
exemplos (vi) e (vii) abaixo.

O conjunto dos valores reais de x para os quais a série é convergente é chamado de intervalo de
convergência. Este, segundo o teorema, pode consistir apenas no ponto x0, se R = 0, ou, se R > 0,
nos intervalos (x0−R, x0 +R), [x0−R, x0 +R), (x0−R, x0 +R] ou [x0−R, x0 +R], conforme a série
seja convergente, ou não, em x0 ±R.

Por exemplo, vamos calcular o raio de convergência R e o intervalo de convergência

i) da série
∞∑
n=1

nn xn :

R =


lim
n→∞

| an
an+1

| = lim
n→∞

nn

(n+ 1)n+1
= lim
n→∞

1

n+ 1
·
( n

n+ 1

)n
= lim
n→∞

1

n+ 1
· 1(

1 +
1

n

)n = 0 · 1
e
= 0

ou

lim
n→∞

1
n
√
|an|

= lim
n→∞

1
n
√
nn

= lim
n→∞

1

n
= 0

e, portanto, a série
∞∑
n=0

nn xn só converge em x = 0 .
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ii) da série
∞∑
n=0

xn

n+ 2
:

R =


lim
n→∞

| an
an+1

| = lim
n→∞

1/(n+ 2)
1/(n+ 3)

= 1

ou

lim
n→∞

1
n
√
|an|

= lim
n→∞

1

n

√
1

n+ 2

= lim
n→∞

n
√
n+ 2 = 1

⇒
∞∑
n=0

xn

n+ 2
converge ∀x ∈ (−1, 1) .

Analisemos a convergência nos ponto x = ±1. Se x = 1, temos a série divergente
∞∑
n=0

1

n+ 2

[
=

∞∑
n=2

1

n

]
. Se x = −1, temos a série alternada

∞∑
n=0

(−1)n 1

n+ 2
, que, segundo o Teorema 4, é convergente

(condicionalmente convergente, obviamente).

Resposta: A série
∞∑
n=0

xn

n+ 2
converge no intervalo [−1, 1), sendo R = 1 .

iii) da série
∞∑
n=0

xn

n!
:

R =


lim
n→∞

| an
an+1

| = lim
n→∞

1/n!

1/(n+ 1)!
= lim
n→∞

(n+ 1) =∞

ou

lim
n→∞

1
n
√
|an|

= lim
n→∞

1
n
√
1/n!

= lim
n→∞

n
√
n! = · · · =∞

⇒
∞∑
n=0

xn

n!
converge ∀x ∈ R .

iv) da série
∞∑
n=1

(−1)n (x− 3)n

2nn
:

R =


lim
n→∞

| an
an+1

| = lim
n→∞

2n+1(n+ 1)

2nn
= 2

ou

lim
n→∞

1
n
√
|an|

= lim
n→∞

n
√
2nn︸ ︷︷ ︸

2 n
√
n

= 2

⇒
∞∑
n=1

(−1)n (x−3)n

2nn
converge ∀x ∈ (3−2, 3+2) = (1, 5) .

Analisemos a convergência nos pontos extremos desse intervalo. Se x = 1, temos a série divergente
∞∑
n=0

1

n
. Se x = 5, temos a série alternada

∞∑
n=0

(−1)n

n
, que, segundo o Teorema 4, é convergente

(condicionalmente convergente).

Resposta:
∞∑
n=0

(−1)n (x− 3)n

2nn
converge no intervalo (1, 5], sendo R = 2 .

v) da série
∞∑
n=1

5 + (−1)n

6 · 2n
· xn :

Os coeficientes an =
5 + (−1)n

6 · 2n
são tais que lim

n→∞
| an
an+1

| = 3 ou
4

3
, conforme n → ∞ tomando

valores pares ou ímpares, respectivamente (isso já foi verificado no Exemplo (iv) desenvolvido na pág.
12); assim, por não existir esse limite, calculemos o raio de convergência usando a fórmula de R
envolvendo a raiz n-ésima:

R = lim
n→∞

1
n
√
|an|

= lim
n→∞

1

n

√
|5 + (−1)n

6 · 2n
|

=


lim
n→∞

n

√
6 · 2n

5 + 1
= 2 se n→∞ tomando valores pares

lim
n→∞

n

√
6 · 2n

5− 1
= 2

1︷ ︸︸ ︷
lim
n→∞

n

√
6

4
= 2 se n→∞ tomando valores ímpares ,
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isto é, R = 2, convergindo a série no intervalo (−2, 2). Uma vez que, nos extremos desse intervalo, a
série toma as formas

∞∑
n=1

5 + (−1)n

6 · 2n
· xn

∣∣∣∣∣
x=−2

=

∞∑
n=1

(−1)n 5 + (−1)n

6
e

∞∑
n=1

5 + (−1)n

6 · 2n
· xn

∣∣∣∣∣
x=2

=

∞∑
n=1

5 + (−1)n

6
,

que são séries divergentes (pois o termo geral não tende a zero), temos, como resposta, que a série dada
converge no intervalo (−2, 2).

vi) da série
∞∑
n=1

(−1)n (x− 5)2n

64nn2
:

Não podemos empregar as fórmulas de cálculo do raio de convergência fornecidas no Teorema 11,
pois todos os coeficientes das potências ímpares de (x − 5) se anulam

[
note que, com k = 2n, a

série pode ser escrita na forma
∞∑
k=1

ak(x − 5)k, com ak = 0 se k = 1, 3, 5, · · · e ak =
(−1)k/2

64k/2(k/2)2
se

k = 2, 4, 6, · · ·
]
. Nesse caso, empregamos o critério da razão ou o da raiz para determinar os valores

de x que tornam convergente a série
∞∑
n=1

cn, onde cn =
(−1)n (x− 5)2n

64nn2
.

Para x 6= 5 (ponto no qual a série é obviamente convergente), o critério da razão fornece

lim
n→∞

|cn+1

cn
| = lim

n→∞
| (x− 5)2(n+1)

64n+1(n+ 1)2
· 64nn2

(x− 5)2n
| = (x− 5)2

64

1︷ ︸︸ ︷
lim
n→∞

( n

n+ 1

)2
< 1

⇒ (x− 5)2 < 64 ⇒ −8 < x− 5 < 8 ⇒ −3 < x < 13 .
O mesmo resultado é obtido com o critério da raiz:

lim
n→∞

n
√
|cn| = lim

n→∞

n

√
| (−1)

n (x−5)2n

64nn2
| = (x−5)2

64

1

lim
n→∞

n
√
n2

< 1 ⇒ (x− 5)2< 64 ⇒ −3 < x < 13 ,

uma vez que lim
n→∞

n
√
n2 = lim

n→∞
(n2)1/n = lim

n→∞
e
lnn2

n = e
2 lim

n→∞
lnn
n = e2(0) = e0 = 1 .

Por outro lado,
∞∑
n=1

(−1)n (x− 5)2n

64nn2

∣∣∣∣
x=−3 ou 13

=
∞∑
n=1

(−1)n

n2
é absolutamente convergente.

Resposta:
∞∑
n=1

(−1)n (x− 5)2n

64nn2
converge no intervalo [−3, 13], sendo R = 8 .

vii) da série
∞∑
n=1

(−1)n (x− 5)3n

64n
√
n

:

Nesta série nota-se a ausência de toda potência (x − 5)k em que k não seja múltiplo de 3, motivo
pelo qual novamente convém empregar os critérios da razão ou da raiz.

Com cn =
(−1)n (x− 5)3n

64n
√
n

, e para x 6= 5, obtemos, pelo critério da razão,

lim
n→∞

|cn+1

cn
| = lim

n→∞
| (x− 5)3(n+1)

64n+1
√
n+ 1

· 64n
√
n

(x− 5)3n
| = |x− 5|3

64

1︷ ︸︸ ︷
lim
n→∞

√
n

n+ 1
< 1

⇒ |x− 5|3 < 64 ⇒ |x− 5| < 3
√
64 = 4 ⇒ −4 < x− 5 < 4 ⇒ 1 < x < 9 .

Esse mesmo resultado é obtido pelo critério da raiz:

lim
n→∞

n
√
|cn| = lim

n→∞
n

√
| (−1)

n (x− 5)3n

64n
√
n

| = |x−5|
3

64

1

lim
n→∞

n
√√

n
< 1 ⇒ |x − 5|3< 64 ⇒ 1 < x < 9

pois lim
n→∞

n
√√

n = lim
n→∞

(
√
n )1/n = lim

n→∞
e
ln

√
n

n = e
1
2 lim

n→∞
lnn
n = e0 = 1 .

Além disso,
∞∑
n=1

(−1)n (x− 5)3n

64n
√
n

∣∣∣∣
x=1

=
∞∑
n=1

1√
n

(uma série harmônica de ordem menor ou igual a 1) é divergente.
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∞∑
n=1

(−1)n (x− 5)3n

64n
√
n

∣∣∣∣
x=9

=
∞∑
n=1

(−1)n√
n

é uma série alternada convergente.

Resposta:
∞∑
n=1

(−1)n (x− 5)3n

64n
√
n

converge no intervalo (1, 9] , sendo R = 4 .

Teorema 12

Uma série de potências
∞∑
n=0

an (x − x0)n com raio de convergência R > 0 apresenta as seguintes

propriedades no intervalo (x0 −R , x0 +R):

a) sua soma
∞∑
n=0

an (x− x0)n = f(x) é uma função contínua;

b) ela pode ser diferenciada termo a termo para se obter
∞∑
n=1

nan (x− x0)n−1 = f ′(x) ;

c) ela pode ser integrada termo a termo para se obter
∞∑
n=0

an
n+ 1

(x− x0)n+1 =

∫
f(x) dx .

Observe que, de acordo com esse mesmo teorema, a série de potências produzida por diferenciação
pode ser novamente diferenciada para se obter uma nova série de potências que converge para f ′′(x)
no mesmo intervalo (x0 − R , x0 + R). Ou seja, diferenciações sucessivas produzem as derivadas
f (n)(x) [n = 1, 2, · · · ], todas definidas no mesmo intervalo. Isso significa que a soma de uma série de
potências centrada em x0 com raio de convergência R > 0 é, no intervalo (x0−R, x0+R), uma função
infinitamente diferenciável, isto é, uma função que pode ser diferenciada um número qualquer de vezes.

1.5 Séries de Taylor e de MacLaurin
Teorema 13

Os coeficientes de uma série de potências
∞∑
n=0

an (x − x0)n com raio de convergência R > 0 são

dados por an = f (n)(x0)/n! , onde f(x) é a função para a qual aquela série converge no seu intervalo
de convergência. Para essa função, temos então a seguinte série:

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n = f(x0) + f ′(x0) (x− x0) +

f ′′(x0)

2
(x− x0)2 +

f ′′′(x0)

3!
(x− x0)3 + · · · .

Para estabelecer esse teorema, é fundamental o fato de a soma f(x) de uma série de potências com
raio de convergência não nulo ser, como garante o Teorema 12, uma função infinitamente diferenciável
no intervalo de convergência.

Considere agora qualquer função g(x) que seja infinitamente diferenciável em x0. Podemos formar
a seguinte série, com a mesma forma daquela acima:

∞∑
n=0

g(n)(x0)

n!
(x− x0)n ,

denominada série de Taylor de g(x) relativa a x0 (se x0 = 0, ela é chamada de série de MacLaurin).
Surge a questão de saber sob que condições essa série converge para g(x). Não vamos entrar aqui

nos detalhes dessas condições (existe teorema especificando condições suficientes para a convergência),
mas é importante saber o seguinte:

• A série de Taylor pode convergir apenas em parte, isto é, num intervalo do domínio de g(x), ou
mesmo apenas no ponto x = x0. Por exemplo, mais adiante veremos que g(x) = 1/(1+x2) (cujo
domínio é todo o eixo real) é convergente apenas para x ∈ (−1, 1).

• Ainda que a série de Taylor convirja em todo o domínio da função g(x), a série pode não coincidir
com a função em parte do domínio. Por exemplo, se g(x) = |x − 1| (igual a x − 1 se x ≥ 1 e a
1− x se x ≤ 1), então g(0) = 1, g′(0) =

[
d(1− x)/dx

]
x=0

= −1, e g(n)(0)
∣∣
n≥2

= 0; logo, a série
de MacLaurin é g(0) + g′(0)x = 1− x, que é diferente de g(x) se x > 1.
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Há vários modos para calcular uma série de Taylor. Vejamos alguns deles, todos em relação a x = 0
(séries de MacLaurin):

Modo 1) Naturalmente, um modo consiste no uso direto da fórmula da série de Taylor fornecida
no Teorema 13. Os detalhes dos próximos quatro exemplos, relacionados a algumas das funções ele-
mentares, são apresentados no Prob. 18):

i) ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+
x4

4!
+ · · · (x ∈ R) .

ii) cosx =

∞∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · (x ∈ R) .

iii) senx =

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · (x ∈ R) .

iv) lnx =

∞∑
n=1

(−1)n−1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · · (0 < x ≤ 2) ,

ou, em função da variável u = x− 1 ,

ln(1 + u) =

∞∑
n=1

(−1)n−1u
n

n
= u− u2

2
+
u3

3
− u4

4
+ · · · (−1 < u ≤ 1) .

v)
1√

1 + x2
= 1− x2

2
+ · · · .

Modo 2) Séries de Taylor conhecidas podem ser usadas para calcular novas séries de Taylor. Os
seguintes exemplos são baseados nas séries de Taylor apresentadas acima:

i) x4e−3x = x4
∞∑
n=0

(−3x)n

n!
=

∞∑
n=0

(−1)n3nx4+n

n!
= x4 − 3x5 +

9x6

4
− 27x7

6
+ · · · (x ∈ R) .

ii) x3 senx2 = x3
∞∑
n=0

(−1)n (x
2)2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n x4n+5

(2n+ 1)!
= x5 − x9

3!
+
x13

5!
− x17

7!
+ · · · (x ∈ R) .

Modo 3) A série geométrica
∞∑
n=0

xn = 1 + x + x2 + · · · , que converge para 1/ (1 − x) se |x| < 1,

pode ser empregada para se obter mais facilmente a série de Taylor de algumas funções:

i)
1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n = 1 − x2 + x4 − x6 + · · · se |(−x2)| = x2 < 1,

i.e., −1 < x < 1 .

ii)
x2

3− 4x
=

x2

3
· 1

1− (4x/3)
=

x2

3

∞∑
n=0

(4x/3)n =

∞∑
n=0

4nxn+2

3n+1
=

x2

3
+

41x3

32
+

42x4

33
+

43x5

34
+ · · ·

se |4x/3| < 1 , i.e., −3/4 < x < 3/4 .

Modo 4) De grande auxílio no desenvolvimento de certas funções em série de Taylor é o Teorema 12.
Nos três exemplos que seguem, para se obter o desenvolvimento em série da função f(x), primeiramente
desenvolvemos f ′(x) em série e depois integramos essa série termo a termo. Esse método funciona bem,
obviamente, quando é mais fácil expandir f ′(x) do que f(x):

i) f(x) = ln(1 + x)

∴ f ′(x) =
1

1 + x
=

1

1− (−x)
=

∞∑
k=0

(−x)k =

∞∑
k=0

(−1)kxk, se |− x| < 1, isto é, x ∈ (−1, 1) .
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Integrando, obtemos f(x) =
∞∑
k=0

(−1)k x
k+1

k + 1
+ c , onde, substituindo x = 0, obtemos

f(0)︸︷︷︸
ln 1 = 0

=

[ ∞∑
k=0

(−1)k x
k+1

k + 1

]
x=0︸ ︷︷ ︸

0

+ c ⇒ 0 = c .

Sempre determinamos tais constantes de integração substituindo o ponto x = x0 em que a série
está centrada, pois, nele, anulando-se a série, o cálculo delas é facilitado.

O Teorema 12 garante que a série de f(x) obtida por integração permanece válida, pelo menos, no
intervalo (x0−R, x0+R), igual a (−1, 1) no caso. Mas a integração pode melhorar a convergência nos
extremos desse intervalo, o que nos leva à tarefa extra de verificar se isso de fato aconteceu:

- em x = −1:
∞∑
k=0

(−1)k x
k+1

k + 1

∣∣∣∣
x=−1

=

∞∑
k=0

(−1)2k+1

k + 1
= −

∞∑
k=0

1

k + 1
, que é uma série divergente, como

há de ser, pois não existe f(−1) = ln 0 .

- em x = 1:
∞∑
k=0

(−1)k x
k+1

k + 1

∣∣∣∣
x=1

=

∞∑
k=0

(−1)k

k + 1
, uma série alternada convergente.

Temos então que

f(x) = ln(1 + x) =

∞∑
k=0

(−1)k x
k+1

k + 1

(∗)
=

∞∑
n=1

(−1)n−1x
n

n
, com x ∈ (−1, 1] ,

onde, na passagem (∗), mudamos o índice do somatório para n = k + 1 para escrever a séria na forma
já obtida acima, no Exemplo (iv) do Modo 1.

Foi dito logo acima que a integração pode melhorar a convergência, o que se entende pelo fato de

que a integral de uma série
∞∑
n=0

anx
n convergente é

∞∑
n=0

[an/(n+1)]xn+1, cujos coeficientes, sendo iguais

aos da série original divididos por n+ 1→∞, tendem comparativamente a zero mais rapidamente, o

que melhora a convergência. Já a diferenciação produz a série
∞∑
n=1

nanx
n−1, cujos coeficientes, sendo

os originais multiplicados por n→∞, tendem a formar uma série com tendência menor a convergir.

ii) f(x) = arctan x ⇒ f ′(x) =
1

1 + x2
=

∞∑
n=0

(−1)nx2n (série já obtida acima, válida para −1 < x < 1)

⇒ f(x) =

∞∑
n=0

(−1)nx2n+1

2n+ 1
+ c. Como essa série é convergente para x = ±1 (segundo o critério para

séries alternadas), e c = 0 [ pois f(0) = 0 ], temos, finalmente, que f(x) = arctan x =

∞∑
n=0

(−1)nx2n+1

2n+ 1
=

x− x3

3
+
x5

5
− x7

7
+ · · · (−1 ≤ x ≤ 1) .

iii) f(x) = ln

√
1 + x

1− x
⇒ f ′(x) =

1

1− x2
=

∞∑
n=0

(x2)n se − 1 < x < 1 ⇒ f(x) =

∞∑
n=0

x2n+1

2n+ 1
+ c.

Como essa série é divergente para x = ±1, e c = 0 [ pois f(0) = 0 ], obtemos finalmente f(x) =

ln

√
1 + x

1− x
=

∞∑
n=0

x2n+1

2n+ 1
= x+

x3

3
+
x5

5
+
x7

7
+ · · · (−1 < x < 1) .

Uma aplicação das séries de Taylor é o cálculo da integral de uma função cuja primitiva não
é conhecida na forma de uma expressão fechada (isto é, em termos das funções elementares). Por
exemplo, uma primitiva de ex

2

é∫
ex

2

dx =

∫ [ ∞∑
n=0

(x2)n

n!

]
dx =

∞∑
n=0

1

n!

∫
x2ndx =

∞∑
n=0

1

n!

x2n+1

2n+ 1

= x+
x3/3

1!
+
x5/5

2!
+
x7/7

3!
+
x9/9

4!
+ · · · (x ∈ R) ,
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obtida na forma de série infinita. Usando-a, podemos calcular, por exemplo, a integral definida:∫ 1

0

ex
2

dx =

∞∑
n=0

1

n!

[ x2n+1

2n+ 1

]1
0
=

∞∑
n=0

1/ (2n+ 1)

n!
= 1 +

1/3

1!
+

1/5

2!
+

1/7

3!
+

1/9

4!
+ · · · .

1.6 Exercícios
1. Calcule lim

n→∞
an , caso exista, sendo:

a) an =
n3 + 3n+ 1

4n3 + 2
b) an =

√
n+ 1−

√
n c) an =

(
1 +

2

n

)n
d) an = n

√
n

2. Calcule a soma da série:

a)
∞∑
k=2

(
1

3

)k
b)

∞∑
k=0

e−k c)
∞∑
k=0

(−1)k2−k d)
∞∑
k=0

2−k/2 e)
∞∑
k=1

(−1)k 2
2k−1

7k

f)
∞∑
k=2

2k−131−k g) 0, 032 + 0, 0032 + 0, 00032 + · · ·

3. Usando o critério do termo geral, mostre a divergência de:

a)
∞∑
k=1

sen
k2π

2
b)

∞∑
k=1

2k

k3
c)

∞∑
k=1

k ln
k + 5

k + 2

4. Usando o critério para série alternada, mostre a convergência de:

a)
∞∑
k=1

(−1)k+1 ln k

k
b)

∞∑
k=1

(−1)k sen 1

k
c)

∞∑
k=2

(−1)kk3

k4 + 3
d)

∞∑
k=2

(−1)k2kk
(k + 1) ek+1

5. Usando o critério da integral, determine a convergência de:

a)
∞∑
k=1

1

k2 + 1
b)

∞∑
k=2

1

k ln2 k

6. Usando o critério da integral, determine a divergência de:

a)
∞∑
k=1

k

k2 + 1
b)

∞∑
k=2

1

k
√
ln k

c)
∞∑
k=2

1

k ln k
d)

∞∑
k=2

1

(k ln k)(ln ln k)

7. Usando o critério da comparação, mostre a convergência de:

a)
∞∑
k=1

1√
k (1+

√
k3 )

b)
∞∑
k=2

1

k2 ln k
c)

∞∑
k=1

ln k

k3
√
k

d)
∞∑
k=1

ln k

k2
e)

∞∑
k=1

ln k

k3/2

8. Usando o critério da comparação, mostre a divergência de:

a)
∞∑
k=0

2k + 1

k2 − 3k − 4
b)

∞∑
k=0

2k + 1

k2 + 3k + 4
c)

∞∑
k=0

2k − 1

k2 − 3k + 4
d)

∞∑
k=0

2k − 9

k2 − 3k + 4

e)
∞∑
k=2

1

ln2 k
f)

∞∑
k=2

1√
k ln k

g)
∞∑
k=2

1√
ln k

9. Usando o critério da comparação, determine se é convergente ou divergente:

a)
∞∑
k=1

k + 1

2k3 − 1
b)

∞∑
k=0

2k6 − 4k5 + 3k − 6

3k9 + 2k2 − 2k + 1
c)

∞∑
k=0

2k − 1

k2 − 3k + 4

10. Usando o critério da comparação no limite, determine se é convergente ou divergente:

a)
∞∑
k=1

4k2 − k + 3

k3 + 2k
b)

∞∑
k=1

k +
√
k

2k3 − 1
c)

∞∑
k=4

k − 3

(k + 2)
√
k + 1

d)
∞∑
k=0

9k + 2(3k)

5(2k)− 4
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11. Usando o critério da razão, determine a convergência ou divergência de:

a)
∞∑
k=1

(−1)k

k!
b)

∞∑
k=0

3k + k

2k + 1
c)

∞∑
k=1

k!2k

kk
d)

∞∑
k=1

(4− π)k

k3 + 4

12. Usando o critério da raiz, mostre a convergência de:

a)
∞∑
k=1

1

kk
b)

∞∑
k=1

(
k

k + 1

)k2

13. Usando o critério da razão, determine x para que a série seja convergente:

a)
∞∑
n=1

(x− 3)n

n
b)

∞∑
n=1

nxn

n3 + 1
c)

∞∑
n=1

(2n+ 1)xn

n!
d)

∞∑
n=2

xn+1

3n−1

e)
∞∑
n=1

1

(x+ 6)n ln(n+ 1)
f)

∞∑
n=1

xn

(1− x)n+1

14. Classifique, justificando, se são absolutamente convergentes, condicionalmente convergentes ou
divergentes:

a)
∞∑
k=1

(−1)k√
k(k + 2)

b)
∞∑
k=1

(−1)k k
2

4k
c)

∞∑
k=1

√
k sen

1√
k

15. (Séries telescópicas) Seja ak uma sequência convergente e denote lim
k→∞

ak ≡ a. Mostre que

a)
∞∑
k=j

(ak − ak+1) = aj − a b)
∞∑
k=j

(ak − ak+2) = aj + aj+1 − 2a

c)
∞∑
k=1

1

k(k + 1)
= 1 d)

∞∑
k=2

1

k2 − 1
=

3

4
e)

∞∑
k=3

2k + 1

k2(k + 1)2
=

1

9

f)
∞∑
k=6

(
1

4k + 1
− 1

4k + 5

)
=

1

25
g)

∞∑
k=1

[
sen
(kπ + π

3k + 6

)
− sen

( kπ

3k + 3

)]
=

√
3− 1

2

h)
∞∑
k=0

1

(3k − 2)(3k + 4)
=

1

12
i)

∞∑
k=1

1

k(k + 1)(k + 2)
=

1

4
j)

∞∑
k=2

4k

(k2 − 1)2
=

5

4

k)
∞∑
k=2

(
k
√
k − k+1

√
k + 1

)
=
√
2− 1 l)

∞∑
k=4

(
k ln

k + 3

k − 3
− k ln

k + 4

k − 2
− ln

k + 4

k − 2

)
= 4 ln 7− 6

16. Determinar se são convergentes ou divergentes:

a)
∞∑
k=1

k − 4√
k6 − 3k − 5

b)
∞∑
k=1

3k − 1000

k 2k
c)

∞∑
k=1

ek

k + 1
d)

∞∑
k=1

k9

k!− k2

e)
∞∑
k=1

(−1)k ln k
2k + 3

f)
∞∑
k=2

ln2 k − 1

k + ln2 k
g)

∞∑
k=1

ln k − 1

k ln2 k
h)

∞∑
k=1

(
k + 1

2k

)k
i)

∞∑
k=0

5 + cos
√
k3

k + 1
j)

∞∑
k=1

cos kπ

k + 2
k)

∞∑
k=1

(2/5)lnn

17. Determine o intervalo de convergência das seguintes séries de potências:

a)
∞∑
n=1

(−1)n

n
xn b)

∞∑
n=1

√
n+ 3 (x− 7)n

(n+ 5)2
c)

∞∑
n=1

(−2x)n

(n+ 1)2 + 2

d)
∞∑
n=0

5n(x− 1)n

n!
e)

∞∑
n=0

nn(x− 2)n

2n
f)

∞∑
n=0

(x+ 2)3n

8n ln(n+ 2)

18. Calcule as séries de MacLaurin, e os correspondentes intervalos de convergência, de
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a) ex em torno de x = 0 b) cosx em torno de x = 0 c) senx em torno de x = 0
d) lnx em torno de x = 1

19. Desenvolva as seguintes funções numa série de MacLaurin, fornecendo o intervalo de convergência:

a)
x

(1− x)2
b)

x2

(1− x)3
c)

x+ 1

3x+ 2

20. Identifique as seguintes funções:

a) f(x) =
∞∑
n=0

(n+ 1)xn b) g(x) =
∞∑
n=2

(n− 1)xn c) h(x) =
∞∑
n=3

x2n+1

d) u(x) =
∞∑
n=1

nx2n+1

21. Desenvolva as seguintes funções numa série de MacLaurin, fornecendo o intervalo de convergência:

a)
∫ x

0

cos t− 1

t
dt b)

∫ x

0

sent2

t2
dt c)

∫ x

0

ln(1 + 125t3) dt

22. Calcule a soma das seguintes séries:

a)
∞∑
n=1

(−1)n−12−2n

n
b)

∞∑
n=1

(−1)nπ2n+1

22n+1(2n+ 1)!
c)

∞∑
n=0

(−1)n

2n+ 1

23. Se f(x) = senx3, calcule f (15)(0).

24. Calcule a soma da série no Exemplo (iv) do Teorema 9.

1.7 Soluções dos Exercícios
Prob. 1

a) lim
n→∞

an = lim
n→∞

n3 + 3n+ 1

4n3 + 2
= lim
n→∞

1 + 3
n2 + 1

n3

4 + 2
n3

= 1
4

b) lim
n→∞

an = lim
n→∞

√
n+ 1−

√
n = lim

n→∞
(
√
n+ 1−

√
n )

√
n+ 1 +

√
n√

n+ 1 +
√
n
= lim
n→∞

1√
n+ 1 +

√
n
= 0

c) Como lim
n→∞

(
1 +

x

n

)n
= ex, temos que lim

n→∞
an = lim

n→∞

(
1 +

2

n

)n
= e2

d) lim
n→∞

an = lim
n→∞

n1/n = lim
n→∞

e
lnn
n = e

(
lim

n→∞
lnn
n

)
(l’ H)
= e

(
lim

n→∞
1/n
1

)
= e0 = 1

Prob. 2
Neste problema fazemos uso da fórmula da soma da série geométrica

∞∑
k=0

qk =
1

1− q
se |q| < 1.

a)
∞∑
k=2

(1
3

)k
=

(1/3)2

1− 1/3
=

1

6

b)
∞∑
k=0

e−k =
∞∑
k=0

(
e−1
)k

=
1

1− e−1
=

e

e− 1

c)
∞∑
k=0

(−1)k2−k =
∞∑
k=0

(−1
2

)k
=

1

1− (−1/2)
=

2

3

d)
∞∑
k=0

2−k/2 =
∞∑
k=0

(
2−1/2

)k
=

1

1− 2−1/2
=

1

1− 1/
√
2
=

√
2√

2− 1
·
√
2 + 1√
2 + 1

=
2 +
√
2

2− 1
= 2 +

√
2

e)
∞∑
k=1

(−1)k 2
2k−1

7k
=

1

2

∞∑
k=1

(−22/7)k =
1

2
· (−22/7)1

1− (−22/7)
=
−2
7 + 4

= − 2

11
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f)
∞∑
k=2

2k−131−k =
3

2

∞∑
k=2

(
2

3

)n
=

3

2
· (2/3)

2

1− 2/3
=

3

2
· 4/9
1/3

= 2

g) 0, 032 + 0, 0032 + 0, 00032 + · · · = 0, 032
[
(10−1)0 + (10−1)1 + (10−1)2 + · · ·

]
= 0, 032

∞∑
k=0

(10−1)k

= 0, 032 · 1

1− 10−1
= 0, 032 · 10

9
=

32

900

Prob. 3
Neste problema, basta mostrar que lim

k→∞
ak não exite ou, existindo, que lim

k→∞
ak 6= 0 .

a) lim
k→∞

ak = lim
k→∞

sen
k2π

2
não existe (ak oscila nos valores 0 e 1)

b) lim
k→∞

ak = lim
k→∞

2k

k3
(l’ H)
= lim

k→∞

2k ln 2

3k2
(l’ H)
= lim

k→∞

2k ln2 2

6k

(l’ H)
= lim

k→∞

2k ln3 2

6
=∞ (não existe)

c) lim
k→∞

ak = lim
k→∞

k ln
k + 5

k + 2
= lim

k→∞

ln k+5
k+2

k−1

(l’ H)
= lim

k→∞

−3
(k+2)(k+5)

−k−2
= lim

k→∞

3k2

k2 + 7k + 10
= 3 6= 0

Prob. 4
Aplicamos o critério de convergência para uma série alternada

∑∞
k=0(−1)kak [ak > 0], que consiste

em verificar se a sequência ak é decrescente e com limite igual a zero. Abaixo, cada sequência ak
dada é claramente decrescente (o que, caso se duvide, pode ser confirmado constatando que a derivada
da função f(k) = ak é negativa). Assim, mostraremos a convergência verificando tão-somente que
limk→∞ ak = 0.

a) lim
k→∞

ak = lim
k→∞

ln k

k

l’H
= lim

k→∞

1/k

1
= 0 ✓

b) lim
k→∞

ak = lim
k→∞

sen
1

k
= sen

(
lim
k→∞

1

k

)
= sen0 = 0 ✓

c) lim
k→∞

ak = lim
k→∞

k3

k4 + 3
= lim
k→∞

1

k +����: 0
(3/k3)

= 0 ✓

d) lim
k→∞

2kk

(k + 1) ek+1
=

1

e
lim
k→∞

(2/e)k︸ ︷︷ ︸
→0

k

k + 1︸ ︷︷ ︸
→1

= 0 ✓

Prob. 5
Observe que, em cada integral

∫∞
K
f(x) dx usada, a função f(x) é contínua, positiva, decrescente e

tal que f(k) = ak (o termo geral da série) para k ≥ K, assim satisfazendo as condições do critério da
integral. Neste problema, basta mostrar que essa integral imprópria existe.

a)
∫ ∞

1

1

x2 + 1
dx = arctanx

∣∣∣∞
1

= arctan∞− arctan 1 =
π

2
− π

4
=
π

4

b)
∫ ∞

2

1

x ln2 x
dx = − ln−1 x

∣∣∣∞
2

= − 1

ln∞
+

1

ln 2
= 0 +

1

ln 2
=

1

ln 2

Prob. 6
Devemos mostrar que a integral imprópria construída segundo o critério da integral (v. o início da

resolução do Prob. 5) não existe.

a)
∫ ∞

1

x

x2 + 1
dx =

1

2
ln(x2 + 1)

∣∣∣∞
1

=
1

2
(ln∞︸︷︷︸

∞

− ln 2) =∞

b)
∫ ∞

2

1

x
√
lnx

dx = 2
√
lnx

∣∣∣∞
2

= 2 (
√
ln∞︸ ︷︷ ︸
∞

−
√
ln 2) =∞

c)
∫ ∞

2

1

x lnx
dx = ln | lnx|

∣∣∣∞
2

= ln ln∞︸ ︷︷ ︸
∞

− ln ln 2 =∞
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d)
∫ ∞

3

1

(x lnx) ln lnx
dx = ln ln ln x

∣∣∣∞
3

= ln ln ln∞︸ ︷︷ ︸
∞

− ln ln ln 3 =∞ (note que ln lnx > 0 se x ≥ 3)

Prob. 7
Pelo critério da comparação entre séries de termos gerais positivos, para mostrar que uma série é

convergente, basta mostrar que, assintoticamente (i.e., para k maior que algum natural, ou k →∞), o
seu t.g. (termo geral) é menor ou igual que o t.g. de alguma sér. conv. (série convergente).

a)
1√

k (1 +
√
k3)
≤ 1√

k (1− 1 +
√
k3)

=
1

k2
: t.g. de uma sér. conv.

b)
1

k2 ln k

∣∣∣∣
k≥3

≤ 1

k2
: t.g. de uma sér. conv.

c)
ln k

k3
√
k
≤ k

k3
√
k
=

1

k2,5
: t.g. de uma sér. conv. (∗)

d)
ln k

k2
≤
√
k

k2
=

1

k1,5
: t.g. de uma sér. conv.

e)
ln k

k3/2
≤ k0,2

k1,5
=

1

k1,3
: t.g. de uma sér. conv.

Prob. 8
Pelo critério da comparação entre séries de termos gerais positivos, para mostrar que uma série é

divergente, basta mostrar que, assintoticamente (i.e., para k maior que algum inteiro positivo), o seu
t.g. é maior ou igual que o t.g. de alguma sér. div. (série divergente).

a)
2k + 1

k2 − 3k − 4
≥ 2k + 1− 1

k2 − 3k − 4 + 3k + 4
=

2

k
: t.g. de uma sér. div.

b)
2k + 1

k2 + 3k + 4
≥ 2k + 1− 1

k2 + 3k2 + 4k2
=

1

4k
: t.g. de uma sér. div.

c)
2k − 1

k2 − 3k + 4
≥ 2k − k
k2 − 3k + 3k + 4k2

=
1

5k
: t.g. de uma sér. div.

d)
2k − 9

k2 − 3k + 4
≥ 2k − k
k2 − 3k + 3k + 4k2

=
1

5k
(k ≥ 9) : t.g. de uma sér. div.

e)
1

(ln k)2
≥ 1

(
√
k)2

=
1

k
: t.g. de uma sér. div.

f)
1√
k ln k

≥ 1√
k
√
k
=

1

k
: t.g. de uma sér. div.

g)
1√
ln k
≥ 1√

k
=

1

k1/2
: t.g. de uma sér. div.

Prob. 9

a) Conv., pois
k + 1

2k3 − 1
≤ k + k

2k3 − k3
=

2

k2
é o t.g. de uma sér. conv.

b) Conv., pois
2k6 − 4k5 + 3k − 6

3k9 + 2k2 − 2k + 1
≤ 2k6 − 4k5 + 4k5 + 3k6 − 6 + 6

3k9 + 2k2 − 2k2 − 2k9 + 1− 1
=

5

k3
é o t.g. de uma sér. conv.

c) Div., pois
2k − 1

k2 − 3k + 4
≥ 2k − k
k2 − 3k + 3k + 4k2

=
1

5k
é o t.g. de uma sér. div.

(∗) ∀p > 0 , ln k < kp para k suficientemente grande, pois essas duas funções são estritamente crescentes e

lim
k→∞

ln k

kp
l’H
= lim

k→∞

1/k

p kp−1
= lim

k→∞

1

kp
= 0 se p > 0 .

Assim, ln k é menor que k2, k, k1/2, k0,2 e k0,001 para k maiores que algum real.
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Prob. 10

a) Com ak =
4k2 − k + 3

k3 + 2k
> 0 e bk =

k2

k3
=

1

k
> 0 ∀k ≥ 1, temos que

lim
k→∞

ak
bk

= lim
k→∞

4k2 − k + 3

k3 + 2k

/1

k
= lim
k→∞

4k3 − k2 + 3k

k3 + 2k
= lim
k→∞

4− 1/k + 3/k2

1 + 2/k2
= 4 : finito.

Logo, pelo critério da comparação no limite, uma vez que a série
∑
k

bk diverge (por ser harmônica

de ordem p = 1), a série
∑
k

ak dada também diverge.

b) Com ak =
k +
√
k

2k3 − 1
> 0 e bk =

k

k3
=

1

k2
> 0 ∀k ≥ 1, temos que

lim
k→∞

ak
bk

= lim
k→∞

k +
√
k

2k3 − 1

/ 1

k2
= lim
k→∞

k3 + k5/2

2k3 − 1
= lim
k→∞

1 + 1/
√
k

2− 1/k3
=

1

2
: finito.

Logo, pelo critério da comparação no limite, uma vez que a série
∑
k

bk converge (por ser harmônica

de ordem p = 2), a série
∑
k

ak dada também converge.

c) Com ak =
k − 3

(k + 2)
√
k + 1

> 0 e bk =
k

k
√
k
=

1√
k
> 0 ∀k ≥ 4, temos que

lim
k→∞

ak
bk

= lim
k→∞

k − 3

(k + 2)
√
k + 1

/ 1√
k
= lim
k→∞

(1− 3/k)ZZ
√
k

(1 + 2/k)ZZ
√
k
√
1 + 1/k

= 1 : finito.

Logo, pelo critério da comparação no limite, uma vez que a série
∑
k

bk diverge (por ser harmônica

de ordem p = 1/2), a série
∑
k

ak dada também diverge.

d) Com ak =
9k + 2(3k)

5(2k)− 4
> 0 e bk =

3k

2k
=
(3
2

)k
> 0 ∀k ≥ 0, temos que

lim
k→∞

ak
bk

= lim
k→∞

9k + 2(3k)

5(2k)− 4

/3k

2k
= lim
k→∞

9k(2k) + 2(2k3k)

5(2k3k)− 4(3k)
= lim
k→∞

����* 0

9k/3k + 2

5−HHHj 0
4/3k

=
2

5
: finito.

Logo, pelo critério da comparação no limite, uma vez que a série
∑
k

bk diverge (por ser uma série

geométrica de razão q = 3/2 < 1), a série
∑
k

ak dada também diverge.

Prob. 11
Seja L ≡ lim

k→∞
|ak+1/ak|, onde ak é o termo geral da série dada. Abaixo, os resultados L < 1 e

L > 1 indicam séries convergentes e divergentes, respectivamente. (O símbolo de módulo será omitido
no caso de termo geral positivo.)

a) L = lim
k→∞

| (−1)
k+1/(k + 1)!

(−1)k/k!
| = lim

k→∞

k!

(k + 1)!
= lim
k→∞

��k!

��k! (k + 1)
= lim
k→∞

1

k + 1
= 0 < 1

b) L = lim
k→∞

3k+1 + k + 1

2k+1 + 1
· 2
k + 1

3k + k
= lim
k→∞

3k+1 + k + 1

3k

2k+1 + 1

2k

·

2k + 1

2k

3k + k

3k

= lim
k→∞

3 +
�
�
��

0

k + 1

3k

2 +
�
�
��
0

1

2k

·
1 +

�
�
��
0

1

2k

1 +
�
�
��
0

k

3k

=
3

2
> 1

c) L = lim
k→∞

(k + 1)! 2k+1

(k + 1)k+1
· kk

k! 2k
= lim
k→∞

(
k

k + 1

)k
����(k + 1)!

k!

2

���k + 1
= 2 lim

k→∞

1

(1 + 1/k)k
= 2 · 1

e
< 1

d) L = lim
k→∞

(4− π)k+1

(k + 1)3 + 4
· k

3 + 4

(4− π)k
= (4− π) · lim

k→∞

k3 + 4

(k + 1)3 + 4
= (4− π) · 1 < 1
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Prob. 12

Seja L ≡ lim
k→∞

k
√
|ak| , onde ak é o termo geral da série dada. Abaixo, os resultados L < 1 e L > 1

indicam séries convergentes e divergentes, respectivamente. (O símbolo de módulo será omitido no
caso de termo geral positivo.)

a) L = lim
k→∞

1/
k
√
kk = lim

k→∞
1/k = 0 < 1

b) L = lim
k→∞

k

√( k

k + 1

)k2
= lim
k→∞

( k

k + 1

)k
= lim
k→∞

1

(1 + 1/k)k
=

1

e
< 1

Prob. 13
Segundo o critério da razão, os valores de x que tornam a série

∞∑
n=0

φn(x) convergente são os que

satisfazem a inequação Φ(x) < 1, onde Φ(x) ≡ lim
n→∞

|φn+1(x)/φn(x)|. Uma investigação separada é
necessária para verificar se a convergência da série também ocorre com os valores de x que satisfazem
a equação Φ(x) = 1.

a) lim
n→∞

| (x− 3)n+1/(n+ 1)

(x− 3)n/n
| = |x−3| lim

n→∞

1︷ ︸︸ ︷
n

n+ 1
= |x−3|·1 < 1 ⇒ −1 < x−3 < 1 ⇒ x > 2 e x < 4 .

∞∑
n=1

(x− 3)n

n

∣∣∣
x=2

=
∞∑
n=1

(−1)n

n
, que é uma série alternada convergente.

∞∑
n=1

(x− 3)n

n

∣∣∣
x=4

=
∞∑
n=1

1

n
, que é divergente. Resposta: x ∈ [2, 4)

b) lim
n→∞

| (n+ 1)xn+1

(n+ 1)3 + 1
÷ nxn

n3 + 1
| = |x| lim

n→∞

→1︷ ︸︸ ︷
n+ 1

n
·

→1︷ ︸︸ ︷
n3 + 1

(n+ 1)3 + 1
= |x| < 1

∞∑
n=1

nxn

n3 + 1

∣∣∣
x=−1

=
∞∑
n=1

(−1)n n

n3 + 1︸ ︷︷ ︸
→ 0

, que é uma série alternada convergente.

∞∑
n=1

nxn

n3 + 1

∣∣∣
x=1

=
∞∑
n=1

n

n3 + 1

[
≤

∞∑
n=1

n

n3

]
é convergente. Resposta: x ∈ [−1, 1]

c) lim
n→∞

| [2(n+ 1) + 1]xn+1

(n+ 1)!
÷ (2n+ 1)xn

n!
| = |x| lim

n→∞

→1︷ ︸︸ ︷
2n+ 3

2n+ 1
·

= 1
n+1 → 0︷ ︸︸ ︷
n!

(n+ 1)!
= 0 ∀x. Resposta: x ∈ R

d) lim
n→∞

| x
n+2/3n

xn+1/3n−1
| = |x|

3
< 1 ⇒ |x| < 3

∞∑
n=2

xn+1

3n−1

∣∣∣
x=−3

= 9
∞∑
n=2

(−1)n+1, que é uma série divergente.

∞∑
n=2

xn+1

3n−1

∣∣∣
x=3

=
∞∑
n=2

9, que é uma série divergente. Resposta: x ∈ (−3, 3)

Outro modo, baseado no fato de que a série dada é a uma série geométrica, é o seguinte:
∞∑
n=2

xn+1

3n−1
= 32

∞∑
n=2

(
x

3

)n−1

, que é convergente se |x
3
| < 1 , isto é, se |x| < 3 .

e) lim
n→∞

| (x+ 6)n ln(n+ 1)

(x+ 6)n+1 ln(n+ 2)
| = 1

|x+ 6|

= 1 (l’H)︷ ︸︸ ︷
lim
n→∞

ln(n+ 1)

ln(n+ 2)
< 1 ⇒ |x+ 6| > 1 ⇒ x < −7 ou x > −5

∞∑
n=1

1

(x+ 6)n ln(n+ 1)

∣∣∣
x=−7

=
∞∑
n=1

(−1)n 1

ln(n+ 1)︸ ︷︷ ︸
→ 0

, que é uma série alternada convergente.

∞∑
n=1

1

(x+ 6)n ln(n+ 1)

∣∣∣
x=−5

=
∞∑
n=1

1

ln(n+ 1)
=

∞∑
n=2

1

lnn

[
≥

∞∑
n=2

1

n

]
é div.

Resposta: x ∈ (−∞,−7 ] ∪ (−5,∞)
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f)
∞∑
n=2

xn

(1− x)n+1
=

1

1− x
∞∑
n=2

( x

1− x

)n
. Essa série geométrica é convergente se | x

1− x
| < 1, ou

|x − 1| > |x| (inequação que também se obtém pelo critério da razão). Como os modulandos mudam
de sinal em x = 0 e x = 1, convém resolver a inequação nos intervalos separados por esses valores de x.

No intervalo x < 0 : −x+ 1 > −x, ou 1 > 0, que é verídico ∀x < 0 .
No intervalo (0, 1) : −x+ 1 > x, ou x < 1/2; logo, x ∈ (0, 1/2) .
No intervalo x > 1 : x−1 > x, ou −1 > 0, um absurdo; logo, não existe solução no intervalo (1,∞).

Além disso, | x

1− x
|
∣∣∣∣
x=0

= 0 < 1 , e | x

1− x
|
∣∣∣∣
x=1

não existe.

A união dos valores de x que satisfazem a inequação fornece a resposta: x < 1/2 .

Prob. 14

a) Vejamos a série
∞∑
k=1

| (−1)k√
k(k+2)

| =
∞∑
k=1

1√
k2+2k

; vemos, por comparação, que essa série é divergente,

pois 1√
k2+2k

≥ 1√
k2+2k2

= 1
k
√
3

, que é o t.g. de uma sér. div. Assim,
∞∑
k=1

(−1)k√
k(k+2)

não converge

absolutamente; mas essa série é convergente, o que se deduz do critério para série alternada
[

1√
k(k+2)

é

uma sequência positiva, decrescente e tal que lim
k→∞

1√
k(k+2)

= 0
]
. Logo, a série dada é condicionalmente

convergente.

b) Vejamos a série
∞∑
k=1

| (−1)kk2

4k
| =

∞∑
k=1

k2

4k
; ela é convergente segundo o critério da razão: lim

k→∞
(k+1)2/4k+1

k2/4k
= 1

4 lim
k→∞

(
k+1
k

)2
= 1

4 < 1 . Ou seja, a série dada é absolutamente convergente.

c) A série é divergente segundo o critério do termo geral: lim
k→∞

√
k sen 1√

k
= lim
θ→0

( senθ)/ θ = 1 6= 0,

onde fizemos a mudança de índice 1/
√
k ≡ θ (→ 0 quando k →∞).

Prob. 15

a)
∞∑
k=j

(ak − ak+1) = lim
n→∞

{ n∑
k=j

ak −
n∑
k=j

ak+1

}
= lim

n→∞

{ [
aj + ((((((((((((

( aj+1 + aj+2 + · · ·+ an )
]

−
[
((((((((((((
( aj+1 + aj+2 + · · ·+ an ) + an+1

] }
= aj − lim

n→∞
an+1︸ ︷︷ ︸
a

= aj − a

b)
∞∑
k=j

(ak − ak+2) = lim
n→∞

{ n∑
k=j

ak −
n∑
k=j

ak+2

}
= lim

n→∞

{ [
aj + aj+1 + ((((((((((((

( aj+2 + aj+3 + · · ·+ an )
]

−
[
((((((((((((
( aj+2 + aj+3 + · · ·+ an ) + an+1+ an+2,

]}
= aj+aj+1− lim

n→∞
an+1︸ ︷︷ ︸
a

− lim
n→∞

an+2︸ ︷︷ ︸
a

= aj+aj+1−2a

c)
∞∑
k=1

1

k(k + 1)
=

∞∑
k=1

( 1

k︸︷︷︸
ak

− 1

k + 1︸ ︷︷ ︸
ak+1

)
=

∞∑
k=1

(ak − ak+1) = a1 − lim
k→∞

ak = 1− 0 = 1

d)
∞∑
k=2

1

k2 − 1
=

∞∑
k=2

1

(k + 1)(k − 1)
=

∞∑
k=2

(
−1/2
k + 1

+
1/2

k − 1

)
=

1

2

∞∑
k=2

( 1

k − 1︸ ︷︷ ︸
ak−1

− 1

k + 1︸ ︷︷ ︸
ak+1

)

= (1/2)
∞∑
k=2

(ak−1 − ak+1) = (1/2)
(
a1 + a2 − 2 lim

k→∞
ak
)
= (1/2) (1 + 1/2− 0) = 3/4

e)
∞∑
k=3

2k + 1

k2(k + 1)2
=

∞∑
k=3

[ 1

k2︸︷︷︸
ak

− 1

(k + 1)2︸ ︷︷ ︸
ak+1

]
=

∞∑
k=3

(ak − ak+1) = a3 − lim
k→∞

ak︸ ︷︷ ︸
0

=
1

9

f)
∞∑
k=6

( 1

4k + 1︸ ︷︷ ︸
ak

− 1

4k + 5︸ ︷︷ ︸
ak+1

)
=

∞∑
k=6

(ak − ak+1) = a6 − lim
k→∞

ak︸ ︷︷ ︸
0

=
1

25
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g)
∞∑
k=1

[
sen
(kπ + π

3k + 6

)
︸ ︷︷ ︸

ak+1

− sen
( kπ

3k + 3

)
︸ ︷︷ ︸

ak

]
=

∞∑
k=1

(ak+1 − ak) = lim
k→∞

ak − a1 = sen
π

3
− sen

π

6
=

√
3− 1

2

h)
∞∑
k=0

1

(3k − 2)(3k + 4)
=

∞∑
k=0

( 1/6

3k − 2︸ ︷︷ ︸
ak

− 1/6

3k + 4︸ ︷︷ ︸
ak+2

)
= a0+a1− 2 lim

k→∞

1/6

3k − 2
=

1/6

−2
+

1/6

1
− 2 · 0 =

1

12

i)
∞∑
k=1

1

k(k + 1)(k + 2)
=

∞∑
k=1

(1/2
k

+
−1
k + 1

+
1/2

k + 2

)
=

∞∑
k=1

[
1

2

( 1

k︸︷︷︸
ak

− 1

k + 1︸ ︷︷ ︸
ak+1

)
− 1

2

( 1

k + 1︸ ︷︷ ︸
bk

− 1

k + 2︸ ︷︷ ︸
bk+1

)]

=
1

2

(
a1 − lim

k→∞

1

k

)
− 1

2

(
b1 − lim

k→∞

1

k + 1

)
=

1

2
(1− 0)− 1

2

(1
2
− 0
)
=

1

2
− 1

4
=

1

4

j)
∞∑
k=2

4k

(k2 − 1)2
=

∞∑
k=2

[ 1

(k − 1)2︸ ︷︷ ︸
ak

− 1

(k + 1)2︸ ︷︷ ︸
ak+2

]
= a2 + a3 − lim

k→∞

1

(k − 1)2
= 1 +

1

4
− 0 =

5

4

k)
∞∑
k=2

(
k
√
k︸︷︷︸

ak

− k+1
√
k + 1︸ ︷︷ ︸

ak+1

)
= a2 − lim

k→∞
k
√
k =
√
2− 1

l)
∞∑
k=4

(
k ln

k + 3

k − 3
− k ln

k + 4

k − 2
− ln

k + 4

k − 2

)
=

∞∑
k=4

[ ak︷ ︸︸ ︷
k ln

k + 3

k − 3
−

ak+1︷ ︸︸ ︷
(k + 1) ln

k + 4

k − 2

]
=

∞∑
k=4

(ak − ak+1)

k 0
k

3 5k 

6

2

k

= a4 − lim
k→∞

ak = 4 ln 7− lim
k→∞

ln
k + 3

k − 3
k−1

l’H
= 4 ln 7− lim

k→∞

−6
k2 − 3
−k−2

= 4 ln 7− lim
k→∞

6k2

k2 − 3
= 4 ln 7− 6

Prob. 16

a) Temos que
k − 4√

k6 − 3k − 5
=

k − 4√
k6 − (3k + 5)

≤ k√
k6 − (k6/2)

=

√
2

k2
,

que é o termo geral de uma série convergente. Logo, por comparação, a
série dada é convergente.

Note que a desigualdade acima é válida se 3k + 5 ≤ k6/2, isto é, para
k maior que o valor k0 indicado na figura à direita.

b) A série é convergente, pois, para ela, o parâmetro L no teste da razão é menor que 1:

L = lim
k→∞

|3(k + 1)− 1000

(k + 1)2k+1
· k 2k

3k − 1000
| = 1

2
lim
k→∞

3k − 997

3k − 1000︸ ︷︷ ︸
→1

· k

k + 1︸ ︷︷ ︸
→1

=
1

2
< 1 .

c) A série é divergente, pois o parâmetro L no teste da razão é L = lim
k→∞

| e
k+1

k + 2
· k + 1

ek
| = e > 1 .

d) A série é convergente segundo o teste da comparação, uma vez que se consegue mostrar que, para
k maior ou igual que algum natural l, seu termo geral é maior que o termo geral bk de uma série
convergente. De fato, temos que

k9

k!− k2
≤ k9

k!− k!/2
=

2k9

k!
≡ bk (se k2 ≤ k!/2, isto é, para k ≥ l = 5)

e, usando o teste da razão, constatamos que bk forma uma série convergente:

lim
k→∞

|bk+1/bk| = lim
k→∞

2(k + 1)9

(k + 1)!
· k!
2k9

= lim
k→∞

(k + 1

k

)9
︸ ︷︷ ︸

→1

· 1

k + 1︸ ︷︷ ︸
→0

= 0 < 1 .

e) A série é convergente consoante o critério para séries alternadas, pois a sequência ak = (ln k)/(2k+3)
é positiva, decrescente e tende a zero quando k →∞ .
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f e g) Por comparação, constatamos que as séries são divergentes, pois, para k maior que algum
natural l, temos que

ln2 k − 1

k + ln2 k
≥ ln2 k − (ln2 k)/2

k + (
√
k)2

=
(ln2 k)/2

2k
≥ 1/2

2k
: t.g. de série divergente

e
ln k − 1

k ln2 k
≥ ln k − (ln k)/2

k ln2 k
=

(ln k)/2

k ln2 k
=

1/2

k ln k
: t.g. de série div. [v. Exemplo (i) na pág. 7] .

h) Pelo critério da raiz, com ak =

(
k + 1

2k

)k
, verificamos que a série é convergente:

lim
k→∞

k
√
|ak| = lim

k→∞

k

√(k + 1

2k

)k
= lim
k→∞

k + 1

2k
=

1

2
< 1 .

i) Por comparação verifica-se que a série é divergente:

5 + cos
√
k3

k + 1
≥ 5− 1

k + k
=

2

k
: t.g. de série divergente.

j)
∞∑
k=1

cos kπ

k + 2
=

∞∑
k=1

(−1)k

k + 2
=

∞∑
k=3

(−1)k

k
: uma série alternada convergente.

k) Por comparação verifica-se que a série é divergente:

(2/5)lnn =
1

(5/2)lnn
≥ 1

elnn
=

1

n
: t.g. de série divergente.

ou
(2/5)lnn =

[
eln(2/5)

]lnn
=
[
elnn

]ln(2/5)
= nln(2/5) =

1

nln(5/2)
: t.g. da série harmônica

divergente de ordem p = ln(5/2) < ln e = 1.

Prob. 17

a)
∞∑
n=1

[

an︷ ︸︸ ︷
(−1)n/n ]xn ⇒ R = lim

n→∞
| an
an+1

| = lim
n→∞

| (−1)n/n
(−1)n+1/(n+ 1)

| = 1 ⇒ x0 ±R = −1 ou 1

∞∑
n=1

[ (−1)n/n ]xn
∣∣∣
x=−1

=
∞∑
n=1

[1/n] é divergente

∞∑
n=1

[ (−1)n/n ]xn
∣∣∣
x=1

=
∞∑
n=1

[(−1)n/n] é uma sér. altern. convergente Resposta: (−1, 1]

b)
∞∑
n=1

√
n+ 3

(n+ 5)2︸ ︷︷ ︸
an

(x− 7)n ⇒ R = lim
n→∞

∣∣∣ an
an+1

∣∣∣ = lim
n→∞

√
n+ 3

n+ 4︸ ︷︷ ︸
→ 1

(n+ 6

n+ 5

)2
︸ ︷︷ ︸

→ 1

= 1 ⇒ x0 ±R = 6 ou 8

[ ∞∑
n=1

√
n+ 3

(n+ 5)2
(x− 7)n

]
x=6

=
∞∑
n=1

(−1)n
√
n+ 3

(n+ 5)2︸ ︷︷ ︸
→ 0

é conv., segundo o critério p/ séries alternadas

[ ∞∑
n=1

√
n+ 3

(n+ 5)2
(x− 7)n

]
x=8

=
∞∑
n=1

√
n+ 3

(n+ 5)2

[
≤

∞∑
n=1

√
n+ 3n

n2
=

∞∑
n=1

2

n1,5

]
é conv. Resposta: [6, 8]

c)
∞∑
n=1

(−2)n

(n+ 1)2 + 2︸ ︷︷ ︸
an

xn ⇒ R = lim
n→∞

| an
an+1

| = lim
n→∞

| (−2)n

(n+ 1)2 + 2

(n+ 2)2 + 2

(−2)n+1
| = 1

2
⇒ x0±R = ±1

2[ ∞∑
n=1

(−2x)n

(n+ 1)2 + 2

]
x=−1/2

=
∞∑
n=1

1

(n+ 1)2 + 2

[
≤

∞∑
n=1

1

n2

]
é convergente

[ ∞∑
n=1

(−2x)n

(n+ 1)2 + 2

]
x=1/2

=
∞∑
n=1

(−1)n 1

(n+ 1)2 + 2︸ ︷︷ ︸
→ 0

é uma sér. alt. conv. Resposta:
[
− 1

2
,
1

2

]
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d)
∞∑
n=1

5n

n!︸︷︷︸
an

(x− 1)n ⇒ R = lim
n→∞

| an
an+1

| = lim
n→∞

5n

n!

(n+ 1)!

5n+1
= lim
n→∞

n+ 1

5
=∞ Resposta: x ∈ R

e)
∞∑
n=1

nn

2n︸︷︷︸
an

(x− 2)n ⇒ R = lim
n→∞

| an
an+1

| = lim
n→∞

nn

2n
2n+1

(n+ 1)n+1
= lim
n→∞

2

n+ 1

( n

n+ 1

)n
= lim
n→∞

2

n+ 1︸ ︷︷ ︸
→ 0

1

(1 + 1/n)n︸ ︷︷ ︸
→ 1/e

= 0 Resposta: x = 2

f) Para a série
∞∑
n=0

(x+ 2)3n

8n ln(n+ 2)
, o critério da razão fornece L = lim

n→∞
| (x+ 2)3(n+1)

8n+1 ln(n+ 3)
· 8

n ln(n+ 2)

(x+ 2)3n
| =

|x+ 2|3

8
lim
n→∞

ln(n+ 2)

ln(n+ 3)︸ ︷︷ ︸
1

< 1 ⇒ |x+ 2| < 2 ⇒ −2 < x+ 2 < 2 ⇒ −4 < x < 0 .

[ ∞∑
n=0

(x+ 2)3n

8n ln(n+ 2)

]
x=−4

=

∞∑
n=0

(−1)n

ln(n+ 2)
: série alternada condicionalmente convergente

[ ∞∑
n=0

(x+ 2)3n

8n ln(n+ 2)

]
x=0

=

∞∑
n=0

1

ln(n+ 2)

[
=

∞∑
n=2

1

lnn
≥

∞∑
n=2

1

n

]
: divergente Resposta: [−4, 0)

Prob. 18

Abaixo, R é o raio de convergência e L é o parâmetro definido no critério da razão.

a) f(x) = ex

∴ f (n)(x) = ex ⇒ f (n)(0) = e0 = 1

∴ f(x) =

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

1

n!
xn ■

Com an = 1/n! : R = lim
n→∞

| an
an+1

| = lim
n→∞

(n+ 1)!

n!
= lim
n→∞

(n+ 1) =∞ ⇒ convergência em R ■

b) f(x) = cosx

f(0) = cos 0 = 1 , f ′(0) = − sen0 = 0 , f ′′(0) = − cos 0 = −1 , f ′′′(0) = − sen0 = 0 ,
f (4)(0) = cos 0 = 1 · · · e os valores se repetem.

∴ f (k)(0) =

{
1 se k = 0, 4, 8, 12 · · · (→ k/2 é par)
−1 se k = 2, 6, 10, 14 · · · (→ k/2 é ímpar) = (−1)k/2 para k par.

∴ f(x) =

∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k par

(−1)k/2

k!
xk

n=2k
=

∞∑
n=0

(−1)n

(2n)!
x2n ■

Com cn = (−1)nx2n/ (2n)! , temos que L = lim
n→∞

|cn+1

cn
| = lim

n→∞
| (−1)

n+1x2n+2

(2n+ 2)!

(2n)!

(−1)nx2n
|

= x2 lim
n→∞

���(2n)!

���(2n)! (2n+ 1)(2n+ 2)
= x2 · 0 = 0 < 1 ⇒ convergência ∀x ∈ R ■

c) f(x) = senx

f(0) = sen0 = 0 , f ′(0) = cos 0 = 1 , f ′′(0) = − sen0 = 0 , f ′′′(0) = − cos 0 = −1 ,
f (4)(0) = sen0 = 0 · · · e os valores se repetem.

∴ f (k)(0) =

{
1 se k = 1, 5, 9, 13 · · ·
−1 se k = 3, 7, 11, 15 · · · = (−1)(k−1)/2 para k ímpar.

∴ f(x) =

∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k ímpar

(−1)(k−1)/2

k!
xk

n=2k+1
=

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 ■
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Com cn = (−1)nx2n+1/ (2n+ 1)! , temos que L = lim
n→∞

|cn+1

cn
| = lim

n→∞
| (−1)

n+1x2n+3

(2n+ 3)!

(2n+ 1)!

(−1)nx2n+1
|

= x2 lim
n→∞

�����(2n+ 1)!

�����(2n+ 1)! (2n+ 2)(2n+ 3)
= x2 · 0 = 0 < 1 ⇒ convergência ∀x ∈ R ■

d) f(x) = lnx

f(1) = lnx
∣∣
x=1

= 0

f ′(1) = x−1
∣∣
x=1

= 1

f ′′(1) = −x−2
∣∣
x=1

= −1
f ′′′(1) = 2x−3

∣∣
x=1

= 2

f (4)(1) = −2 · 3x−4
∣∣
x=1

= −3!
f (5)(1) = 2 · 3 · 4x−5

∣∣
x=1

= 4!
...

∴ f (n)(1)
∣∣
n≥1

= (−1)n+1(n− 1)!

∴ f(x) =

0︷︸︸︷
f(1)+

∞∑
n=1

f (n)(1)

n!
(x− 1)n =

∞∑
n=1

(−1)n+1(n− 1)!

n!
(x− 1)n =

∞∑
n=1

(−1)n+1����(n− 1)!

����(n− 1)! n
(x− 1)n

=

∞∑
n=1

(−1)n+1

n
(x− 1)n ■

Com an =
(−1)n+1

n
, obtemos R = lim

n→∞
| an
an+1

| = lim
n→∞

| (−1)
n+1

n

n+ 1

(−1)n+2
| = lim

n→∞

n+ 1

n
= 1 . Além

disso, para x = 1−R = 1−1 = 0, a série é obviamente divergente, e para x = 1+R = 1+1 = 2, a série

é
∞∑
n=1

(−1)n+1

n
, que é uma série alternada convergente. Logo, a série é convergente para x ∈ (0, 2] ■

Prob. 19

a)
x

(1− x)2
= x

d

dx

( 1

1− x

)
= x

d

dx

∞∑
n=0

xn = x
∞∑
n=1

nxn−1 =
∞∑
n=1

nxn , para |x| < 1 .

b)
x2

(1− x)3
=
x2

2

d

dx
(1− x)−2 =

x2

2

d

dx

d

dx

( 1

1− x

)
=
x2

2

d2

dx2

∞∑
n=0

xn =
x2

2

∞∑
n=2

n(n− 1)xn−2

=
∞∑
n=2

n(n− 1)

2
xn , para |x| < 1 .

c)
x+ 1

3x+ 2
=
x+ 1

2

1

1− (−3x/2)
=
x+ 1

2

∞∑
n=0

(−3x
2

)n
=

∞∑
n=0

(−3)nxn+1

2n+1
+
{ ∞∑
n=0

(−3)nxn

2n+1

}
=

∞∑
n=1

(−3)n−1xn

2n
+
{ ∞∑
n=1

(−3)nxn

2n+1
+

1

2

}
=

1

2
+

∞∑
n=1

[
− (−1)n3n−1

2n
+

(−1)n3n

2n+1

]
xn

=
∞∑
n=0

anx
n, onde a0 =

1

2
e an

∣∣∣
n≥1

= − (−1)n3n−1

2n
+

(−1)n3n

2n+1
=

(−1)n3n−1

2n+1
,

para | − 3x/2| < 1 , i.e., x ∈ (−2/3, 2/3) .
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Prob. 20

a) f(x) =
∞∑
n=0

(n+1)xn =
d

dx

∞∑
n=0

xn+1 =
d

dx

(
x · 1

1− x

)
=

1− x− x(−1)
(1− x)2

=
1

(1− x)2
, com |x| < 1

b) g(x) =
∞∑
n=2

(n− 1)xn = x2
∞∑
n=2

(n− 1)xn−2 = x2
d

dx

∞∑
n=2

xn−1 = x2
d

dx

∞∑
n=1

xn

= x2
d

dx

( x

1− x

)
= x2 · 1

(1− x)2
=

x2

(1− x)2
, com |x| < 1

c) h(x) =
∞∑
n=3

x2n+1 = x ·
∞∑
n=3

(x2)n = x · (x
2)3

1− x2
=

x7

1− x2
, com |x2| < 1 , i.e., |x| < 1

d) u(x) =
∞∑
n=1

nx2n+1 = x3
∞∑
n=1

n(x2)n−1 x2=y
= x3

∞∑
n=0

nyn−1 = x3
d

dy

∞∑
n=0

yn = x3
d

dy

( 1

1− y

)
= x3 · 1

(1− y)2
=

x3

(1− x2)2
, com |y| = |x2| < 1 , i.e., |x| < 1

Prob. 21

a)
∫ x

0

cos t− 1

t
dt =

∫ x

0

1

t

[ cos x︷ ︸︸ ︷
∞∑
n=0

(−1)nt2n

(2n)!
− 1

]
dt =

∫ x

0

1

t

[ ∞∑
n=1

(−1)nt2n

(2n)!

]
dt =

∫ x

0

[ ∞∑
n=1

(−1)nt2n−1

(2n)!

]
dt

=
∞∑
n=1

(−1)n

(2n)!

∫ x

0

t2n−1dt =
∞∑
n=1

(−1)n

(2n)!

[
t2n

2n

]x
0

=
∞∑
n=1

(−1)nx2n

(2n)! 2n
[x ∈ R]

b)
∫ x

0

sent2

t2
dt =

∫ x

0

1

t2

[ ∞∑
n=0

(−1)n(t2)2n+1

(2n+ 1)!

]
dt =

∫ x

0

[ ∞∑
n=0

(−1)nt4n

(2n+ 1)!

]
dt =

∞∑
n=0

(−1)n

(2n+ 1)!

∫ x

0

t4ndt

=
∞∑
n=0

(−1)n

(2n+ 1)!

[
t4n+1

4n+ 1

]x
0

=
∞∑
n=0

(−1)nx4n+1

(2n+ 1)!(4n+ 1)
[x ∈ R]

c)
∫ x

0

ln[1+(5t)3] dt =

∫ x

0

∞∑
n=1

(−1)n−1 [(5t)3]n

n
dt =

∞∑
n=1

(−1)n−153n

n

∫ x

0

t3n dt =
∞∑
n=1

(−1)n−153nx3n+1

n(3n+ 1)
.

Nesse caso, a máxima variação de t é dada por (5t)3 ∈ (−1, 1], ou t ∈ (−1/5, 1/5 ]; esse é o intervalo
de integração máximo possível. Vemos então que x pode variar no intervalo (−1/5, 1/5] .

O Prob. 21 também pode ser resolvido diferenciando-se primeiramente, depois substituindo-se f ′(x)
por sua série de Taylor, em seguida integrando-se e, finalmente, sabendo que f(0) = 0, determinando-se
a constante de integração; observe esse modo aplicado ao item (a) acima:

f(x) =

∫ x

0

cos t− 1

t
dt ⇒ f ′(x) =

cosx− 1

x
=

∞∑
n=1

(−1)nx2n−1

(2n)!
⇒ f(x) =

∞∑
n=1

(−1)nx2n

(2n)! 2n
+ c ,

onde f(0) = c = 0 .

Prob. 22

a)
∞∑
n=1

(−1)n−12−2n

n
=

∞∑
n=1

(−1)n−1(2−2)n

n
=

∞∑
n=1

(−1)n−1xn

n

∣∣∣∣
x=2−2

= ln(1 + x)
∣∣∣
x=1/4

= ln
5

4
.

Obs.: 1/4 ∈ (−1, 1], que é o intervalo de convergência da série de MacLaurin de ln(1+x) que foi usada.
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b)
∞∑
n=1

(−1)nπ2n+1

22n+1(2n+ 1)!
=

[ ∞∑
n=1

(−1)nx2n+1

(2n+ 1)!

]
x=π2

=

[ ∞∑
n=0

(−1)nx2n+1

(2n+ 1)!︸ ︷︷ ︸
senx

− x
]
x=π2

= 1− π

2

c)
∞∑
n=0

(−1)n

2n+ 1
=

∞∑
n=0

(−1)nx2n+1

2n+ 1

∣∣∣∣
x=1

(1)
= arctanx

∣∣∣∣
x=1

=
π

4

(1)De acordo com o resultado obtido no Exemplo (i) da seção 1.5, página 18 .

Prob. 23

f(x) = f(0)+ f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (15)(0)

15!
x15 + · · · = senx3 = x3− (x3)3

3!
+

(x3)5

5!
− · · ·

⇒ f (15)(0)

15!
=

1

5!
⇒ f (15)(0) =

15!

5!
.

Prob. 24

Foi dito no texto que a série em questão pode ser visualizada como sendo formada por duas séries
geométricas de razão 1/4, uma constituída pelos termos com k par e a outra, pelos termos com k
ímpar; de fato:

∞∑
k=0

5 + (−1)k

6 · 2k
=

∞∑
k=0,2,4···

5 + (−1)k

6 · 2k
+

∞∑
k=1,3,5···

5 + (−1)k

6 · 2k
=

∞∑
n=0

5 + (−1)2n

6 · 22n
+

∞∑
n=0

5 + (−1)2n+1

6 · 22n+1
=

∞∑
n=0

5 + 1

6 · (22)n
+

∞∑
n=0

5− 1

6 · 2(22)n
=

∞∑
n=0

(
1

4

)n
+

1

3

∞∑
n=0

(
1

4

)n
=

(
1 +

1

3

) ∞∑
n=0

(
1

4

)n
=

4

3
· 1

1− 1/4
=

16

9
.

Mas ela também poder ser desmembrada em duas séries geométricas, uma de razão 1/2 e outra de
razão −1/2:

∞∑
k=0

5 + (−1)k

6 · 2k
=

5

6

∞∑
k=0

(1
2

)k
︸ ︷︷ ︸

1
1− 1

2

= 2

+
1

6

∞∑
k=0

(
− 1

2

)k
︸ ︷︷ ︸

1

1−
(
− 1

2

) = 2
3

=
5

6
(2) +

1

6

(
2

3

)
=

16

9
.

Evidentemente, esses desdobramentos da série dada em duas outras séries convergentes são válidos
em vista do teorema 2, item (b).
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Capítulo 2

Resolução de Equação Diferencial
Ordinária Linear por Série de
Potências {

Ref. [12], seções 17.4.
}

ou
{
Ref. [13], seções 6.2 e 6.3

}
Sabemos que a solução geral da EDO linear de 1a

¯ ordem

y′ − 2x y(x) = 0 (2.1)

é

y(x) = c1 e
x2

= c1

∞∑
n=0

(x2)n

n!
∀x ∈ R . (2.2)

Isso sugere que também possamos resolver a EDO em (2.1) tentando uma série de potências

y(x) =

∞∑
n=0

anx
n , (2.3)

donde

y′(x) =

∞∑
n=1

nanx
n−1 . (2.4)

Substituindo (2.3) e (2.4) em (2.1), obtemos

0 = y′ − 2xy =

∞∑
n=1

nanx
n−1 − 2x

∞∑
n=0

anx
n

=

∞∑
n=1

nanx
n−1 −

∞∑
n=0

2anx
n+1

=

∞∑
n=1

nanx
n−1 −

∞∑
n=2

2an−2x
n−1

= a1 +

∞∑
n=2

(nan − 2an−2)x
n−1 ,

uma equação que só pode ser válida para todos os valores de x se os coeficientes das potências se
anularem, isto é:

a1 = 0 e (nan − 2an−2)
∣∣
n≥ 2

= 0 .

Desta segunda equação, deduzimos que

an =
2

n
an−2 para n ≥ 2 .
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Essa equação é chamada de relação de recorrência. Por meio dela, determinamos os coeficientes an.
Fazendo n igual a naturais pares, obtemos

n = 2 : a2 = a0

n = 4 : a4 =
2

4
a2 =

1

2
a0

n = 6 : a6 =
2

6
a4 =

1

3

1

2
a0

n = 8 : a8 =
2

8
a6 =

1

4

1

3

1

2
a0

...

∴ a2n =
1

n!
a0 (n ≥ 0) .

Agora, com n igual a ímpares, temos

n = 3 : a3 =
2

3
a1 = 0

n = 5 : a5 =
2

5
a3 = 0

...
∴ a2n+1 = 0 (n ≥ 0) .

Finalmente, substituindo essas expressões dos coeficientes em (2.3), obtemos

y(x) =

∞∑
n=0

anx
n =

∞∑
n=0

a2nx
2n =

∞∑
n=0

a0
n!
x2n = a0

∞∑
n=0

(x2)n

n!
= a0 e

x2

,

que é a solução dada em (2.2), pois o coeficiente a0 permanece como uma constante arbitrária.
Vejamos mais um exemplo. Considere a seguinte EDO e a sua solução geral (conhecida):

4y′′ + y(x) = 0 ⇒ solução geral y(x) = c1 cos(x/2) + c2 sen(x/2) . (2.5)

Vamos recalcular essa solução geral pelo método das séries de potências(∗). Os passos são os seguintes:

Passo 1 - Escrevemos a série de potências que se admite como solução e as derivadas dessas séries
que serão usadas:

y(x) =

∞∑
n=0

anx
n ⇒


y′ =

∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n (n− 1) anx
n−2

Passo 2) Na EDO, substituímos y, y′ e y′′ pelas respectivas séries para deduzir a relação de recor-
rência:

0 = 4y′′ + y = 4

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n =

∞∑
n=2

4n(n− 1)anx
n−2 +

∞∑
n=2

an−2x
n−2

=

∞∑
n=2

[4n(n− 1)an + an−2]x
n−2 = 0 ⇒ an = − an−2

4n(n− 1)
(n ≥ 2)

(∗)Estamos começando a estudar um poderoso método que servirá, naturalmente, para obter soluções de EDOs que não
sabemos resolver analiticamente; mas os exemplos ora apresentados são educativos: ilustram o método e as manipulações
matemáticas costumeiras.
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Passo 3) Usamos a relação de recorrência para calcular os coeficientes em termos dos coeficientes
que permanecem arbitrários (a0 e a1):

a2 = − a0
4 · 2 (1)

a3 = − a1
4 · 3 (2)

a4 = − a2
4 · 4 (3)

=
a0

42 · 4 · 3 · 2
=

a0
4! 24

a5 = − a3
4 · 5 (4)

=
a1

42 · 5 · 4 · 3 · 2
=

2a1
5! 25

a6 = − a4
4 · 6 (5)

= − a0
43 · 6 · 5 · 4 · 3 · 2

= − a0
6! 26

a7 = − a5
4 · 7 (6)

= − a1
43 · 7 · 6 · 5 · 4 · 3 · 2

= − 2a1
7! 27

...

Passo 4) Deduzimos uma expressão genérica para os coeficientes em termos de a0 e a1. Do passo
3, concluímos que,

para n ≥ 0 : a2n =
(−1)na0
(2n)! 22n

e a2n+1 =
(−1)n2a1

(2n+ 1)! 22n+1
.

Passo 5) Substituímos a expressão genérica dos coeficientes na série de y(x) para deduzir uma
expressão fechada para a solução:

y(x) =

∞∑
n=0

anx
n =

∞∑
n=0

a2n x
2n +

∞∑
n=0

a2n+1 x
2n+1 =

∞∑
n=0

(−1)na0
(2n)! 22n

x2n +

∞∑
n=0

(−1)n2a1
(2n+ 1)! 22n+1

x2n+1

= a0

∞∑
n=0

(−1)n

(2n)!

(x
2

)2n
+ 2a1︸︷︷︸

≡a′1

∞∑
n=0

(−1)n

(2n+ 1)!

(x
2

)2n+1

= a0 cos
x

2
+ a′1 sen

x

2
,

que é a solução geral apresentada em (2.5).

Ressalte-se que o passo 4 é frequentemente difícil, e o passo 5 é raramente possível. Por isso,
nas resoluções por série de potências que seguem, não nos preocuparemos, ordinariamente, com a
implementação do passo 4 (o que seria até elegante, mas este passo, embora de certa importância, está
fora dos nossos propósitos aqui, que é o entendimento do método) e do passo 5.

2.1 Definições
a) Uma função f(x) é dita analítica no ponto x = x0 se ela pode ser desenvolvida numa série de Taylor

relativa a esse ponto que tenha raio de convergência positivo.

b) Considere a EDO linear de 2a
¯ ordem

A(x)y′′ +B(x)y′ + C(x)y(x) = 0 , (2.6)

que pode ser escrita na forma

y′′ + p(x) y′ + q(x) y(x) = 0 , (2.7)

com p(x) ≡ B(x)/A(x) e q(x) ≡ C(x)/A(x). Dizemos que x = x0 é um ponto ordinário, ou
não singular, dessa EDO se, nesse ponto, p(x) e q(x) ou suas extensões contínuas(∗) são funções
analíticas. Um ponto que não é ordinário é dito um ponto singular, ou uma singularidade, da
EDO.

(∗)Recordação:
Uma função f(x) definida num ponto x = x0 é dita contínua nesse ponto se lim

x→x0
f(x) = f(x0).

A extensão contínua de uma função f(x) num ponto x = x0 em que ela não é definida, mas tem limite finito, é a função
g(x) que é igual a f(x) se x ̸= x0 e, naquele ponto, é dada por g(x0) = lim

x→x0
f(x). Por exemplo, a extensão contínua da

função ( senx)/x em x = 0 é a função g(x) igual a ( senx)/x se x ̸= 0 e com g(0) = lim
x→0

( senx)/x = 1.
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Exemplos:

i) y′′ + (lnx) y(x) = 0 : x = 0 é ponto singular, pois f(x) = lnx não é analítica nesse ponto (não
existindo f(0), f ′(0), etc, f(x) não pode ser desenvolvida numa série de Taylor em torno de x = 0).

ii) y′′ + (x − 1)5/3y′ + y = 0 : x = 1 é ponto singular, pois (x − 1)5/3 não pode ser expandida
em potências de (x−1) [a segunda derivada de (x−1)5/3, igual a (10/9)(x−1)−1/3, é infinita em x = 1].

iii) xy′′ + ( senx) y′ + (1− cosx) y(x) = 0 ⇒ y′′ +
senx

x︸ ︷︷ ︸
p(x)

y′ +
1− cosx

x︸ ︷︷ ︸
q(x)

y(x) = 0.

Essa EDO não tem ponto singular, isto é, todos pontos de R são ordinários, inclusive x = 0. De
fato, como

1

x
senx =

1

x

(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
= 1− x2

3!
+
x4

5!
− x6

7!
+ · · ·

e
1

x
(1− cosx) =

1

x

(x2
2!
− x4

4!
+
x6

6!
− x8

8!
+ · · ·

)
=
x

2!
− x3

4!
+
x5

6!
− x7

8!
+ · · ·

são as séries de Taylor relativa a x = 0 das extensões contínuas de p(x) e q(x) nesse ponto, a analitici-
dade em x = 0 está verificada.

iv) (x2 + 1)y′′ + xy′ − y(x) = 0 ⇒ y′′ +
x

x2 + 1
y′ − 1

x2 + 1
y(x) = 0 .

Os pontos singulares dessa EDO são as raízes de x2 + 1 = 0, a saber, x = ±i, nos quais x/(x2 + 1)
e 1/(x2 + 1) não admitem extensão contínua, pois apresentam limites infinitos nesses pontos. Esse
exemplo ilustra que pontos singulares não são necessariamente reais.

Percebe-se que a caracterização de pontos ordinários e singulares com base no conceito de analiti-
cidade pode complicar, às vezes, a determinação deles. Ora, o conceito de função analítica é porme-
norizadamente estudado num curso de funções complexas, e é exatamente a falta desse estudo que nos
traz dificuldades aqui. Mas não precisamos de muita teoria para prosseguir, uma vez que estaremos,
na maioria das vezes, preocupados apenas com EDOs cujos coeficientes são polinômios. Nesse caso,
fornecemos a seguinte receita:

A EDO (2.6) – no caso em que A(x), B(x) e C(x) são polinômios sem fator comum – tem, em
x = x0 (real ou imaginário), um ponto
• ordinário se A(x0) 6= 0
• singular se A(x0) = 0

Por exemplo:

i) (x2 − 1)y′′ + 2xy′ + 6y(x) = 0 : os pontos singulares são as raízes de x2 − 1 = 0, isto é, x = ±1.
Todos os outros pontos são ordinários.

ii) (x− 1)2y′′ +(x2− 1)y′ +(x− 1)2y(x) = 0 ⇒ (x− 1)y′′ +(x+1)y′ +(x− 1)y(x) = 0 : ponto
singular em x = 1.

iii) (x − 1)y′′ + (x2 − 1)y′ + (x − 1)2y(x) = 0 ⇒ y′′ + (x + 1)y′ + (x − 1)y(x) = 0 : não tem
ponto singular (todos pontos de R são ordinários).

iv) x2y′′ + x2y′ + x(x− 1)y(x) = 0 ⇒ xy′′ + xy′ + (x− 1)y(x) = 0 : ponto singular em x = 0.

v) (x2 + 1)y′′ + y(x) = 0 : pontos singulares em x = ±i .

2.2 Teorema da Existência de Soluções em Série de Potências
Se x = x0 for um ponto ordinário da EDO (2.6), podemos sempre encontrar duas soluções line-

armente independentes na forma da série de potências
∞∑
n
an(x − x0)n, convergindo cada série, pelo
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menos, no intervalo (x0 − R, x0 + R), em que R é a distância do ponto x0 ao ponto singular (real ou
não) mais próximo.

Por exemplo, a solução da EDO (x− 1)y′′+xy′+ y = 0 na forma
∞∑
n
an(x− 4)n, isto é, na forma de

uma série de potências em torno do ponto ordinário x = 4, é convergente para (4− 3, 4 + 3) = (1, 7),
pois, nesse caso, a distância R do ponto x = 4 ao ponto singular mais próximo, que é o ponto x = 1, é
R = |4− 1| = 3.

3i  

x

y 

4 5 

9 –1 

4 5!

5R"

4 

intervalo de 
convergência 

3i

Outro exemplo: a solução da EDO (x2 + 9)y′′ + xy′ + y = 0 na

forma
∞∑
n
an(x−4)n, isto é, na forma de uma série de potências em torno

do ponto ordinário x = 4, é convergente para (4 − 5, 4 + 5) = (−1, 9),
pois, nesse caso, a distância R do ponto x = 4 (do eixo das abscissas,
que também é o ponto z1 = 4 do plano complexo) ao ponto singular
mais próximo, que são os pontos z±2 = ±3i do plano complexo, é R =
|z1 − z±2 | = |4 − 3i| = |4 + 3i| =

√
42 + 32 = 5(∗). A figura à direita

mostra que o intervalo (−1, 9) é a parte do eixo real que jaz no interior
da circunferência de raio R = 5 centrada no ponto x = 4 desse eixo.

2.3 Exemplos de Resolução de EDOs Lineares por Séries de
Potências em Torno de Ponto Ordinário

Nota: Aqui, por questão de simplicidade, supomos que a origem x = 0 seja sempre o ponto
ordinário em torno do qual se deseja obter a solução da EDO na forma de uma série de

potências,
∞∑
n=0

anx
n no caso. Isso não significa perda de generalidade, pois, mediante a

mudança para a variável t = x − x0, sempre podemos transformar uma EDO com ponto
ordinário em x = x0 noutra com ponto ordinário em t = 0.

Exemplo 1: y′′ − 2xy = 0

Como não há pontos singulares, a solução em série obtida abaixo é convergente para todo x real.

0 =

∞∑
n=2

n(n− 1)anx
n−2 − 2x

∞∑
n=0

anx
n =

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=0

2anx
n+1

=

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=3

2an−3x
n−2 = 2a2︸︷︷︸

0

+

∞∑
n=3

[n(n− 1)an − 2an−3]︸ ︷︷ ︸
0

xn−2

⇒ a2 = 0 e an

∣∣∣
n≥3

=
2an−3

n(n− 1)

Como a2 = 0, temos que a5 = a8 = · · · = a2+3k

∣∣∣
k≥0

= 0.

O coeficiente a0 permanece arbitrário, dele dependendo os coeficientes a3k
∣∣∣
k≥1

:

a3 =
2a0

(3)(2)
=
a0
3

a6 =
2a3

(6)(5)
=

1

15

a0
3

=
a0
45

a9 =
2a6

(9)(8)
=

1

36

a0
45

=
a0

1620

...

(∗)Recorde-se de que a distância entre dois pontos z1 e z2 do plano complexo é dada por |z1 − z2|, e que o módulo
de um número complexo z = a + bi é |z| =

√
a2 + b2. Por exemplo, a distância entre os pontos 6 + 13i e 1 + i é

|6 + 13i− (1 + i)| = |5 + 12i| =
√
52 + 122 =

√
169 = 13.
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O coeficiente a1 também permanece arbitrário, dele dependendo os coeficientes a3k+1

∣∣∣
k≥1

:

a4 =
2a1

(4)(3)
=
a1
6

a7 =
2a4

(7)(6)
=

1

21

a6
6

=
a1
126

a10 =
2a7

(10)(9)
=

1

45

a1
126

=
a1

5670

...

Logo,

y(x) = a0 + a1x+

a2︸︷︷︸
0

x2 + a3︸︷︷︸
a0
3

x3 + a4︸︷︷︸
a1
6

x4 + a5︸︷︷︸
0

x5 + a6︸︷︷︸
a0
45

x6 + a7︸︷︷︸
a1
126

x7 + a8︸︷︷︸
0

x8 + a9︸︷︷︸
a0

1620

x9 + a10︸︷︷︸
a1

5670

x10 + · · ·

= a0

(
1 +

x3

3
+
x6

45
+

x9

1620
+ · · ·

)
+ a1

(
x+

x4

6
+

x7

126
+

x10

5670
+ · · ·

)
é a solução desejada, sendo as séries entre parênteses duas soluções linearmente independentes da EDO.

Exemplo 2: (x2 + 1)y′′ + xy′ − y = 0

Os pontos singulares são x = ±i. A distância entre esses pontos e o ponto de expansão x = 0 é
R = |0± i| = |i| = 1. Logo, a solução em série obtida abaixo é convergente para x ∈ (0− R, 0 + R) =
(−1, 1).

0 = (x2 + 1)

∞∑
n=2

n(n− 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n

=

∞∑
n=2

n(n− 1)anx
n +

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n

=

∞∑
n=4

(n− 2)(n− 3)an−2x
n−2 +

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=3

(n− 2)an−2x
n−2 −

∞∑
n=2

an−2x
n−2

= 2a2 + 6a3x+��a1x − a0 −��a1x︸ ︷︷ ︸
2a2−a0 + 6a3x

+

∞∑
n=4

{
n(n− 1)an +

[
(n− 2)(n− 3) + n− 2− 1

]︸ ︷︷ ︸
(n−1)(n−3)

an−2

}
xn−2

⇒ 2a2 − a0 = 0 , a3 = 0 e an

∣∣∣
n≥4

= − (n− 3) an−2

n

O coeficiente a0 permanece arbitrário, dele dependendo os coeficientes a2k
∣∣∣
k≥1

:

a2 =
a0
2

a4 = −a2
4

= −a0/2
4

= −a0
8

a6 = −3a4
6

= −−a0/8
2

=
a0
16

...

O coeficiente a1 também permanece arbitrário, e, como a3 = 0, vemos, pela relação de recorrência, que
a5 = a7 = a9 = · · · = 0. Logo,

y(x) = a0 + a1x + a2︸︷︷︸
a0
2

x2 + a3︸︷︷︸
0

x3 + a4︸︷︷︸
− a0

8

x4 + a5︸︷︷︸
0

x5 + a6︸︷︷︸
a0
16

x6 + a7︸︷︷︸
0

x7 + · · ·
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= a1x + a0

(
1 +

x2

2
− x4

8
+
x6

16
+ · · ·

)
.

Exemplo 3: y′′ − (1 + x)y = 0

Não existem pontos singulares, convergindo, para todo x real, a série que se obtém a seguir.

0 =

∞∑
n=2

n(n− 1)anx
n−2 − (1 + x)

∞∑
n=0

anx
n =

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

an−2x
n−2 −

∞∑
n=3

an−3x
n−2

= 2a2 − a0 +
∞∑
n=3

[
n(n− 1)an − an−2 − an−3

]
xn−2 ,

donde a2 = a0/2 e

an

∣∣∣
n≥ 3

=
an−3 + an−2

n(n− 1)

é a relação de recorrência. Como a0 e a1 permanecem arbitrários, em termos deles escrevemos todos
os demais coeficientes:

a2 =
a0
2

a3 =
a0 + a1

6

a4 =
a1 + a2

12
=

1

12

(
a1 +

a0
2

)
=
a0
24

+
a1
12

a5 =
a2 + a3

20
=

1

20

(a0
2

+
a0 + a1

6

)
=
a0
30

+
a1
120

...

Finalmente,

y(x) = a0 + a1x + a2︸︷︷︸
a0
2

x2 + a3︸︷︷︸
a0
6 +

a1
6

x3 + a4︸︷︷︸
a0
24 +

a1
12

x4 + a5︸︷︷︸
a0
30 +

a1
120

x5 + · · ·

= a0

(
1 +

x2

2
+
x3

6
+
x4

24
+
x5

30
+ · · ·

)
+ a1

(
x+

x3

6
+
x4

12
+

x5

120
+ · · ·

)
.

2.4 Exercícios

Calcule a solução em série centrada no ponto ordinário x = 0 de cada uma das EDOs abaixo:

(a) y′′ = xy (b) y′′ − 2xy′ + y = 0 (c) y′′ + x2y′ + xy = 0 (d) (x2 + 2)y′′ + 3xy′ − y = 0

Respostas :

(a) y(x) = a0

(
1+ 1

2·3x
3+ 1

2·3·5·6x
6+ 1

2·3·5·6·8·9x
9+ ·

)
+ a1

(
x+ 1

3·4x
4+ 1

3·4·6·7x
7+ 1

3·4·6·7·9·10x
10+ · · ·

)
(b) y(x) = a0

(
1− 1

2!x
2 − 3

4!x
4 − 21

6! x
6 − · · ·

)
+ a1

(
x+ 1

3!x
3 + 5

5!x
5 + 45

7! x
7 + · · ·

)
(c) y(x) = a0

(
1− 1

3!x
3 + 42

6! x
6 − 42 72

9! x
9 + · · ·

)
+ a1

(
x− 22

4! x
4 + 22 52

7! x
7 − 22 52 82

10! x10 + · · ·
)

(d) y(x) = a0

(
1 + 1

4x
2 − 7

4! 4x
4 + 7·23

6! 8 x
6 − · · ·

)
+ a1

(
x− 1

3!x
3 + 14

5! 2x
5 − 14·34

7! 4 x
7 − · · ·

)
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Capítulo 3

O Método dos Autovalores para
Sistema de EDOs Lineares de Primeira
Ordem com Coeficientes Constantes

{
Ref. [14], seções 8.5 a 8.6

}
e
{
Ref. [15], seção 3.3

}
3.1 Tópicos Preliminares

3.1.1 Solução Geral de Sistema de EDOs Lineares de Coeficientes Cons-
tantes

Um sistema de n EDOs lineares de 1a
¯ ordem de coeficientes constantes e n funções incógnitas x1(t),

x2(t), · · · , xn(t) tem a forma
x′1(t) = a11x1(t) + a12x2(t) + · · ·+ a1nxn(t) + f1(t)
x′2(t) = a21x1(t) + a22x2(t) + · · ·+ a2nxn(t) + f2(t)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
x′n(t) = an1x1(t) + an2x2(t) + · · ·+ annxn(t) + fn(t) ,

(3.1a)

ou, matricialmente,

d

dt

 x1(t)
...

xn(t)


︸ ︷︷ ︸

X(t)

=

 x′1(t)
...

x′n(t)


︸ ︷︷ ︸

X′(t)

=

 a11 · · · a1n
...

...
an1 · · · ann


︸ ︷︷ ︸

A

 x1(t)
...

xn(t)


︸ ︷︷ ︸

X(t)

+

 f1(t)
...

fn(t)


︸ ︷︷ ︸

F (t)

⇒ d

dt
X = AX(t) + F (t) , (3.1b)

onde a matriz A é constante, a matriz F (t), denominada termo independente, compõem-se de funções
conhecidas, e todas as funções xi(t) e fi(t) (i = 1, · · · , n) são definidas num mesmo intervalo (t1, t2). O
vetor X(t) que satisfaz tal sistema é chamado de solução do sistema no intervalo (t1, t2). Se F (t) ≡ 0
em (t1, t2), então o sistema é dito homogêneo; caso contrário, não homogêneo (ou inomogêneo).

Seguem dois princípios, fáceis de provar, que são válidos para qualquer sistema de EDOs linea-
res [mais geral que aquele em (3.1)], podendo as EDOs terem ordem maior do que 1 e coeficientes
dependentes de t (sendo também chamados de sistema linear de EDOs):

Princípio de superposição para sistema linear homogêneo:
Se o vetores X1, · · · , Xk são soluções de X ′(t) = AX(t), então a combinação linear c1X1 +
· · ·+ ckXk, onde ci (i = 1, · · · , k) são constantes, também é solução; em particular, um múltiplo
escalar de uma solução e a soma de duas soluções também são soluções.

Princípio de superposição para sistema linear não homogêneo:
Considere o vetor Xi que é solução de X ′(t) = AX + Fi(t), com (i = 1, · · · , k); ou seja, temos
n soluções de sistemas lineares que se distinguem apenas pelos termos independentes. Nesse
caso, a combinação linear c1X1 + · · · + ckXk de coeficientes constantes é solução de X ′(t) =
AX + [ c1F1(t) + · · ·+ ckFk(t) ] .
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Em todo o restante deste capítulo, o sistema linear em 3.1, com matriz A constante, é o considerado.

– Soluções Linearmente Independentes

Os conceitos de dependência linear e de independência linear estudados na Álgebra Linear é essencial
neste estudo, sobre os quais há o seguinte teorema:

Teorema. Sejam X1, X2, · · · , Xn soluções do sistema linear homogêneo, e considere o
chamado wronskiano dessas n soluções, denotado e definido como segue:

W (X1, X2, · · · , Xn) ≡ determinante da matriz n× n formada por n
colunas que são as soluções X1, X2, · · · , Xn .

Tem-se que W (X1, X2, · · · , Xn) 6= 0 ∀t ∈ (t1, t2) se e somente se as soluções X1(t), X2(t),
· · · , Xn(t) forem linearmente independentes no intervalo (t1, t2).

Demonstra-se que, no intervalo (t1, t2), ou o wronskiano não se anula em nenhum ponto ou se anula
em todos eles. Logo, ao se provar que o wronskiano W difere de zero em algum ponto de (t1, t2),
prova-se que W 6= 0 em todos os pontos desse intervalo.

– Solução Geral

Outro conceito importante é o de conjunto fundamental de soluções num intervalo (t1, t2), que é
definido como um conjunto formado por quaisquer n soluções linearmente independentes do sistema
homogêneo naquele intervalo. Sobre esse conceito se baseia o seguinte teorema, básico nesta exposição:

Teorema (sistema homogêneo) Num intervalo (t1, t2), existe conjunto fundamental de
soluções para o sistema homogêneo, e a solução geral desse sistema é dada pela combinação
linear das soluções de um conjunto fundamental de soluções qualquer.

Teorema (sistema não homogêneo) Se XP (t) é uma solução conhecida de um sistema
não homogêneo, dita solução particular, e XH(t) é a solução geral do sistema homogêneo
associado, então X(t) = XH(t) +XP (t) é a solução geral desse sistema não homogêneo.

Em vista desse teorema, o processo de calcular a única solução de um sistema linear não homogêneo
pode ser dividido em três etapas:

Etapas da resolução de um sistema não homogêneo X ′(t) = AX(t) + F (t) :

Etapa 1: Resolve-se o sistema homogêneo associado X ′
H(t) = AXH(t), obtendo-se XH(t) =

c1X1(t) + · · ·+Xn(t), onde X1(t), · · · , Xn(t) formam um conjunto fundamental de soluções desse
sistema homogêneo.

Etapa 2: Determina-se alguma solução XP (t) tal que X ′
P (t) = AX ′

P (t) + F (t) (uma solução
particular do sistema não homogêneo).

Etapa 3: Forma-se a solução geral X(t) = XH(t) +XP (t) do sistema não homogêneo.

– Problema de Valor Inicial

Um Problema de Valor Inicial (PVI) com o sistema linear (3.1) consiste em resolver tal sistema
sob as chamadas condições iniciais, que são assim especificadas num ponto t0 do intervalo (t1, t2)
considerado:

X(t0) = col[x1(t0), x2(t0), · · · , xn(t0) ] = col[ k1, k2, · · · , kn︸ ︷︷ ︸
números reais

] .

Prova-se que, no caso do sistema homogêneo, esse PVI tem sempre uma única solução. Mas, no caso
não homogêneo, para garantir a existência de uma única solução, a continuidade das funções fi(t)
(i = 1, · · · , n) naquele intervalo é uma condição suficiente.
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3.1.2 Alguns Aspectos da Teoria dos Autovalores e Autovetores de um
Operador Linear

Seja L uma transformação linear num espaço vetorial V :

L : V −→ V
v 7−→ Lv = w ,

(3.2)

caso em que L recebe a denominação de operador linear. Um vetor não nulo v ∈ V é autovetor de L
se existe um escalar λ tal que

Lv = λv . (3.3)

Dizemos que λ é o autovalor de L associado ao autovetor v, e nos referimos à equação acima como um
problema de autovalor. Essa equação tem obviamente a solução v = 0, chamada de solução trivial,
que, no entanto, como estipulado acima, não pode ser autovetor.

Se houver n (qualquer inteiro positivo) autovetores v1, · · · , vn linearmente independentes associados
ao mesmo autovalor λ, então qualquer combinação linear desses autovetores também é um autovetor
associado a λ ; de fato:

L(c1v1 + · · ·+ c2vn) = c1 Lv1︸︷︷︸
λv1

+ · · ·+ cn Lvn︸︷︷︸
λvn

= λ (c1v1 + · · ·+ c2vn) .

Portanto, sempre há uma infinidade de autovetores associados a um mesmo autovalor λ, os quais,
juntamente com o vetor nulo, formam um subespaço vetorial de V , denominado autoespaço de λ , aqui
denotado por Sλ. Apesar dessa infinidade, é comum dizermos que "só existe um autovetor (ou só
existem dois autovetores, etc.)", assim na verdade informando que, no autoespaço de λ, não existem
mais de um autovetor (ou mais de dois autovetores, etc.) que sejam linearmente independentes. Em
resumo, se a dimensão do subespaço Sλ for n, costumamos dizer que, ao autovalor λ, só existem n
autovetores correspondentes (sendo estes uma base de Sλ).

Se v = (ν1, · · · , νn) ∈ V = Rn, a multiplicidade algébrica m de um autovalor λ é o número de
vezes que esse autovalor aparece como raiz do polinômio característico da matriz A associada a L, e a
multiplicidade geométrica g de λ é a dimensão de Sλ (o maior número de elementos que um conjunto
linearmente independente de autovetores associados a λ pode ter). Há a seguinte relação entre essas
duas grandezas:

1 ≤ g ≤ m .

Demonstra-se que g é igual ao número de linhas nulas na matriz A− λI (I é a matriz identidade) em
sua forma escalonada.

A respeito do cálculo de autovalores e autovetores, o aluno deverá recordar-se de como efetuá-lo. A
Ref. [10] pode ser consultada, sendo recomendada, no mínimo, a leitura das seções 6.1 e 6.2, ou uma
revisão mais rápida seria a Ref. [14], seção 8.4.3.

A seguir fornecemos um conjunto de matrizes 3 × 3 que contempla todas as possibilidades do par
(m, g) previstas pelas desigualdades g ≤ m ≤ 3 .

No primeiro exemplo, a matriz A tem três autovalores λ1, λ2 e λ3 distintos (m1 = m2 = m3 = 1),
cujos autoespaços, portanto, segundo a relação acima, têm necessariamente dimensão 1 (g1 = g2 =
g3 = 1) . Serão calculados os autovetores v1, v2 e v3 associados àqueles três autovalores. Note que,
quando dizemos "o autovetor v1 associado a λ1", está implícito que v1 pode ser qualquer autovetor
de Sλ1

, sendo escolhido o que na situação se ache o mais conveniente (por exemplo, pode-se sempre
escolher autovetores unitários).

No segundo exemplo, A tem dois autovalores distintos: λ1 6= λ2, para os quais (m1, g1) = (2, 1) e
(m2, g2) = (1, 1). São calculados um autovetor v1 ∈ Sλ1

e um autovetor v2 ∈ Sλ1
.

No terceiro exemplo, A tem dois autovalores distintos: λ1 6= λ2, para os quais (m1, g1) = (2, 2) e
(m2, g2) = (1, 1). São calculados dois autovetores v1, v2 ∈ Sλ1

e um autovetor v2 ∈ Sλ1
.

No quarto exemplo, A tem um autovalor distinto: λ1, para o qual (m1, g1) = (3, 1). É calculado
apenas um autovetor v1 ∈ Sλ1 .

No quinto exemplo, A tem um autovalor distinto: λ1, para o qual (m1, g1) = (3, 2). São calculados
dois autovetores v11, v12 ∈ Sλ1

.
No sexto exemplo, A tem um autovalor distinto: λ1, para o qual (m1, g1) = (3, 3). São calculados

três autovetores v11, v12, v13 ∈ Sλ1
.

Eis os exemplos:

42



Exemplo 1: A =

 1 2 0
0 3 4
0 0 5

 ⇒


λ1 = 1 [ (m1,g1)= (1,1) ] −−−−−→ v1 = (1, 0, 0)

λ2 = 3 [ (m2,g2)= (1,1) ] −−−−−→ v2 = (1, 1, 0)

λ3 = 5 [ (m3,g3)= (1,1) ] −−−−−→ v3 = (1, 2, 1)

Exemplo 2: A =

 1 1 0
0 1 1
0 0 2

 ⇒

{
λ1 = 1 [ (m1,g1)= (2,1) ] −−−−−→ v1 = (1, 0, 0)

λ2 = 2 [ (m2,g2)= (1,1) ] −−−−−→ v2 = (1, 1, 1)

Exemplo 3: A =

 1 0 0
0 1 0
0 0 2

 ⇒

λ1 = 1 [ (m1,g1)= (2,2) ] −−−−−→
{
v11 = (1, 0, 0)
v12 = (0, 1, 0)

λ2 = 2 [ (m2,g2)= (1,1) ] −−−−−→ v2 = (0, 0, 1)

Exemplo 4: A =

 1 1 0
0 1 1
0 0 1

 ⇒ λ1 = 1 [ (m1,g1)= (3,1) ] −−−−−→ v1 = (1, 0, 0)

Exemplo 5: A =

 1 0 0
0 1 1
0 0 1

 ⇒ λ1 = 1 [ (m1,g1)= (3,2) ] −−−−−→
{
v11 = (1, 0, 0)
v12 = (0, 1, 0)

Exemplo 6: A =

 1 0 0
0 1 0
0 0 1

 ⇒ λ1 = 1 [ (m1,g1)= (3,3) ] −−−−−→

v11 = (1, 0, 0)
v12 = (0, 1, 0)
v13 = (0, 0, 1)

Observando a estrutura das respostas apresentadas acima, podemos dizer que resolver o pro-
blema de autovalor Lv = λv consiste em calcular os autovalores λi e os respectivos autovetores vij
(j = 1, gi), ou, em outros termos, calcular cada λi e uma base do respectivo autoespaço Sλi

.

Nota: Um problema baseado num operador linear que seja homogêneo (i.e, que, como se
apresenta, admite a solução nula) pode ser caracterizado como um problema de autovalor
caso exiba um parâmetro livre para o qual se buscam os valores (ditos autovalores) que lhe
possibilitam a existência de soluções não nulas (ditos autovetores).

3.2 Sistemas Homogêneos
Trataremos, primeiramente, de sistemas de EDOs lineares de 1a

¯ ordem homogêneos: F (t) ≡ 0 em
(3.1). Note que, quando n = 1 (A é uma matriz 1× 1, isto é, um número), a solução de dX/dt = AX
é X(t) = CeAt. Pois bem, prova-se que essa também é a solução quando n ≥ 2, desde que se defina a
exponencial de uma matriz. Não apresentaremos esse método; ele é descrito nos capítulos 29 e 31 da
referência [4].

O método estudado aqui começa por admitir-se uma solução da forma X = V eλt, onde V =
col [v1, · · · , vn] é um vetor (coluna) constante; substituindo, obtemos

λV��eλt = AV��eλt ⇒ AV = λV , ou (A− λI)V = 0 ,

que é um problema de autovalor, no qual procuramos as soluções não nulas (V 6= 0) associadas aos
valores de λ que satisfazem a equação de autovalor, ou equação característica, det(A− λI) = 0.

Dividiremos nosso estudo em três casos: 1) autovalores reais e distintos, 2) autovalores imaginários
e 3) autovalores repetidos. Isso não significa que um sistema de EDOs lineares se enquadre num desses
três casos. Na verdade, os três casos podem ocorrer num mesmo problema, ocorrendo tanto autovalores
reais quanto imaginários que se repetem.
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3.2.1 1o
¯ Caso: Autovalores Reais e Distintos

A solução do sistema X ′ = AX, sendo A uma matriz n× n, é dada por

X(t) =

n∑
k=1

ckVke
λkt ,

onde Vk é um vetor linearmente independente associado ao autovalor λk.

Exemplo 1:
{
x′ = 2x+ 3y
y′ = 2x+ y

ou
d

dt

[
x
y

]
︸ ︷︷ ︸
X

=

[
2 3
2 1

]
︸ ︷︷ ︸

A

[
x
y

]
︸ ︷︷ ︸
X

det(A− λI) =
∣∣∣∣ 2− λ 3

2 1− λ

∣∣∣∣ = (λ− 1)(λ− 2)− 6 = λ2 − 3λ− 4 = 0 ⇒ λ =

{
λ1 = −1
λ2 = 4

Cálculo do autovetor V1 e da solução X1(t) associados ao autovalor λ1 = −1:

A− λ1I =

[
3 3
2 2

]
escalonamento−−−−−−−−−→

[
3 3
0 0

]
∴ (A− λ1I)V1 = 0⇒

[
3 3
0 0

][
α
β

]
︸︷︷︸
V1

=

[
0
0

]
⇒
{
3α+ 3β = 0
0β = 0

⇒
{
α = −β
β qq

β = 1−−−→ V1 =

[
−1
1

]

∴ X1(t) = V1e
λ1t =

[
−1
1

]
e−t

Cálculo do autovetor V2 e da solução X2(t) associados ao autovalor λ2 = 4:

A− λ2I =

[
−2 3
2 −3

]
escalonamento−−−−−−−−−→

[
−2 3
0 0

]
∴ A− λ2I = 0⇒

[
−2 3
0 0

][
α
β

]
=

[
0
0

]
⇒
{
−2α+ 3β = 0
0β = 0

⇒
{
α = 3β/2
β qq

β = 2−−−→ V2 =

[
3
2

]
∴ X2(t) = V2e

λ2t =

[
3
2

]
e4t

Solução geral: X(t) = c1X1(t) + c2X2(t) = c1

[
−1
1

]
e−t + c2

[
3
2

]
e4t , ou

x(t) = −c1e−t + 3c2e
4t e y(t) = c1e

−t + 2c2e
4t ■

Exemplo 2:

 x′ = −4x+ y + z
y′ = x+ 5y − z
z′ = y − 3z

ou
d

dt

 x
y
z


︸ ︷︷ ︸

X

=

 −4 1 1
1 5 −1
0 1 −3


︸ ︷︷ ︸

A

 x
y
z


︸ ︷︷ ︸

X

det(A− λI) =

∣∣∣∣∣∣
−4− λ 1 1

1 5− λ −1
0 1 −3− λ

∣∣∣∣∣∣ = −(λ+ 4)[ (λ− 5)(λ+ 3) + 1] + (λ+ 3 + 1)

= (λ+ 4)[1− (λ− 5)(λ+ 3)− 1] = −(λ+ 3)(λ+ 4)(λ− 5) = 0 ⇒

 λ1 = −3
λ2 = −4
λ3 = 5

Cálculo do autovetor V1 associado ao autovalor λ1 = −3:

A− λ1I =

 −1 1 1
1 8 −1
0 1 0

 escalonamento−−−−−−−−−→

 −1 1 1
0 1 0
0 0 0


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∴ (A−λ1I)V1 = 0⇒

−1 1 1
0 1 0
0 0 0

αβ
γ


︸ ︷︷ ︸
V1

=

 0
0
0

⇒
−α+ β + γ = 0
β = 0
0γ = 0

⇒

α = γ
β = 0
γ qq

γ = 1−−−→ V1 =

 1
0
1


Cálculo dos autovetores V2 e V3 associados aos autovalores λ2 e λ3, respectivamente (abaixo, na

passagem denotada por E−→ , a matriz é escalonada):

A− λ2I =

 0 1 1
1 9 −1
0 1 1

 E−→

 1 9 −1
0 1 1
0 0 0

 α
β
γ

 =

 0
0
0

 ⇒

α = 10γ
β = −γ
γ qq

γ = 1−−−→V2 =

 10
−1
1



A− λ3I =

 −9 1 1
1 0 −1
0 1 −8

 E−→

 1 0 −1
0 1 −8
0 0 0

 α
β
γ

 =

 0
0
0

 ⇒

α = γ
β = 8γ
γ qq

γ = 1−−−→V3 =

 1
8
1



∴ Solução geral: X = c1

 1
0
1

 e−3t + c2

 10
−1
1

 e−4t + c3

 1
8
1

 e5t ■

3.2.2 2o
¯ Caso: Autovalores Imaginários

Os elementos da matriz A e, por conseguinte, os coeficientes da equação característica são reais.
Logo, se λ imaginário for autovalor, λ∗ (complexo conjugado) também será. Além disso, se ao autovalor
λ corresponde o autovetor V , isto é AV = λV , então (AV )∗ = (λV )∗, ou AV ∗ = λ∗V ∗, significando
que ao autovalor λ∗ corresponde o autovetor V ∗. Isso facilita os cálculos que seguem.

Exemplo 3:
{
x′ = 6x− y
y′ = 5x+ 4y

ou
d

dt

[
x
y

]
︸ ︷︷ ︸
X

=

[
6 −1
5 4

]
︸ ︷︷ ︸

A

[
x
y

]
︸ ︷︷ ︸
X

det(A− λI) =
∣∣∣∣ 6− λ −1

5 4− λ

∣∣∣∣ = λ2 − 10λ+ 29 = 0 ⇒ λ = 5± 2i

Cálculo do autovetor V associado ao autovalor λ = 5 + 2i:

A−λI =

[
1−2i −1
5 −1−2i

]
E−→
[

1−2i −1
0 0

][
α
β

]
=

[
0
0

]
⇒

 α =
β

1−2i
β qq

β = 1−2i−−−−−−→ V =

[
1

1−2i

]

∴ X(t) = k1V e
λt + k2V

∗eλ
∗t = k1

[
1

1− 2i

]
e(5+2i)t + k2

[
1

1 + 2i

]
e(5−2i)t .

Para escrever X(t) como uma função real, usamos a seguinte fórmula:

k1V e
λt + k2V

∗eλ
∗t

∣∣∣∣V ≡ P+Qi

λ≡ a+bi

= c1e
at (P cos bt−Q senbt) + c2 e

at(Q cos bt+ P senbt) , (3.4)

onde k1 e k2 são constantes complexas arbitrárias, c1 e c2 são constantes reais arbitrárias, a e b são as
partes real e imaginária de λ, e P e Q são as partes real e imaginária de V .

No caso: λ = 5︸︷︷︸
a

+ 2︸︷︷︸
b

i e V =

[
1

1− 2i

]
=

[
1
1

]
︸ ︷︷ ︸
P

+

[
0
−2

]
︸ ︷︷ ︸

Q

i .

∴ X(t) = c1 e
5t

([
1
1

]
cos 2t−

[
0
−2

]
sen2t

)
+ c2 e

5t

([
0
−2

]
cos 2t+

[
1
1

]
sen2t

)
■
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A dedução da fórmula em (3.4) é como segue:

X(t) = k1V e
λt + k2V

∗eλ
∗t = k1(P +Qi)e(a+bi)t + k2(P −Qi)e(a−bi)t

= k1(P +Qi)eat(cos bt+ i senbt) + k2(P −Qi)eat(cos bt− i senbt)

=
[
k1(P +Qi) + k2(P −Qi)

]
eat cos bt+ i

[
k1(P +Qi)− k2(P −Qi)

]
eat senbt

=
[
(k1 + k2)︸ ︷︷ ︸

≡ c1

P + i(k1 − k2)︸ ︷︷ ︸
≡ c2

Q
]
eat cos bt+

[
i(k1 − k2)︸ ︷︷ ︸

c2

P − (k1 + k2)︸ ︷︷ ︸
c1

Q
]
eat senbt

= c1e
at(P cos bt−Q senbt) + c2e

at(Q cos bt+ P senbt) CQD.

Exemplo 4: X ′ =

 1 2 0
−1/2 1 0
0 0 1


︸ ︷︷ ︸

A

X

det(A− λI) =

∣∣∣∣∣∣
1− λ 2 0
−1/2 1− λ 0
0 0 1− λ

∣∣∣∣∣∣ = (1− λ)
[
(1− λ)2 + 1

]
= 0 ⇒

 λ1 = 1 + i
λ2 = 1− i
λ3 = 1

A− λ1I =

 −i 2 0
−1/2 −i 0
0 0 −i

 E−→

 −i 2 0
0 0 0
0 0 −i

 α
β
γ

 =

 0
0
0

 ⇒

−iα+ 2β = 0
0β = 0
−iγ = 0

⇒

α = −2iβ
β qq
γ = 0

β = i−−−→ V1 =

 2
i
0

 =

 2
0
0


︸ ︷︷ ︸

P

+

 0
1
0


︸ ︷︷ ︸

Q

i

A− λ3I =

 0 2 0
−1/2 0 0
0 0 0

 E−→

 −1/2 0 0
0 2 0
0 0 0

 α
β
γ

 =

 0
0
0

 ⇒

−α/2 = 0
2β = 0
0γ = 0

⇒

α = 0
β = 0
γ qq

γ = 1−−−→ V3 =

 0
0
1



∴ X(t) = k1

 2
i
0

 e(1+i)t + k2

 2
−i
0

 e(1−i)t

︸ ︷︷ ︸
+ c3

 0
0
1

 et

=

︷ ︸︸ ︷
c1 e

t

 2
0
0

 cos t−

 0
1
0

 sent

+ c2 e
t

 0
1
0

 cos t+

 0
2
0

 sent

 + c3

 0
0
1

 et ■

onde usamos (3.4) para reescrever como uma função real os dois primeiros termos (indicados por
chaves), que correspondem ao par de autovalores complexos conjugados.

3.2.3 3o
¯ Caso: Autovalores Repetidos

A solução do sistema X ′ = AX, sendo A uma matriz n× n constante, é dada por

X =

kmax∑
k=1

Xk (kmax = no de autovalores distintos) ,

onde Xk é a parcela da solução associada ao k-ésimo autovalor distinto λk. A expressão de Xk depende
da multiplicidade de λk e dos autovetores associados a esse autovalor; vejamos:
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• Se a multiplicidade de λk for igual a 1 , então, sendo Vk o autovetor associado, temos que:

Xk = ckVke
λkt . (3.5)

• Se a multiplicidade de λk for igual a m ≥ 2 , a expressão de Xk depende do número de autovetores
linearmente independentes associados a esse autovalor, havendo três possibilidades:

– Existem m autovetores Vk1 , Vk2 , · · · , Vkm :

Xk = (ck1Vk1 + · · ·+ ckmVkm) eλkt . (3.6)

– Existe um único autovetor U1 :

Xk=

{
ck1U1 + ck2(U1t+ U2) + ck3

(
U1
t2

2!
+ U2t+ U3

)
+ · · ·

+ ckm

[
U1

tm−1

(m− 1)!
+ U2

tm−2

(m− 2)!
+ · · ·+ Um−1t+ Um

] }
eλkt , (3.7)

onde (A− λkI) Uj = Uj−1 (j = 2, · · · ,m) .

– O número de autovetores associados ao autovalor de multiplicidade m é maior que 1 e menor
que m; neste caso, o problema torna-se complicado e não será estudado aqui.

Essas fórmulas são provadas no final desta seção. Vale a pena escrevê-las em correspondência com
a estrutura de autovalores e autovetores. Fazemos isso a seguir, onde cada seta que se inicia num
autovalor λk indica uma base (de autovetores) do autoespaço de λk :

Matriz A2×2 :

Dois autovalores distintos:

λ1 → V1 e λ2 → V2 ⇝ X = c1V1e
λ1t + c2V2e

λ2t

Um autovalor distinto:

λ1(mult. 2)
↗

↘

V11 e V12 ⇝ X =
[
c11V11 + c12V12

]
eλ1t (v. Exemplo 5)

U1 ⇝
X =

[
c11U1 + c12(U1t+ U2)

]
eλ1t

onde (A−λ1I)U2 = U1

(v. Exemplo 6)

Matriz A3×3 :

Três autovalores distintos:

λ1 → V1 , λ2 → V2 e λ3 → V3 ⇝ X = c1V1e
λ1t + c2V2e

λ2t + c3V3e
λ3t

Dois autovalores distintos:

λ1(mult. 1)→ V1 e λ2(mult. 2)
↗

↘

V21 e V22 ⇝ X = c1V1e
λ1t +

[
c21V21 + c22V22

]
eλ2t (v. Ex. 7)

U1 ⇝
X = c1V1e

λ1t +
[
c21U1 + c22(U1t+ U2)

]
eλ2t

onde (A−λ2I)U2 = U1

(v. Ex. 8)

Um autovalor distinto:

V11, V12 e V13 ⇝ X =
(
c11V11 + c12V12 + c13V13

)
eλ1t

↗
λ1(mult. 3) → V11 e V12 ⇝ não estudado aqui

↘
U1⇝ X =

[
c11U1 + c12(U1t+ U2) + c13(U1t

2/2 + U2t+ U3)
]
eλ1t

onde (A−λ1I)U2 = U1 e (A−λ1I)U3 = U2

(v. Ex. 9)
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Enfatize-se, na notação adotada, que, se o autovalor λk é múltiplo e existe um único autovetor
associado, este é denotado por U1 (ao invés de Vk). Vejamos algumas aplicações dessas fórmulas:

Exemplo 5: A =

[
3 0
0 3

]

det(A− λI) =

∣∣∣∣ 3− λ 0
0 3− λ

∣∣∣∣ = (λ− 3)2 = 0 ⇒ λ1 = 3 (mult. 2) .

A− λ1I =

[
0 0
0 0

]
⇒ (A− λ1I)V1 = 0 ⇒

[
0 0
0 0

][
α
β

]
︸︷︷︸
V1

=

[
0
0

]
⇒

{
α qq
β qq .

⇒ V1 =

[
α
β

]
= α

[
1
0

]
︸︷︷︸
V11

+ β

[
0
1

]
︸︷︷︸
V12

⇒ X1(t) =
(
c11V11 + c12V12

)
eλ1t .

∴
[
x(t)
y(t)

]
= X(t) = X1(t) =

(
c11︸︷︷︸
k1

[
1
0

]
+ c12︸︷︷︸

k2

[
0
1

])
e3t =

[
k1 e

3t

k2 e
3t

]
■

Nota : O sistema linear consiste em duas EDOs que não são acopladas, permitindo que sejam
resolvidas separadamente: {

x′(t) = 3x ⇒ x(t) = k1 e
3t

y′(t) = 3x ⇒ y(t) = k1 e
3t .

Embora demasiadamente simples para ser resolvido matricialmente, este exemplo serve como ve-
rificação do método.

Exemplo 6: A =

[
3 −1
1 1

]

det(A− λI) =

∣∣∣∣ 3− λ −1
1 1− λ

∣∣∣∣ = (λ− 3)(λ− 1) + 1 = (λ− 2)2 = 0 ⇒ λ1 = 2 (mult. 2) .

A− λ1I =

[
1 −1
1 −1

]
E−→
[

1 −1
0 0

][
α
β

]
=

[
0
0

]
⇒
{
α = β
β qq

β =1−−−→ U1 =

[
1
1

]
∴ X1 =

{
c21U1 + c22(U1t+ U2)

}
eλ2t ,

onde U2 é uma solução (há uma infinidade) do sistema algébrico (A − λ1I)U2 = U1, o qual, em
componentes, se torna [

1 −1
0 0

][
α
β

]
=

[
1
1

]
.

Este sistema é mais facilmente resolvido na forma de uma matriz aumentada a ser escalonada:[
1 −1 1
1 −1 1

]
E−→
[

1 −1 1
0 0 0

]
⇒

{
α = 1 + β
β qq

β = 0−−−→ U2 =

[
1
0

]
.

Finalmente,

X = X1 =

{
c11

[
1
1

]
+ c12

([
1
1

]
t+

[
1
0

])}
e2t ■

Exemplo 7: A =

 1 −2 2
−2 1 −2
2 −2 1



det(A− λI) =

∣∣∣∣∣∣
1− λ −2 2
−2 1− λ −2
2 −2 1− λ

∣∣∣∣∣∣ = −(λ− 5)(λ+ 1)2 = 0 ⇒
{

λ1 = 5 (mult. 1)
λ2 = −1 (mult. 2)

A− λ1I =

 −4 −2 2
−2 −4 −2
2 −2 −4

 E−→

 2 1 −1
0 1 1
0 0 0

 α
β
γ

 =

 0
0
0

 ⇒

α = γ
β = −γ
γ qq

⇒ V1 = γ

 1
−1
1


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⇒ X1 = c1V1e
λ1t = c1

 1
−1
1

 e5t é a parcela da solução associada ao autovalor λ1 = 5, conforme (3.5).

A−λ2I =

 2 −2 2
−2 2 −2
2 −2 2

 E−→

 1 −1 1
0 0 0
0 0 0

 α
β
γ

 =

 0
0
0

 ⇒

α−β+γ = 0
0β = 0
0γ = 0

⇒

α = β − γ
β qq
γ qq

⇒ V2 =

β−γβ
γ

 = β

 1
1
0


︸ ︷︷ ︸
V21

+ γ

−10
1


︸ ︷︷ ︸
V22

⇒ X2 =
(
c21V21 + c22V22

)
eλ2t =

c21
 1
1
0

+ c22

−10
1

 e−t

é a parcela da solução associada ao autovalor λ2 = −1, conforme (3.6). A solução geral é X = X1+X2,
ou,

X = c1

 1
−1
1

 e5t +
c21

 1
1
0

+ c22

−10
1

 e−t ■

Exemplo 8: A =

 5 −4 0
1 0 2
0 2 5



det(A− λI) =

∣∣∣∣∣∣
5− λ −4 0
1 0− λ 2
0 2 5− λ

∣∣∣∣∣∣ = (5− λ)[λ(λ− 5) ] = 0 ⇒
{
λ1 = 0 (mult. 1)
λ2 = 5 (mult. 2)

A− λ1I =

 5 −4 0
1 0 2
0 2 5

 E−→

 1 0 2
0 2 5
0 0 0

 α
β
γ

 =

 0
0
0

⇒
α = −2γ
β = −5γ/2
γ qq

γ = −2−−−−→ V1 =

 4
5
−2


⇒ X1 = c1V1e

λ1t = c1

 4
5
−2

 é a parcela da solução associada ao autovalor λ1 = 0, conforme (3.5).

A− λ2I =

 0 −4 0
1 −5 2
0 2 0

 E−→

 1 −5 2
0 1 0
0 0 0

 α
β
γ

 =

 0
0
0

 ⇒

α = −2γ
β = 0
γ qq

γ =−1−−−−→ U1 =

 2
0
−1


⇒ X2 =

{
c21U1 + c22(U1t + U2)

}
eλ2t é a parcela da solução associada ao autovalor λ2 = 5, e U2 é

uma solução do sistema algébrico (A− λ2I)U2 = U1, ou, em componentes: 0 −4 0
1 −5 2
0 2 0

 α
β
γ

 =

 2
0
−1

 .

Este sistema é mais facilmente resolvido a partir da sua forma que é dada por uma matriz aumentada
e escalonada: 0 −4 0 2

1 −5 2 0
0 2 0 −1

 E−→

 1 −5 2 0
0 2 0 −1
0 0 0 0

 ⇒

α = −5/2− 2γ
β = −1/2
γ qq

γ = 0−−−→ U2 =

−5/2−1/2
0

 .

Logo, a solução geral é X = X1 +X2, ou,

X = c1

 4
5
−2

+

c21
 2

0
−1

+ c22

 2
0
−1

 t+
−5/2−1/2

0

 e5t ■
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Exemplo 9: A =

 1 0 0
2 2 −1
0 1 0



det(A− λI) =

∣∣∣∣∣∣
1− λ 0 0
2 2− λ −1
0 1 −λ

∣∣∣∣∣∣ = −(λ− 1)3 = 0 ⇒ λ1 = 1 (mult. 3)

A− λ1I =

 0 0 0
2 1 −1
0 1 −1

 E−→

 2 1 −1
0 1 −1
0 0 0

 α
β
γ

 =

 0
0
0

⇒
α = 0
β = γ
γ qq

γ = −1−−−−→ U1 =

 0
1
1



⇒ X1 =
{
c11U1+ c12(U1t+U2)+ c13(U1t

2/2+U2t+U3)
}
eλ1t é a parcela da solução associada ao

autovalor λ1 = 1, sendo U2 e U3, respectivamente, soluções dos sistemas algébricos resolvidos a seguir:

(A−λ1I)U2 = U1 ⇒

 0 0 0 0
2 1 −1 1
0 1 −1 1

 E−→

 2 1 −1 1
0 1 −1 1
0 0 0 0

 ⇒

α = 0
β = γ + 1
γ qq

γ = 0−−−→ U2 =

 0
1
0



(A−λ1I)U3 = U2 ⇒

 0 0 0 0
2 1 −1 1
0 1 −1 0

 E−→

 2 1 −1 1
0 1 −1 0
0 0 0 0

 ⇒

α = 1/2
β = γ
γ qq

γ = 0−−−→ U3 =

 1/2
0
0



Logo, a solução geral é

X = X1 =

c11
 0
1
1

+ c12

 0
1
1

 t+
 0
1
0

+ c13

 0
1
1

 t2
2
+

 0
1
0

 t+
 1/2

0
0

 et ■

Prova das fórmulas (3.5), (3.6) e (3.7):

Devemos provar que Xk dado por cada uma dessas fórmulas é solução do sistema linear, isto é, que
AXk − λkXk = 0.

• Prova da fórmula em (3.5). Se Xk = ckVke
λkt, onde AVk = λkVk, então

AXk −X ′
k = A(ckVke

λkt)− (λkckVke
λkt) = (AVk − λkVk)︸ ︷︷ ︸

0

cke
λkt = 0 ∀t . CQD.

• Prova da fórmula em (3.6). Se Xk =

(
m∑
l=1

cklVkl

)
eλkt, onde AVkl = λkVkl, então

AXk−X ′
k =

( m∑
l=1

cklAVkl

)
eλkt−λk

( m∑
l=1

cklVkl

)
eλkt =

[ m∑
l=1

ckl (AVkl − λkVkl)︸ ︷︷ ︸
0

]
eλkt = 0 ∀t . CQD.

• Prova da fórmula em (3.7). Esta fórmula pode ser escrita na forma

Xk =

m∑
l=1

cklXkl , com Xkl = eλkt
l∑

j=1

Uj
tl−j

(l − j)!
.

Demostramos que essa expressão deXk é solução do sistema de EDOs observando, primeiramente,
que

AXk −X ′
k =

l∑
j=1

ckl (AXkl −X ′
kl)︸ ︷︷ ︸

0

= 0 ,
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restando, para completar a demonstração, mostrar que o termo entre parênteses se anula:

AXkl −X ′
kl = eλkt

l∑
j=1

tl−j

(l − j)!
AUj − λkeλkt

l∑
j=1

tl−j

(l − j)!
Uj − eλkt

l−1∑
j=1

tl−j−1

(l − j − 1)!
Uj︸ ︷︷ ︸

l∑
j=2

tl−j

(l−j)!
Uj−1

= eλkt

{
tl−1

(l − 1)!

[
AU1 − λkU1︸ ︷︷ ︸

0

]
+

l∑
j=2

tl−j

(l − j)!
[
(A− λkI)Uj − Uj−1︸ ︷︷ ︸

0

]}
= 0 . CQD.

3.3 Sistemas Não Homogêneos
De acordo com a descrição das etapas de resolução do sistema não homogêneo X ′(t) = AX(t)+F (t)

apresentada no texto quadriculado na pág. 41, uma vez encontrada a solução geral XH(t) do sistema
homogêneo associado, basta somar a essa solução uma solução particular XP (t) do sistema para obter
a solução geral X(t) = XH(t) + XP (t) do sistema não homogêneo. Nesta seção descrevemos dois
métodos para determinar XP (t), expostos separadamente nas duas subseções seguintes.

3.3.1 Método dos Coeficientes a Determinar
Este método funciona para algumas expressões particulares de F (t), das quais consideramos aqui

apenas quatro. Abaixo listamos a regra de formação da solução particular XP (t) para esses quatro
casos. Nas expressões consideradas para F (t), um termo conhecido, K e M são matrizes colunas
conhecidas, e k é uma constante conhecida. Já nas formas admitidas para XP , B e C são matrizes
coluna a serem determinadas. Todas essas matrizes são da mesma ordem n × 1 de F (t) e XP (t),
sendo n o número de EDOs no sistema. O método consiste em calcular B e C, cujos elementos Bi
e Ci (i = 1, · · · , n) são os "coeficientes a determinar" (∗), presentes nas equações do sistema X ′

P (t) =
AXP (t) + F (t).

F (t) = K (const.) ⇒ XP (t) = B (const.) . (3.8)

F (t) = Kt+M (com M nulo ou não) ⇒ XP (t) = Bt+ C . (3.9)

F (t) = Kekt (k 6= autovalor de A) ⇒ XP (t) = Bekt . (3.10)

F (t) = Kekt (k = autovalor de A de multip. 1) ⇒ XP (t) = Btekt + Cekt . (3.11)

Pelo princípio de superposição para sistema linear não homogêneo (v. pág 40), essas regras de
formação de XP (t) se superpõem; por exemplo, se F (t) é a soma de expressões como aquelas em (3.9)
e (3.10), isto é, F (t) = Kt+M +Nekt, então havemos de usar XP (t) = Bt+ C + Dekt.

Exemplo: Vamos resolver X ′(t) = AX(t) + F (t) , com A =

[
2 3
2 1

]
e F (t) dado por:

(a) F (t) =

[
9
−5

]
; (b) F (t) =

[
−2t
−2t+ 1

]
; (c) F (t) =

[
−3e2t
−5e2t

]
·

Resolução:

A solução geral é dada por
X(t) = XH(t) +XP (t) ■

O sistema homogêneo associado já foi resolvido na subseção 3.2.1, Exemplo 1, quando se obteve

XH(t) = c1

[
−1
1

]
e−t + c2

[
3
2

]
e4t ■

(∗)O presente método lembra aquele, de mesmo nome, existente para determinar uma solução particular de uma EDO
linear de coeficientes constantes cujo termo independente envolve polinômios, funções exponenciais, senos, cossenos,
somas ou produtos finitos dessas funções, ou ainda somas finitas de tais produtos. No caso de EDOs, não é complicado
elaborar o método genericamente, o que não acontece no caso de sistemas de EDOs, razão pela qual aqui consideramos
apenas algumas formas do termo independente F (t)
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Calculemos XP (t) de cada um dos itens (a), (b) e (c) :

Item (a):

Como F é constante, de acordo com (3.8) admitimos XP = B =

[
B1

B2

]
(constante) e substituímos

essa expressão no sistema linear para calcular B1 e B2:

X ′
P = AXP + F ⇒

[
0
0

]
=

[
2 3
2 1

][
B1

B2

]
+

[
9
−5

]
⇒

{
0 = 2B1 + 3B2 + 9
0 = 2B1 +B2 − 5

⇒
{
B1 = 6
B2 = −7 ⇒ XP =

[
6
−7

]
■

Item (b):

Como F é formado por polinômios do 1o
¯ grau, de acordo com (3.9) admitimos

XP = Bt+ C =

[
B1

B2

]
t+

[
C1

C2

]
=

[
B1t+ C1

B2t+ C2

]
e substituímos essa expressão no sistema linear para calcular B1, B2, C1 e C2:

AXP =

[
2 3
2 1

][
B1t+ C1

B2t+ C2

]
=

[
2(B1t+ C1) + 3(B2t+ C2)
2(B1t+ C1) + (B2t+ C2)

]
=

[
(2B1 + 3B2)t+ (2C1 + 3C2)
(2B1 +B2)t+ (2C1 + C2)

]
.

F −X ′
P =

[
−2t
−2t+ 1

]
−
[
B1

B2

]
=

[
−2t−B1

−2t+ 1−B2

]
.

AXP + F −X ′
P =

[
(2B1 + 3B2)t+ (2C1 + 3C2)
(2B1 +B2)t+ (2C1 + C2)

]
+

[
−2t−B1

−2t+ 1−B2

]
=

[
0
0

]
.

{
(2B1 + 3B2 − 2)t+ (2C1 + 3C2 −B1) = 0
(2B1 +B2 − 2)t+ (2C1 + C2 + 1−B2) = 0 .{
2B1 + 3B2 = 2
2B1 +B2 = 2

⇒
{
B1 = 1
B2 = 0 .{

2C1 + 3C2 = B1 = 1
2C1 + C2 = −1 +B2 = −1 ⇒

{
C1 = −1
C2 = 1 .

∴ XP (t) =

[
B1t+ C1

B2t+ C2

]
=

[
t− 1
1

]
■

Item (c):

Como F é como em (3.10) (pois k = 2 não é autovalor da matriz A), admitimos

XP = Be2t =

[
B1

B2

]
e2t =

[
B1e

2t

B2e
2t

]
e substituímos essa expressão no sistema linear para calcular B1 e B2:

AXP =

[
2 3
2 1

][
B1e

2t

B2e
2t

]
=

[
(2B1 + 3B2)e

2t

(2B1 +B2)e
2t

]
.

F −X ′
P =

[
−3e2t
−5e2t

]
−
[
2B1e

2t

2B2e
2t

]
=

[
(−3− 2B1)e

2t

(−5− 2B2)e
2t

]
.

AXP + F −X ′
P =

[
(2B1 + 3B2)e

2t

(2B1 +B2)e
2t

]
+

[
(−3− 2B1)e

2t

(−5− 2B2)e
2t

]
=

[
(3B2 − 3)e2t

(2B1 −B2 − 5)e2t

]
=

[
0
0

]
.

{
3B2 − 3 = 0
2B1 −B2 − 5 = 0

⇒
{
B1 = 3
B2 = 1 .

∴ XP (t) =

[
3e2t

e2t

]
■
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3.3.2 Método da Variação dos Parâmetros
A solução geral do sistema homogêneo associado

X ′
H −AXH(t) = 0

é da forma

XH(t) = c1X1(t) + c2X2(t) + · · ·+ cnXn(t) =
[
X1(t) X2(t) · · · Xn(t)

]︸ ︷︷ ︸
Φ(t)


c1
c2
...
cn


︸ ︷︷ ︸
C

= Φ(t)C ,

onde Φ(t) (a denominada matriz fundamental) é formada por n colunas que são soluções X1(t), X2(t),
· · · , Xn(t) linearmente independentes do sistema homogêneo(∗), e C é uma matriz coluna com n
constante arbitrárias. Substituindo a segunda equação acima na primeira, obtemos [Φ′(t)−AΦ(t)]C =
0, a qual, por ser válida com C arbitrário, leva a concluirmos que Φ′(t) − AΦ(t) = 0, equação que
é utilizada abaixo, no cancelamento dos dois termos riscados, ao se deduzir uma solução particular
XP (t) do sistema não homogêneo.

Admitindo que XP (t) = Φ(t)U(t), obtemos, substituindo essa expressão no sistema não homogêneo,
a seguinte equação que permite a determinação de U(t) [e, portanto, de XP (t)]:

0 = X ′
P (t)−AXP (t)−F (t) = �����Φ′(t)U(t) +Φ(t)U ′(t)−�����

AΦ(t)U(t) −F (t) ⇒ U ′(t) = Φ−1(t)F (t) .

Em resumo, temos que a solução geral do sistema não homogêneo é X(t) = XH(t) + XP (t),
isto é, a soma da solução geral do sistema homogêneo XH(t) = Φ(t)C (calculada conforme a seção
3.2) com a solução particular XP (t) = Φ(t)U(t), onde U ′(t) = Φ−1(t)F (t) .

A substituição do parâmetro C em XH(t) pelo U(t) para obter XP (t) justifica o nome deste método.

Exemplo 1: Resolução do sistema X ′ =

[
−3 1
2 −4

]
︸ ︷︷ ︸

A

X +

[
3t
e−t

]
︸ ︷︷ ︸
F (t)

(t > 0) :

A resolução do sistema homogêneo associado X ′
H = AXH(t) fornece a solução geral

XH(t) = c1

[
1
1

]
e−2t + c2

[
1
−2

]
e−5t =

[
e−2t e−5t

e−2t −2e−5t

]
︸ ︷︷ ︸

Φ(t)

[
c1
c2

]
.

Após o cálculo(†) de Φ−1(t), temos que

U ′(t) = Φ−1(t)F (t) =

 2
3e

2t 1
3e

2t

1
3e

5t − 1
3e

5t


︸ ︷︷ ︸

Φ−1(t)

[
3t
e−t

]
=

 2te2t + 1
3e
t

te5t − 1
3e

4t

 ⇒

U(t) =


∫ [

2te2t +
1

3
et
]
dt+ k1

∫ [
te5t − 1

3
e4t
]
dt+ k2

 =

 te2t − 1
2e

2t + 1
3e
t

1
5 te

5t − 1
25e

5t − 1
12e

4t

 ,

(∗)Note que Φ(t) é a matriz cujo determinante é o wronskiano daquelas soluções linearmente independentes:
W (X1, · · · , Xn) = detΦ(t) ̸= 0 , mostrando que Φ(t) tem uma inversa Φ−1(t).

(†)Uma fórmula útil: Se A =

[
a b
c d

]
, com detA = ad− bc ̸= 0, então A−1 = 1

detA

[
d −b

−c a

]
.
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onde fizemos k1 = k2 = 0, pois queremos uma solução particular. Logo,

XP (t) = Φ(t)U(t) =

[
e−2t e−5t

e−2t −2e−5t

] te2t − 1
2e

2t + 1
3e
t

1
5 te

5t − 1
25e

5t − 1
12e

4t

 =

 6t
5 −

27
50 + 1

4e
−t

3t
5 −

21
50 + 1

2e
−t

 ,

e a solução geral é, finalmente,

X(t) = c1

[
1
1

]
e−2t + c2

[
1
−2

]
e−5t +

 6t
5 −

27
50 + 1

4e
−t

3t
5 −

21
50 + 1

2e
−t

 ■

Exemplo 2: Considere o sistema X ′ =

[
5 −2
2 0

]
X(t) +

[
−12e5t

0

]
(t > 0) . Temos que

XH(t) = c1

[
1
2

]
et + c2

[
2
1

]
e4t =

[
et 2e4t

2et e4t

]
︸ ︷︷ ︸

Φ(t)

[
c1
c2

]

é a solução do sistema homogêneo associado (verifique isso). Logo, a solução é X = XH +XP , sendo
XP calculado como segue:

U ′ = Φ−1F =
1

e5t − 4e5t

[
e4t −2e4t
−2et et

]
︸ ︷︷ ︸

Φ−1(t)

[
−12e5t

0

]
︸ ︷︷ ︸

F (t)

= − 1

3e5t

[
−12e9t
24e6t

]
=

[
4e4t

−8et
]
.

XP = ΦU =

[
et 2e4t

2et e4t

] [
e4t

−8et
]
=

[
e5t − 16e5t

2e5t − 8e5t

]
=

[
−15e5t
−6e5t

]
.

Exemplo 3: Resolução completa do sistema X ′ =

[
3 −1
9 −3

]
︸ ︷︷ ︸

A

X(t) +

[
t−2

−t−4

]
︸ ︷︷ ︸

F (t)

(t > 0) :

det(A− λI) =
∣∣∣∣ 3− λ −1

9 −3− λ

∣∣∣∣ = (λ− 3)(λ+ 3) + 9 = λ2 = 0 ⇒ λ1 = 0 (multip. 2)

A− λ1I =

[
3 −1
9 −3

]
escalonamento−−−−−−−−−→

[
3 −1
0 0

]

(A− λ1I)V = 0⇒
[

3 −1
0 −0

][
α
β

]
︸ ︷︷ ︸
V

=

[
0
0

]
⇒
{
3α− β = 0
0β = 0

⇒
{
α = β/3
β qq

β = 3−−−→ V︸︷︷︸
≡ U1

=

[
1
3

]

X1(t) = c11U1e
0t + c12(U1t+ U2)e

0t

(A−λ1I)U2 = U1 ⇒
[

3 −1
9 −3︸ ︷︷ ︸
A−λ1I

∣∣∣∣ 1
3︸︷︷︸
V1

]
E−→
[

3 −1 1
0 0 0

]
⇒

{
3α− β = 1
β qq

β = 0−−−→ U2 =

[
1/3
0

]

X1(t) = XH(t) = c11

[
1
3

]
+ c12

([
1
3

]
t+

[
1/3
0

])
=

[
1 t+ 1/3
3 3t

]
︸ ︷︷ ︸

Φ(t)

[
c11
c12

]

Φ−1(t) =

[
3t −t− 1/3
−3 1

]
1

3t− (3t+ 1)
=

[
−3t t+ 1/3
3 −1

]
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U(t) =

∫
Φ−1(t)F (t) dt =

∫ [
−3t t+ 1/3
3 −1

] [
t−2

−t−4

]
dt =

∫ [
−3t−1 − t−3 − 1

3 t
−4

3t−2 + t−4

]
dt

=

[
−3 ln t+ 1

2 t
−2 + 1

9 t
−3

−3t−1 − 1
3 t

−3

]

XP (t) = Φ(t)U(t) =

[
1 t+ 1/3

3 3t

][
−3 ln t+ 1

2 t
−2 + 1

9 t
−3

−3t−1 − 1
3 t

−3

]

= XP (t) =

[
−3 ln t+ 1

6 t
−2 − t−1 − 3

−9 ln t+ 1
3 t

−3 + 1
2 t

−2 − 9

]

A solução geral é X(t) = XH(t) +XP (t), ou seja,

X(t) =

[
c11 + c12(t+

1
3 )− 3 ln t+ 1

6 t
−2 − t−1 − 3

3c11 + 3c12t− 9 ln t+ 1
3 t

−3 + 1
2 t

−2 − 9

]
■

3.4 Aplicações

3.4.1 Conversão de EDO Linear de Ordem n ≥ 2 num Sistema de n EDOs
de Primeira Ordem

Numa EDO linear de ordem n não homogênea,

an y
(n)

↓
x′
n(t)

+ an−1 y
(n−1)

↓
xn(t)

+ an−2 y(n−2)

↓
xn−1(t)

+ · · · + a2 y
′′

↓
x3(t)

+ a1 y
′

↓
x2(t)

+ a0 y(t)

↓
x1(t)

= f(t) ,

se definirmos n funções x1(t), · · · , xn(t) conforme indicado acima, ela se converte no seguinte sistema
de n EDOs lineares de 1a

¯ ordem não homogêneo:

x′1 = x2

x′2 = x3

...

x′n−1 = xn

x′n= −
a0
an
x1 −

a1
an
x2 −

a2
an
x3 · · · −

an−1

an
xn−1 + f(t)

[
onde x1(t) = y(t)

]
.

Observe que essa conversão num sistema de EDOs lineares funciona independentemente de serem
os coeficientes a0, a1, · · · , an constantes ou dependentes de t.

Nota: O método apresentado pode ser usado para converter uma EDO de ordem n da forma
y(n)(t) = F

(
t, y, y′, · · · , y(n−1)

)
num sistema de n EDOs de 1a

¯ ordem (não necessariamente linear),
o que é fácil de mostrar, pois o procedimento é exatamente o mesmo; nesse caso se obteria o sistema
de EDOs acima, exceto pela última equação, que passaria a ser x′

n = F
(
t, x1, x2, · · · , xn

)
.

Exemplo: Resolva a EDO y′′ + 2y′ − 24y(t) = 0: (a) convertendo-a num sistema linear de EDOs e
resolvendo este sistema, e (b) pelo método das raízes da equação característica.

Item (a):

y′′

↓
x′
2(t)

+ 2 y′

↓
x2(t)

− 24 y(t)

↓
x1(t)

= 0 ⇒

{
x′1 = x2

x′2 = 24x1 − 2x2
⇒

[
x′1
x′2

]
=

[
0 1
24 −2

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸
X

.

det(A− λI) =
∣∣∣∣ 0− λ 1

24 −2− λ

∣∣∣∣ = λ(λ+ 2)− 24 = λ2 + 2λ− 24 = 0 ⇒ λ =

{
λ1 = 4
λ2 = −6 .
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A− λ1I =

[
−4 1
24 −6

]
escalonamento−−−−−−−−−→

[
−4 1
0 0

]
.

(A− λ1I)V1 = 0⇒
[
−4 1
0 0

][
α
β

]
︸︷︷︸
V1

=

[
0
0

]
⇒
{
−4α+ β = 0
0β = 0

⇒
{
α = β/4
β qq

β = 4−−−→ V1 =

[
1
4

]
.

A− λ2I =

[
6 1
24 4

]
escalonamento−−−−−−−−−→

[
6 1
0 0

]
.

A− λ2I = 0⇒
[

6 1
0 0

][
α
β

]
=

[
0
0

]
⇒
{
6α+ β = 0
0β = 0

⇒
{
α = −β/6
β qq

β = −6−−−−→ V2 =

[
1
−6

]
.

X(t) = c1V1e
λ1 + c2V2e

λ1 = c1

[
1
4

]
e4t + c2

[
1
−6

]
e−6t =

[
c1e

4t + c2e
−6t

4c1e
4t − 6c2e

−6t

]
=

[
x1(t)
x2(t)

]
=

[
y(t)
y′(t)

]
.

y(t) = c1e
4t + c2e

−6t ■

Item (b): r2 + 2r − 24 = 0 ⇒ r = 4 ou − 6 ⇒ y(t) = c1e
4t + c2e

−6t ■

Embora este exemplo tenha mostrado ser mais trabalhoso resolver EDO linear com coeficientes
constantes usando o método explicado acima, de conversão num sistema linear, este método tem sua
importância prática e teórica, porque insere a teoria de EDOs de ordem superior naquela de sistemas
de primeira ordem.

3.4.2 Modelagem
3.4.2.1 Circuitos Elétricos

Um circuito elétrico com mais de uma malha pode ser descrito
matematicamente por um sistema de equações diferenciais. Mas,
antes destes, para relembrar alguns conceitos e procedimentos, con-
sidere o circuito de uma única malha mostrado à esquerda. Para
calcular a corrente elétrica i(t) neste circuito, primeiramente igua-
lamos o potencial E(t) suprido pela fonte de força eletromotriz à
soma das quedas de potencial no resistor de resistência R, capacitor
de capacitância C e carga elétrica armazenada q(t), e indutor de
indutância L, respectivamente dadas por Ri(t), q(t)/C, e Ldi/dt ,

obtendo uma equação diferencial figurando duas grandezas desconhecidas i(t) e q(t). Com a substitui-
ção de i(t) = dq/dt, obtemos uma equação diferencial para q(t) :

E(t) = Ri(t) +
q(t)

C
+ L

di

dt
(∗)

i= dq/dt−−−−−−−→ E(t) = R
dq

dt
+
q(t)

C
+ L

d2q

dt2
.

Da solução q(t) desta EDO calculamos finalmente a desejada corrente elétrica por diferenciação: i(t) =
dq/dt . Outro modo seria derivar a equação (∗) acima para deduzir diretamente a seguinte EDO para
i(t) : dE/dt = Rdi/dt+ i(t)/C + Ld2i/dt2 .

Exemplo 1 : Considere o circuito elétrico abaixo. Para calcular as correntes elétricas nele, proce-
demos como acima em cada uma das malhas abcda e befcb :
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Malha abcda : E = L
di1
dt

+R1i2 +R2i1 .

Malha befcb : 0 =
q

C
−R1i2

d/dt
=⇒ 0 =

1

C

dq

dt︸︷︷︸
i3

−R1
di2
dt

⇒ 0 =
1

C
i3 −R1

di2
dt

.

Temos então duas equações com as três incógnitas i1, i2 e i3. Mas, no nó b do circuito elétrico, temos
que i1 = i2+ i3, donde i3 = i1− i2, equação que pode ser usada para eliminar i3, obtendo-se o seguinte
sistema de EDOs de 1a

¯ ordem não homogêneo:
di1
dt

= −R2

L
i1(t)−

R1

L
i2(t) +

E(t)

L

di2
dt

=
1

R1C
i1(t)−

1

R1C
i2(t) ■

Exemplo 2 : Calculemos as correntes elétricas no circuito elétrico abaixo.

Malha befcb :
q1
C1

+Ri1 −
q2
C2

= 0
diferenciação−−−−−−−−−−−−−−−−→

dq1/dt= i1, dq2/dt= i3

i1
C1

+R
di1
dt
− i3
C3

= 0 .

Malha abcda : L
di2
dt

+
q2
C2

= E
diferenciação−−−−−−−−−→
dq2/dt= i3

L
d2i2
dt2

+
i3
C2

= E ,

onde dq2/dt = i3 porque é a corrente i3 que causa a carga q2 no capacitor C2
(∗).

Temos duas equações com as três incógnitas i1, i2 e i3, mas podemos eliminar i3 substituindo a
igualdade i3 = i2 − i1 (válida no nó b) nas duas equações acima:

R
di1
dt

= − 1

C1
i1 +

1

C2
(i2 − i1) = −

( 1

C1
+

1

C2

)
i1 +

1

C2
i2

L
d2i2
dt2

= − 1

C2
(i2 − i1) +

dE

dt
=

1

C2
i1 −

1

C2
i2 +

dE

dt
.

Esse é um sistema não homogêneo de duas EDOs lineares e duas incógnitas, i1 e i2, mas a segunda
EDO é de 2a

¯ ordem. Para obter um sistema de apenas EDOs lineares de 1a
¯ ordem, exemplificando

o modelo em (3.1), podemos, por meio da técnica descrita na subseção 3.4.1, converter a EDO de 2a
¯

ordem em duas de 1a
¯ ordem acrescentando a equação que define a nova incógnita I3(t) ≡ di2/dt(†). O

resultado é o seguinte sistema não homogêneo de três EDOs lineares de 1a
¯ ordem e três incógnitas i1,

i2 e I3 : 

di1
dt

= −
(C1 + C2

RC1C2

)
i1 +

1

RC2
i2

di2
dt

= I3

dI3
dt

=
1

LC2
i1 −

1

LC2
i2 +

1

L

dE

dt
,

(∗)Teríamos dq2/dt = i2 se permutássemos as notações i2 e i3, mas outros aspectos do problema nos levaram a escolher
a notação usada

(†)Denotamos di2/dt por I3, em vez de i3, porque i3 já denota uma das correntes no circuito.
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ou, matricialmente,

d

dt

 i1
i2
I3

 =


−
(C1 + C2

RC1C2

) 1

RC2
0

0 0 1

1

LC2
− 1

LC2
0




i1

i2

I3

+


0

0

1

L

dE

dt

 ■

3.4.2.2 Tanques Misturadores

Problema: Numa instalação industrial existe o Tanque 1, que inicialmente continha 200 L de uma
mistura de água e sal com concentração salina de 0,1 kg/L e no qual são despejados 12 L/min de água
pura proveniente de uma caixa d’água, e existe o Tanque 2, que inicialmente continha 200 L de água
pura e do qual são retirados 12 L/min do seu conteúdo para um reservatório especial. Sabendo que os
conteúdos desses tanques são misturados pela ação de bombas que transferem 16 L/min do conteúdo
do Tanque 1 para o 2 e 4 L/min do conteúdo do Tanque 2 para o 1, deduza um modelo matemático
que descreve as massas m1(t) e m2(t) de sal nos Tanques 1 e 2 em função do tempo, respectivamente.
Admita que toda a solução salina nesse sistema mantenha-se homogeneamente misturada.

Solução:

Note que os volumes dos tanques se mantêm constantes, pois, em cada um, a vazão de entrada
é igual à de saída (se não fosse assim, o problema seria um pouco mais complicado). Além disso, a
massa inicial de sal no Tanque 1 é m1(0) = 200 L × 0,1 kg/L = 20 kg. Então, com a informação de
que dispomos, podemos esquematizar o problema como na figura abaixo, onde, em cada tanque, E e
S indicam respectivamente pontos de entrada e saída de líquido.

Para formular o problema, levamos em conta o seguinte:

1. A taxa de variação da massa de sal dm/dt é, pela regra da cadeia, a concentração salina dm/dV

multiplicada pela vazão dV/dt :
dm

dt
=
dm

dV

dV

dt
·

2. A taxa de variação da massa de sal no tanque i (= 1 ou 2) é igual à de entrada menos a de saída:
dmi

dt
=
dmi

dt

∣∣∣∣
E

− dmi

dt

∣∣∣∣
S

·

3. No Tanque 1 há dois pontos de entrada de líquido e um de saída. No Tanque 2, há um de entrada
e dois de saída.

4. A mistura que sai do tanque i tem a concentração deste tanque, igual a mi(t)/Vi. Assim,
por exemplo, a mistura que sai do Tanque 1 para o Tanque 2 chega neste com a concentração
m1(t)/V1.
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A formulação do problema é, portanto, como segue:

dm1

dt
=

dm1

dt

∣∣∣∣
E

− dm1

dt

∣∣∣∣
S

=

[
dm

dV

dV

dt

]
1,E

−
[
dm

dV

dV

dt

]
1,S

=

[(
0

kg
L

)(
12

L
min

)
+
(m2

200

kg
L

)(
4

L
min

)]
−
[(m1

200

kg
L

)(
16

L
min

)]
= − 4

50
m1(t) +

1

50
m2(t)

[ kg
min

]
■ (I)

dm2

dt
=

dm2

dt

∣∣∣∣
E

− dm2

dt

∣∣∣∣
S

=

[
dm

dV

dV

dt

]
2,E

−
[
dm

dV

dV

dt

]
2,S

=

[(m1

200

kg
L

)(
16

L
min

)]
−
[(m2

200

kg
L

)(
4

L
min

)
+
(m2

200

kg
L

)(
12

L
min

)]
=

4

50
m1(t)−

4

50
m2(t)

[ kg
min

]
■ (II)

Vemos que (I) e (II) formam um sistema de EDOs do tipo estudado.

3.5 Exercícios
1. Escrever como um sistema de EDOs na chamada forma normal, isto é, na forma dX/dt =
A(t)X(t) + F (t):

(a) y′′ − 3y′ + 4y = sen3t (b) y′′′ − 3y′′ + 6y′ − 10y = t2 + 1
(c) 2y(4) + y′′′ − 8y = 10 (d) t2y′′ + ty′ + (t2 − 4)y = 0

Abaixo, os problemas 2 a 4 consistem em resolver sistemas de EDOs homogêneos da forma dX/dt =
AX(t). Os sistemas encontram-se agrupados, num mesmo problema, conforme os autovalores da ma-
triz A, seguindo os três casos estudados.

2. Matrizes cujos autovalores são todos reais e distintos:

(a) A =

[
1 1
4 −2

]
(b) A =

 1 1 2
1 2 1
2 1 1


3. Matrizes que apresentam autovalores imaginários:

(a) A =

[
2 −5
1 −2

]
(b) A =

[
3 −2
4 −1

]
(c) A =

 1 0 0
2 1 −2
3 2 1


4. Matrizes que apresentam autovalores reais repetidos:

(a) A =

[
3 −4
1 −1

]
(ao autovalor 1, duplo, associa-se um único autovetor)

(b) A =

 0 1 1
1 0 1
1 1 0

 (ao autovalor −1, duplo, associam-se dois autovetores)
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(c) A =

 1 1 1
2 1 −1
0 −1 1

 (ao autovalor 2, duplo, associa-se um único autovetor)

(d) A =

 1 1 1
2 1 −1
−3 2 4

 (ao autovalor 2, triplo, associa-se um único autovalor)

5. Agora se pede que sejam revolvidos os seguintes sistemas de EDOs não homogêneos:

(a)
dX

dt
=

[
1 8
1 −1

]
X(t) +

[
12t
12t

]
(b)

dX

dt
=

 1 1 0
1 1 0
0 0 3

X(t) +

 et

e2t

t e3t



Respostas

1. (a)
{
x′1 = x2
x′2 = −4x1 + 3x2 + sen3t

(b)

x
′
1 = x2
x′2 = x3
x′3 = 10x1 − 6x2 + 3x3 + t2 + 1

2. (a) X = c1

[
1
−4

]
e−3t + c2

[
1
1

]
e2t (b) X = c1

11
1

 e4t + c2

 1
−2
1

 et + c3

 1
0
−1

 e−t

3. (a) X = c1

[
5 cos t

2 cos t+ sent

]
+ c2

[
5 sent

− cos t+ 2 sent

]
(b) X = c1e

t

[
cos 2t

cos 2t+ sen2t

]
+ c2e

t

[
sen2t

− cos 2t+ sen2t

]

(c) X = c1e
t

 2
−3
2

+ c2e
t

 0
− sen2t
cos 2t

+ c3e
t

 0
cos 2t
sen2t


4. (a) X = c1

[
2
1

]
et + c2

([
2
1

]
tet +

[
1
0

]
et
)

(b) X = c1

11
1

 e2t + c2

 1
0
−1

 e−t + c3

 0
1
−1

 e−t
(c) X = c1

−34
2

 e−t + c2

 0
1
−1

 e2t + c3

 0
1
−1

 te2t +
10
1

 e2t


(d) X = c1

 0
1
−1

 e2t + c2

 0
1
−1

 te2t +
10
1

 e2t
+ c3

 0
1
−1

 t2
2
e2t +

10
1

 te2t +
10
2

 e2t


5. (a) X = c1

[
4
1

]
e3t + c2

[
−2
1

]
e−3t +

[
−12t− 4/3
−4/3

]

(b) X = c1

 1
−1
0

+ c2

11
0

 e2t + c3

00
1

 e3t +
 − 1

4e
2t + 1

2 te
2t

−et + 1
4 te

2t + 1
2 te

2t

1
2 t

2e3t


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Capítulo 4

Transformada de Laplace {
Ref. [13], seções 7.1 e 7.6

}
4.1 Definição

A transformada de Laplace de uma função f(t) definida para t ≥ 0 , denotada por L{f(t)}, é a
função f̄(s) resultante da seguinte integral:

L{f(t)} =
∫ ∞

0

e−stf(t) dt = f̄(s) , (4.1)

para os valores de s que tornem a integral convergente. Por exemplo, se f(t) = c (constante), então

L{c} =
∫ ∞

0

e−stc dt = c
e−st

−s

∣∣∣∣∞
t=0

=
c

s

(
− e−s·∞︸ ︷︷ ︸

0

+ e0
)
=
c

s
,

para s > 0 (excluem-se s = 0, por implicar em divisão por zero, e s > 0, porque o termo indicado
acima como nulo seria infinito).

Outro exemplo: se f(t) =
{

0 (t < 3)
2 (t ≥ 3)

, temos que

L{f(t)} =
∫ ∞

0

e−stf(t) dt =

∫ 3

0

e−st0 dt+

∫ ∞

3

e−st2 dt =
2e−st

−s

∣∣∣∣∞
t=3

=
2e−3s

s
(s > 0) .

4.2 A Linearidade da Transformada de Laplace

L{af(t)+bg(t)} =
∞∫
0

e−st[af(t)+bg(t)] dt = a

∞∫
0

e−stf(t) dt+b

∞∫
0

e−stg(t) dt = aL{f(t)}+bL{g(t)} .

4.3 Condições Suficientes para a Existência da Transformada
de Laplace e o Comportamento Assintótico Sob Essas Con-
dições

Garante-se a existência da transformada de Laplace de uma função f(t) definida para t ≥ 0 que
seja

• contínua por partes, isto é, que exiba, em qualquer intervalo finito do seu domínio, um número
finito (zero inclusive) de descontinuidades, nunca sendo infinita.

• de ordem exponencial, isto é, que, em valor absoluto, seja menor que alguma exponencial Meλt

para t maior que algum T .

Além disso, sob essas condições, f̄(s) = L{f(t)} deve necessariamente tender a zero quando s→∞ .(†)

(†)Assim, funções de s tais como s2 e s/(s+2) não são transformadas de Laplace de nenhuma função f(t) [t ≥ 0] que
seja contínua por partes e de ordem exponencial.
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De fato:

|L{f(t)}| = |
∫ ∞

0

e−stf(t) dt | = |
∫ T

0

e−stf(t) dt+

∫ ∞

T

e−stf(t) dt |

≤ |
∫ T

0

e−stf(t) dt |+ |
∫ ∞

T

e−stf(t) dt | ≤
∫ T

0

e−st |f(t)|︸ ︷︷ ︸
≤|f |max

dt+

∫ ∞

T

e−st |f(t)|︸ ︷︷ ︸
≤Meλt

dt

≤ |f |max

∫ T

0

e−stdt+M

∫ ∞

T

e−(s−λ)tdt = |f |max
e−st

−s

∣∣∣∣T
t=0

+M
e−(s−λ)t

−(s− λ)

∣∣∣∣∞
t=T

= |f |max
e−sT − 1

−s
+M

[
e−(s−λ)∞

−(s− λ)︸ ︷︷ ︸
0 para s>λ

+
e−(s−λ)T

s− λ

]
,

onde |f |max é o máximo de |f | em [0, T ]; logo,

|L{f(t)}| ≤ |f |max

(1
s
− 1

s esT

)
+

M

(s− λ) e(s−λ)T
,

um resultado que, além de ser finito, comprovando a existência da transformada de Laplace, tende a
zero quando s→∞ .

4.4 Cálculo de L de eat, tn, senat, cos at, senhat, cosh at

Nesta seção, considere a ∈ R(∗).

1) Se s > a, então:

L{eat} =
∫ ∞

0

e−steatdt =

∫ ∞

0

e−(s−a)tdt =
e−(s−a)t

−(s− a)

∣∣∣∣∞
t=0

= − e−(s−a)∞

s− a︸ ︷︷ ︸
0 para s>a

+
e0

s− a
=

1

s− a
■

2) Se s > 0, temos, integrando por partes, para n = 1, 2, 3, · · · , que

L{tn} =
∞∫
0

e−sttndt =
e−st

−s
tn
∣∣∣∣∞
t=0

+
n

s

∞∫
0

e−sttn−1dt = −1

s
lim
t→∞

(
e−sttn

)
︸ ︷︷ ︸
0 (l’Hôpital)

+ 0 +
n

s
L{tn−1}

n = 1⇒ L{t} = 1

s
L{1} = 1

s

1

s
=

1

s2

n = 2⇒ L{t2} = 2

s
L{t} = 2

s

1

s2
=

2 · 1
s3

n = 3⇒ L{t3} = 3

s
L{t2} = 3

s

2 · 1
s3

=
3 · 2 · 1
s4

=
3!

s4

∴ L{tn} = n!

sn+1
■

3) Se s > 0, então:

L{cos at} =
∫ ∞

0

e−st cos at dt =
e−st

−s
cos at

∣∣∣∣∞
t=0

− a

s

∫ ∞

0

e−st senat dt =
1

s
− a

s
L{ senat} (i)

L{ senat} =
∫ ∞

0

e−st senat dt =
e−st

−s
senat

∣∣∣∣∞
t=0

+
a

s

∫ ∞

0

e−st cos at dt = 0 +
a

s
L{cos at} (ii)

(ii) em (i) ⇒ L{cos at} = 1

s
− a

s

[a
s
L{cos at}

]
⇒ L{cos at} = s

s2 + a2
■ (iii)

(iii) em (ii) ⇒ L{ senat} = a

s

s

s2 + a2
=

a

s2 + a2
■

(∗)Se a = 0, as transformadas de Laplace calculadas nesta seção fornecem, consistentemente, L{1} = 1/s e L{0} = 0.
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4) Se s > |a| (por causa da necessidade de que exista a tranformada de Laplace de e±at), então:

L{cosh at} = L

{
eat + e−at

2

}
=

1

2

[
L{eat}+ L{e−at}

]
=

1

2

[
1

s− a
+

1

s+ a

]
=

s

s2 − a2
■

L{ senhat} = L

{
eat − e−at

2

}
=

1

2

[
L{eat} − L{e−at}

]
=

1

2

[
1

s− a
− 1

s+ a

]
=

a

s2 − a2
■

Com as fórmulas deduzidas até o momento, podemos calcular uma variedade de transformadas de
Laplace sem recorrer à definição, isto é, sem efetuar a integral em (4.1). Observe, em particular, o uso
da linearidade de L. Por exemplo:

i) L{3t− 5 sen2t} = 3L{t}︸ ︷︷ ︸
1/s2

−5L{ sen2t}︸ ︷︷ ︸
2/(s2+4)

=
−7s2 + 12

s2(s2 + 4)

ii) L{ sen2t} = L

{
1− cos 2t

2

}
= 1

2 L{1}︸ ︷︷ ︸
1/s

− 1
2 L{cos 2t}︸ ︷︷ ︸

s/(s2+4)

=
2

s(s2 + 4)

4.5 Propriedades Especiais

Se
∫ ∞

0

e−s0tf(t) dt existe então se demonstra que:

1)
∫ ∞

0

e−stf(t) dt existe para s ≥ s0

2) lim
s→c

∫ ∞

0

e−stf(t) dt =

∫ ∞

0

[
lim
s→c

e−st
]
f(t) dt =

∫ ∞

0

e−ctdt para c ≥ s0

3)
d

ds

∫ ∞

0

e−stf(t) dt =

∫ ∞

0

∂ (e−st)

∂s
f(t) dt para s ≥ s0

4)
∫ s2

s1

[∫ ∞

0

e−stf(t) dt

]
ds =

∫ ∞

0

[∫ s2

s1

e−stds

]
f(t) dt para s0 ≤ s1 ≤ s2 <∞

4.6 Transformada de Laplace Inversa
Se a transformada de Laplace da função f(t) é a função f̄(s), definida por (4.1), então a transformada

de Laplace inversa da função f̄(s) é, por definição, a função f(t), isto é,

L−1{f̄(s)} = f(t) .

Para determinar a transformada de Laplace inversa de uma função f̄(s) dada, é necessário resolver
a equação integral em (4.1). Em textos mais avançados, demonstra-se que, se tal equação tem uma
solução f(t), então ela é única. Esse resultado é conhecido como teorema de Lerch.

Exemplos:

i) L{t} = 1

s2
⇒ L−1

{
1

s2

}
= t .

ii) L−1
{
af̄(s) + bḡ(s)

}
= aL−1{f̄(s)}+ bL−1{ḡ(s)} = a f(t) + b g(t) . [L−1 é linear]

iii) L−1

{
s

s2 + 4

}
= cos 2t .

iv) L−1

{
1

s+ 3

}
= e−3t .

v) L−1

{
1

s5

}
=

1

4!
L−1

{
4!

s5

}
=

1

4!
t4 .
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vi) L−1

{
4

s− 2
− 3s

s2 + 16
+

5

s2 + 4

}
= 4 L−1

{
1

s− 2

}
− 3 L−1

{
s

s2 + 16

}
+

5

2
L−1

{
2

s2 + 4

}
= 4 e2t − 3 cos 4t+

5

2
sen2t .

Nos exemplos seguintes, frações parciais (cf. seção 7.4 da Ref. [11]) são empregadas:

vii) L−1

{
1

(s− 2)(s− 5)

}
= L−1

{
−1/3
s− 2

+
1/3

s− 5

}
= −1

3
e2t +

1

3
e5t .

viii) L−1

{
1

s(s2 + 1)

}
= L−1

{
1

s
− s

s2 + 1

}
= 1− cos t .

ix) L−1

{
3s+ 7

s2 − 2s− 3

}
= L−1

{
3s+ 7

(s− 3)(s+ 1)

}
= L−1

{
4

s− 3
+
−1
s+ 1

}
= 4e3t − e−t .

x) L−1

{
5s2 − 4s− 7

(s− 3)(s2 + 4)

}
= L−1

{
2

s− 3
+

3s+ 5

s2 + 4

}
= 2 e3t + 3 cos 2t+

5

2
sen2t .

4.7 Função Degrau Unitário
A função degrau unitário U(x) é definida na figura abaixo, à esquerda. Na mesma figura, à direita,

mostra-se que U(x − a) representa uma translação do degrau. O valor dessa função em x = a é aqui
ignorado, por ser geralmente irrelevante nos problemas em que ela se aplica (veja-se, entretanto, ao
final desta seção, outras versões da função degrau que são definidas no ponto de descontinuidade).
Além disso, num ponto xi de descontinuidade de uma função f(x), não seremos rigorosos em mostrar
o valor f(xi).

U
0 ( 0)

( )
1 ( 0)

x

x

x

 !"
"# $
" %"&

U
0 ( )

( )
1 ( )

x a

x a

x a

 !"
"' # $
" %"&

a x x 00 

11 

Vejamos dois exemplos de uso dessa função. Considere a função f(x) na figura abaixo, à esquerda.

x–1 1 3

2

–1

–2

1

( )g x

b a 

2 

x 

( )f x   

Sua expressão em termos da função degrau é

f(x) = 2 [U(x− a)− U(x− b) ] .

Outro exemplo um pouco mais complicado é a função g(x) na figura acima, à direita; ela é dada por

g(x) = 1 + (−2− 1) U(x+ 1) + [2− (−2)] U(x− 1) + (−1− 2) U(x− 3)

= 1− 3U(x+ 1) + 4U(x− 1)− 3U(x− 3) .

No estudo da transformada de Laplace, a variável t não tem valor negativo. Assim, U(t) = 1, e as
funções f(t) e g(t) nos dois exemplos acima são, para t ≥ 0, dadas por

f(t) = 2− 2U(t− b) e g(t) = −2 + 4U(t− 1)− 3U(t− 3) .
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t 1 3 

4 

8 

–3 

6 

( )t ( )t!   

( )t"   
( )t#  

Gráfico de ( )h t   

Consideremos agora funções descontínuas mais genéricas.
Por exemplo, a função h(t) ao lado é dada por

h(t) = ϕ(t) + [α(t)− ϕ(t)] U(t− 1) +

[0− α(t)] U(t− 3) + [β(t)− 0] U(t− 4) +

[γ(t)− β(t)] U(t− 6) + [−3− γ(t)] U(t− 8) .

Observe que, em t = 6, não há descontinuidade, mas uma
mudança de β(t) para γ(t) na expressão da função h(t).

Testando a equação acima com t = 5, obtemos o resultado
esperado:

h(5) = ϕ(5) + [α(5)− ϕ(5)]U(4)︸︷︷︸
1

+ [0− α(5)]U(2)︸︷︷︸
1

+[β(5)− 0]U(1)︸︷︷︸
1

+ [γ(5)− β(5)]U(−1)︸ ︷︷ ︸
0

+ [−3− γ(5)]U(−3)︸ ︷︷ ︸
0

= ���ϕ(5) +���α(5) −���ϕ(5) −���α(5) + β(5) = β(5) ✓

Note que esse cálculo envolve ϕ(5), α(5) e γ(5), os quais, embora não sejam fornecidos na definição
gráfica de h(t), não afetam o resultado, pois se cancelam ou são multiplicados por zero. Podemos,
obviamente, completar a definição das funções ϕ(t), α(t), β(t) e γ(t) acrescentando que elas se anulam
fora dos intervalos em que são definidas graficamente.

Nota : Para quem não quer deixar indefinidos os valores de funções nos seus pontos de descon-
tinuidade, basta definir duas versões da função degrau unitário denotadas por U+(x) e U−(x) e
mostradas nas figuras abaixo, que só diferem da função U(x) no ponto de descontinuidade, em
x = 0, onde são assim definidas: U+(0) = lim

x→0+
U(x) = 1 e U−(0) = lim

x→0−
U(x) = 0. Por meio

delas, a função f(x) definida graficamente pela terceira figura abaixo, por exemplo, pode ser assim
expressa:

f(x) = α(x) + [β(x)− α(x)]U−(x− a) + [γ(x)− β(x)]U+(x− b) .

Essa expressão fornece os valores corretos nos pontos de descontinuidade:

f(a)=α(a) + [β(a)− α(a)]U−(0)︸ ︷︷ ︸
0

+[γ(a)− β(a)]U+(a− b)︸ ︷︷ ︸
0

= α(a) ;

f(b)=α(b) + [β(b)− α(b)]U−(b− a)︸ ︷︷ ︸
1

+[γ(b)− β(b)]U+(0)︸ ︷︷ ︸
1

= γ(b) .

0 ( 0)
( ) 1 ( 0)

x
x x

 
! "##$% &##'
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( ) 1 ( 0)
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x x
(

! )##$% *##'
U

x 0 

1 

x0

1 ( )x 
( )x!   

( )x"

Gráfico de ( )f x

0 a b x

Encerremos esta seção com o cálculo da transformada de Laplace de U(t− a), com a > 0 :∣∣∣L{U(t− a)} =

∫ ∞

0

e−stU(t− a) dt =
∫ ∞

a

e−stdt =
e−st

−s

∣∣∣∣∞
t=a

=
e−as

s

∣∣∣∣ (s > 0) ■

É óbvio que essa também é a transformada de Laplace das funções U±(t− a) (a > 0) .

4.8 Função Delta de Dirac
Com frequência um sistema mecânico é atuado por uma força ex-

terna de grande magnitude que age apenas por um tempo muito curto.
Por exemplo, o gráfico da força em função do tempo durante uma rá-
pida pancada é do tipo mostrado na figura à direita, com magnitude
máxima Fmax muito grande e intervalo de duração muito curto (em
torno do instante t0). Geralmente, a forma do pulso não é conhecida,
mas isso não importa, porque a informação relevante é o impulso du-
rante o intervalo de duração da força,

I =

∫ t0+ε

t0−ε
F (t) dt ,
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a partir do qual podemos calcular, por exemplo, o incremento da velo-
cidade com a pancada:

m
dv

dt
= F (t) ⇒ m

∫ t0+ε

t0−ε

dv

dt
dt =

∫ t0+ε

t0−ε
F (t) dt = I ⇒ m

[
v(t0 + ε)− v(t0 − ε)︸ ︷︷ ︸

∆v

]
= I ⇒ ∆v =

I

m
·

Paul Adrien Maurice Dirac tratou de problemas desse tipo com o que denominou função delta, a
qual, em função da variável t ∈ [0,∞) (que pode ser o tempo) e do parâmetro t0 ∈ [0,∞), é dada por

δ(t− t0) =
{
0 se t 6= t0
∞ se t = t0

(4.2a)

sob a condição da normalização unitária∫ ∞

0

δ(t− t0)dt = 1 (t0 ≥ 0) . (4.2b)

Em vista dessa definição, podemos dizer que a função delta δ(t− t0) está localizada no ponto t0.
Naturalmente, δ(t − t0) não é função, mas Dirac usou-a formalmente como tal, algo que, depois,

veio a ser rigorosamente justificado pela teoria das distribuições elaborada pelo matemático Laurent
Schwartz. Por meio dela podemos exprimir a força considerada acima por F (t) = I δ(t − t0). Essa
expressão tem as duas propriedades desejadas: só não é nula no instante t0 da pancada e tem impulso∫∞
0
F (t)dt = I

∫∞
0
δ(t− t0)dt = I .

A principal propriedade da função delta é expressa pela equação∫ ∞

0

f(t)δ(t− t0)dt = f(t0) (t0 ≥ 0) , (4.3)

que é assim verificada:∫ ∞

0

f(t)δ(t− t0)dt =
∫ ∞

0

f(t0)δ(t− t0)dt = f(t0)

∫ ∞

0

δ(t− t0)dt︸ ︷︷ ︸
1

= f(t0) ,

onde, no integrando, podemos substituir f(t) por f(t0) porque apenas esse valor de f(t) contribui para
a integral, já que δ(t − t0) se anula em todo ponto distinto de t0. Essa é a chamada propriedade de
filtragem (ou de peneiração), uma vez que a integral acima fornece (filtra) o valor de f(t) no ponto t0
no qual δ(t− t0) 6= 0 .

Dirac conjecturou (e depois se provou) a validade de se operar normalmente com a função delta
como se ela fosse uma função ordinária, podendo inclusive ser diferenciada e integrada, satisfazendo as
diversas propriedades dessas operações. Assim, deve ser válida a equação {v. Ref. [2], subseção 1.1.2}

1 =

∫ ∞

0

δ(t− t0)dt =
∫ t0

0

δ(t− t0)dt︸ ︷︷ ︸
I−

+

∫ ∞

t0

δ(t− t0)dt︸ ︷︷ ︸
I+

,

que nos enseja questionar quais são os valores das integrais I+ e I− acima, nas quais a função delta
está localizada num extremo do intervalo de integração. Quaisquer valores não negativos satisfazendo
I+ + I− = 1 podem ser atribuídos a elas, mas aqui escolhemos I+ = 1 e I− = 0, isto é,∫ ∞

t0

δ(t− t0)dt = 1 e
∫ t0

0

δ(t− t0)dt = 0 (t0 ≥ 0) , (4.4)

permitindo-nos dizer que a integral da função delta só é unitária quando o intervalo de integração se
estende para a direita de onde ela está localizada, o que pode ser assim expresso:

∫ b

a

δ(t− t0)dt =
{
1 se t0 ∈ [a, b)
0 se t0 6∈ [a, b) .

(4.5)
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Essa equação, em outras palavras, informa que a integral da função delta só não se anula se ela estiver
localizada num ponto interior do intervalo de integração ou no extremo inferior desse intervalo, em
conformidade com a escolha em (4.4).

A razão dessa escolha é que desejamos o seguinte resultado, consistente com a normalização unitária
da função delta dada por (4.2b) no caso em que t0 = 0 :∫ ∞

0

δ(t)dt = 1 , (4.6)

onde a integral começa no ponto t = 0 onde se localiza a função delta. Em outras aplicações da função
delta distintas das que são consideradas neste texto pode ser mais conveniente uma escolha diferente
daquela em (4.4), o que acarretaria uma pequena variação na definição da função delta em (4.2).

Nesta descrição bem curta da função delta, consideramos mais três propriedades dela. Vejamos a
primeira: ∣∣∣∣∣

∫ t

a

δ(τ − t0)dτ =

{
1 se t > t0
0 se t ≤ t0

}
= U

−
(t− t0) (com 0 ≤ a < t0)

∣∣∣ , (4.7)

expressando que a integral indefinida da função delta é a versão U
−
(t− t0) da função degrau unitário

definida na Nota enunciada na pág. 65, ou, em outros termos, que U−
(t−t0) é uma primitiva de δ(t−t0).

Em vista disso, espera-se que a derivada dessa função degrau unitário seja a função delta:

d

dt
U

−
(t− t0) = δ(t− t0) . (4.8)

De fato; eis como Dirac justificou isso {v. Ref. [6], seção 15}:∫ ∞

0

f(t)
d

dt
U

−
(t− t0)dt

p.p.
=
[
f(t)U

−
(t− t0)

]∞
0
−
∫ ∞

0

f ′(t)U
−
(t− t0)dt

= f(∞)U
−
(∞)︸ ︷︷ ︸
1

−f(0)U−
(−t0)︸ ︷︷ ︸
0

−
∫ ∞

t0

f ′(t)dt

= ���f(∞) −
[
���f(∞) − f(t0)

]
= f(t0) =

∫ ∞

0

f(t)δ(t− t0)dt ,

mostrando que (d/dt)U−(t − t0) e δ(t − t0) são expressões equivalentes quando, no integrando, são
multiplicadas por uma função contínua f(t) arbitrária (têm a mesma propriedade de filtragem).

A última propriedade aqui considerada, dada por

δ
[
a(t− t0)

]
=

1

a
δ(t− t0) (com a > 0) , (4.9)

é assim verificada:∫ ∞

0

δ
[
a(t− t0)

]
f(t)dt

at≡ τ
=

∫ ∞

0

δ
[
τ − at0

]
f
(τ
a

)dτ
a

= f(t0)
1

a
=

∫ ∞

0

1

a
δ(t− t0)f(t)dt ,

mostrando que δ
[
a(t− t0)

]
e (1/a)δ(t− t0) são equivalentes.

Vamos encerrar esta seção com o cálculo da transformada de Laplace da função delta, que é realizado
simplesmente com o uso da propriedade de filtragem:∣∣∣L{δ(t− t0)} =

∫ ∞

0

e−stδ(t− t0) = e−st0 (t0 ≥ 0)
∣∣∣ ■
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4.9 Tabela de Transformadas de Laplace de Funções Específicas
Na tabela abaixo, listamos as transformadas de Laplace de algumas funções específicas, já calculadas

nas seções anteriores:

f(t) f̄(s) = L{f(t)}

1
1

s
(s > 0)

eat
1

s− a
(s > a ∈ R)

tn
n!

sn+1
(n = 1, 2, 3, · · · )

cos at
s

s2 + a2
(a ∈ R, s > 0)

senat
a

s2 + a2
(a ∈ R, s > 0)

cosh at
s

s2 − a2
(s > |a| ∈ R)

senhat
a

s2 − a2
(s > |a| ∈ R)

U(t− a) e−as

s
(a > 0, s > 0)

δ(t− t0) e−st0 (s > 0)

4.10 Cálculo de L de f(at), eatf(t), tnf(t),U(t−a)f(t−a), f(t)/t

Seguem as deduções das cinco fórmulas dessas transformadas de Laplace:

1a¯) L {f(at)} =
∫ ∞

0

e−stf(at)dt
u≡ at
=

1

a

∫ ∞

0

e−(s/a)uf(u) du =
1

a
f̄
( s
a

)
para a > 0 ■

2a¯) L
{
eatf(t)

}
=

∫ ∞

0

e−st
[
eatf(t)

]
dt =

∫ ∞

0

e−(s−a)tf(t) dt = f̄(s− a)

ou, equivalentemente, L−1
{
f̄(s)

∣∣
s→s−a

}
= eatL−1{f̄(s)} ■

3a¯) L
{
tnf(t)

}
=

∫ ∞

0

e−sttnf(t)dt =

∫ ∞

0

(−1)n ∂
n (e−st)

∂sn
f(t)dt = (−1)n d

n

dsn

f̄(s)︷ ︸︸ ︷∫ ∞

0

e−stf(t)dt

= (−1)nf̄ (n)(s) ■

Em particular: L {tf(t)} = −f̄ ′(s) , L
{
t2f(t)

}
= f̄ ′′(s) , L

{
t3f(t)

}
= −f̄ ′′′(s) , · · ·

4a¯) L
{
U(t− a)f(t− a)

}
=

∫ ∞

0

e−stU(t− a)f(t− a)dt =
∫ ∞

a

e−stf(t− a)dt

τ ≡ t−a
=

∫ ∞

0

e−s(a+τ)f(τ)dτ = e−as
∫ ∞

0

e−sτf(τ)dτ = e−asf̄(s) ■
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5a¯) L

{
f(t)

t

}
=

∫ ∞

0

f(t)

[
e−st

t

]
dt =

∫ ∞

0

f(t)

[∫ ∞

s

e−σtdσ

]
dt =

∫ ∞

s

f̄(σ)︷ ︸︸ ︷∫ ∞

0

f(t)e−σtdt dσ

=

∫ ∞

s

f̄(σ) dσ ■

Exemplos:

i) Como L{cos t} = s/(s2 + 1) , então

L{cos 7t} = 1

7

(s/7)

(s/7)2 + 1
=

s

s2 + 49
(usando a 1a

¯ fórmula)

L{e5t cos 3t} = L{cos 3t}
∣∣∣
s→s−5

=
s

s2 + 9

∣∣∣
s→s−5

=
s− 5

(s− 5)2 + 9
(usando a 2a

¯ fórmula)

Problema inverso: L−1

{
s− 5

(s− 5)2 + 9

}
2a¯ fórmula

= L−1

{
s

s2 + 9

∣∣∣
s→s−5

}
= e5t cos 3t .

ii) Uso da 3a
¯ fórmula:

L{t cos 3t} = −
(

s

s2 + 9

)′

= −s
2 + 9− s(2s)
(s2 + 9)2

=
s2 − 9

(s2 + 9)2
.

L{t e5t} = −
(

1

s− 5

)′

=
1

(s− 5)2
.

L{t2e5t} =
(

1

s− 5

)′′

=
[
− (s− 5)−2

]′
= 2(s− 5)−3 =

2

(s− 5)3
.

Esses dois últimos resultados também podem ser obtidos (e até mais diretamente, evitando derivadas)
por meio da 2a

¯ fórmula com f(t) = t e f(t) = t2, respectivamente:

L{t e5t} = L{t}
∣∣∣
s→s−5

=
1

s2

∣∣∣
s→s−5

=
1

(s− 5)2
,

L{t2e5t} = L{t2}
∣∣∣
s→s−5

=
2

s3

∣∣∣
s→s−5

=
2

(s− 5)3
.

iii) Cálculo da transformada de Laplace da função f(t) cujo gráfico é o da
figura à direita: uma semirreta partindo do ponto (1,4).

1o
¯ modo – Usando a 4a

¯ fórmula, isto é, L
{
f(t− a)U(t− a)

}
= f̄(s) e−as :

f(t) =

{
0 (0 ≤ t < 1)

6− 2t (t ≥ 1)
= (6− 2t)︸ ︷︷ ︸

≡ p(t−1)

U(t− 1) .

p(t− 1) ≡ 6− 2t ⇒ p(t) = 6− 2(t+ 1) = 4− 2t .

∴ L
{
f(t)

}
= L

{
p(t− 1)U(t− 1)} = p̄(s) e−s =

(
4

s
− 2

s2

)
e−s .

2o
¯ modo (pode levar a mais contas) – Usando a 3a

¯ fórmula:

Uma vez que f(t) = (6− 2t)U(t− 1) = 6U(t− 1)− 2tU(t− 1) , temos que

f̄(s) = 6
e−s

s
+ 2
(e−s
s

)′
= 6 · e

−s

s
+ 2 · −e

−ss− e−s

s2
=

6

s
e−s − 2

s
e−s − 2

s2
e−s =

(
4

s
− 2

s2

)
e−s .

iv) Usemos agora a 4a
¯ fórmula na forma L−1

{
e−asf̄(s)

}
= U(t−a)f(t−a) , isto é, para o problema

inverso:

L−1

{
e−5s 1

s3︸︷︷︸
↓L−1

t2/2

}
= U(t− 5)

(t− 5)2

2
.
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L−1

{
e−5s 1

s2 + 9︸ ︷︷ ︸
↓L−1

( sen3t)/3

}
= U(t− 5)

1

3
sen3(t− 5) .

v) Uso da 5a
¯ fórmula:

L

{
sent

t

}
=

∫ ∞

s

1

σ2 + 1
dσ = arctanσ

∣∣∣∞
s

=
π

2
− arctan s (s > 0) .

L

{
e−t − e−3t

t

}
=

∫ ∞

s

(
1

σ + 1
− 1

σ + 3

)
dσ = ln

σ + 1

σ + 3

∣∣∣∞
s

= ln 1− ln
s+ 1

s+ 3
= ln

s+ 3

s+ 1
.

vi) L−1

{
5s2 − 15s− 11

(s+ 1)(s− 2)3

} frações
parciais
= L−1

{
−1/3
s+ 1

+
1/3

s− 2
+

4

(s− 2)2
+

−7
(s− 2)3

}
= −1

3
e−t +

1

3
e2t + 4t e2t − 7

2
t2e2t ,

onde a inversão dos últimos dois termos foi efetuada usando a 2a
¯ fórmula:

L−1

{
4

(s− 2)2

}
= 4L−1

{
1

s2

∣∣∣
s→s−2

}
= 4 t e2t ,

L−1

{
−7

(s− 2)3

}
= −7

2
L−1

{
2

s3

∣∣∣
s→s−2

}
= −7

2
t2 e2t ,

No próximo exemplo, resolvemos novamente o Exemplo (ix) da seção 4.6, mas, agora, completando
o quadrado no denominador (em vez de usar frações parciais):

vii) L−1

{
3s+ 7

s2 − 2s− 3

}
= L−1

{
3 · s− 1

(s− 1)2 − 4
+ 5 · 2

(s− 1)2 − 4

}
= et

[
3 cosh 2t+ 5 senh2t

]
= et

[
3 · e

2t + e−2t

2
+ 5 · e

2t − e−2t

2

]
= 4e3t − e−t .

Modificando um pouco esse exemplo, obtemos o seguinte, que, não admitindo solução por frações
parciais (pois o denominador não é, em R, fatorável em monômios), é resolvido pela técnica de completar
o quadrado:

viii) L−1

{
3s+ 7

s2 − 2s+ 5

}
= L−1

{
3 · s− 1

(s− 1)2 + 4
+ 5 · 2

(s− 1)2 + 4

}
= et

[
3 cos 2t+ 5 sen2t

]
4.11 Transformada de Laplace de Derivadas

L{f ′(t)} =
∫ ∞

0

e−stf ′(t) dt =

0−f(0)︷ ︸︸ ︷
e−stf(t)

∣∣∣∣∞
t=0

+ s

L{f(t)}︷ ︸︸ ︷∫ ∞

0

e−stf(t) dt = sL{f(t)} − f(0)

= sf̄(s)− f(0) ■

L{f ′′(t)} = s [L{f ′(t)}]− f ′(0) = s [sf̄(s)− f(0)]− f ′(0)
= s2f̄(s)− sf(0)− f ′(0) ■

L{f ′′′(t)} = sL{f ′′(t)} − f ′′(0) = s[s2f̄(s)− sf(0)− f ′(0)]− f ′′(0)
= s3f̄(s)− s2f(0)− sf ′(0)− f ′′(0) ■

...

L{f (n)(t)} = snf̄(s)− sn−1f(0)− · · · − f (n−1)(0) ■

Essa última fórmula, para a derivada de ordem n, é válida se
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• f (n)(t) for contínua por partes

• f (k)(t)
∣∣∣
k=0,1,··· ,n−1

forem contínuas

• f(t), f ′(t), · · · , f (n)(t) forem de ordem exponencial

4.12 Transformada de Laplace de Integrais
É fácil deduzir que

L

{∫ t

0

f(u)du

}
=
f̄(s)

s
(s > 0) . (4.10)

Eis a dedução:

L

{∫ t

0

f(u)du

}
=

∫ ∞

0

e−st
[∫ t

0

f(u)du

]
dt =

∫ ∞

0

f(u)

[∫ ∞

u

e−stdt

]
du =

∫ ∞

0

f(u)

[
e−st

−s

]∞
t=u

du

=

∫ ∞

0

f(u)
e−s∞ − e−su

−s
du =

1

s

∫ ∞

0

e−suf(u) du =
1

s
f̄(s) ■

Mais genericamente, temos que

L

{∫ t

a

f(u)du

}
= L

{∫ t

0

f(u)du−
∫ a

0

f(u)du

}
= L

{∫ t

0

f(u)du

}
− L

{∫ a

0

f(u)du

}
=
f̄(s)

s
− 1

s

∫ a

0

f(u) du ■

Vejamos um exemplo:

L

{∫ t

0

sen2u du

}
=

1

s
L { sen2t} = 1

s

2

s2 + 4
=

2

s(s2 + 4)
;

de fato, obtemos esse mesmo resultado efetuando a integral e então calculando a transformada de
Laplace:

L

{∫ t

0

sen2u du

}
= L

{
− cos 2u

2

∣∣∣∣t
0

}
= L

{
− cos 2t+ 1

2

}
= −1

2
L{cos 2t}+ 1

2
L{1}

= −1

2

s

s2 + 4
+

1

2

1

s
=

1

2
��s2 + 4−��s2

s(s2 + 4)
=

2

s(s2 + 4)
.

Outro exemplo:

L

{∫ t

0

e−2u cos 3u du

}
=

1

s
L
{
e−2t cos 3t

}
=

1

s

[
s

s2 + 9

]
s→s+2

=
s+ 2

s [(s+ 2)2 + 9)]
.

A equação (4.10) pode ser escrita na seguinte forma:

L−1

{
f̄(s)

s

}
=

∫ t

0

f(u) du . (4.11)

Essa fórmula pode ser útil em vários cálculos da transformada de Laplace inversa. De fato, por meio
dela, o exemplo (viii) na p. 64 torna-se mais fácil; o cálculo das frações parciais (omitido naquele
exemplo) é mais trabalhoso do que o seguinte:

L−1

{
1

s(s2 + 1)

}
= L−1

{
1/ (s2 + 1)

s

}
=

∫ t

0

L−1

{
1

s2 + 1

}
du =

∫ t

0

senu du = 1− cos t .
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4.13 Cálculo de L−1{f̄(s)ḡ(s)} por Convolução
A operação definida abaixo entre duas funções f(t) e g(t),

f(t) ∗ g(t) ≡
∫ t

0

f(u) g(t− u) du ,

é chamada de convolução ou produto convolutivo dessas funções. É uma operação comutativa:

f(t) ∗ g(t) =
∫ t

0

f(u) g(t− u) du
v ≡ t−u

=

∫ t

0

g(v) f(t− v) dv = g(t) ∗ f(t) .

O chamado teorema da convolução diz que a transformada de Laplace inversa do produto aritmético
f̄(s)ḡ(s) é o produto convolutivo f(t) ∗ g(t), isto é,

L−1{f̄(s)ḡ(s)} = f(t) ∗ g(t) .

A prova desse teorema é como segue:

L{f(t) ∗ g(t)} = L

{∫ t

0

f(u) g(t− u) du
}

=

∫ ∞

0

dt e−st
∫ t

0

du f(u) g(t− u)

=

∫ ∞

0

du f(u)

∫ ∞

u

dt e−stg(t− u)
v ≡ t−u

=

∫ ∞

0

du f(u)

∫ ∞

0

dv e−s(u+v)g(v)

=

∫ ∞

0

du e−suf(u)︸ ︷︷ ︸
f̄(s)

∫ ∞

0

dv e−svg(v)︸ ︷︷ ︸
ḡ(s)

= f̄(s)ḡ(s) ■

Exemplifiquemos seu uso:

L−1

{
1

(s+ 1)2s2

}
= L−1

{
1

(s+ 1)2

}
︸ ︷︷ ︸

t e−t

∗ L−1

{
1

s2

}
︸ ︷︷ ︸

t

= (t e−t)︸ ︷︷ ︸
f(t)

∗ t︸︷︷︸
g(t)

=

∫ t

0

u e−u︸ ︷︷ ︸
f(u)

(t− u)︸ ︷︷ ︸
g(t−u)

du

= t

∫ t

0

u e−u du−
∫ t

0

u2e−udu = · · · = t e−t + 2e−t + t− 2 .

Conferindo: L{t e−t + 2e−t + t− 2} = 1

(s+ 1)2
+

2

s+ 1
+

1

s2
− 2

s
=

1

s2(s+ 1)2
✓

Como exemplo adicional, recalculemos a transformada de Laplace inversa já obtida no Exemplo
(viii) da seção 4.6 por frações parciais e pela fórmula em (4.11):

L−1

{
1

(s2 + 1) s

}
= L−1

{
1

s2 + 1

}
︸ ︷︷ ︸

sen t

∗ L−1

{
1

s

}
︸ ︷︷ ︸

1

= sent︸︷︷︸
f(t)

∗ 1︸︷︷︸
g(t)

=

∫ t

0

senu︸ ︷︷ ︸
f(u)

1︸︷︷︸
g(t−u)

du

=

∫ t

0

senu du = − cosu
∣∣∣t
0
= − cos t+ 1 .

4.14 Transformada de Laplace de Função Periódica
Se a função f(t) tem período T , isto é, f(t) = f(t+ T ) ∀t ≥ 0, então:

L {f(t)} =
∫ ∞

0

e−stf(t)dt =

∫ T

0

e−stf(t)dt+

∫ ∞

T

e−stf(t)dt . (i)

Mas∫ ∞

T

e−stf(t)dt
τ ≡ t−T

= =

∫ ∞

0

e−s(T+τ) f(τ + T )︸ ︷︷ ︸
f(τ)

dτ = e−sT
∫ ∞

0

e−sτf(τ)dτ = e−sTL {f(t)} . (ii)
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Logo, substituindo (ii) em (i), obtemos

L {f(t)} =
∫ T

0

e−stf(t)dt+ e−sTL {f(t)} ,

donde

L{f(t)} = 1

1− e−sT

∫ T

0

e−stf(t)dt ■

Por exemplo, calculemos, usando essa fórmula, a transformada de Laplace da função de período
unitário dada por f(t) = t para 0 ≤ t < 1 e f(t+ 1) = f(t) para todo t ≥ 0:

L{f(t)} =

∫ 1

0

e−stf(t)dt

1− e−s
=

[∫ 1

0

e−stt dt

]
1− e−s

=

[
−e

−s

s
+

1− e−s

s2

]
1− e−s

=
1− (1 + s)e−s

s2(1− e−s)
.

4.15 Tabela de Transformadas de Laplace com Funções Gené-
ricas

Na tabela abaixo, listamos as fórmulas envolvendo transformadas de Laplace de funções genéricas
que já foram deduzidas nas seções anteriores:

1) L{af(t) + bg(t)} = af̄(s) + bḡ(s)

2) L{f ′(t)} = sf̄(s)− f(0)

3) L{f ′′} = s2f̄(s)− sf(0)− f ′(0)

4) L{f ′′′(t)} = s3f̄(s)− s2f(0)− sf ′(0)− f ′′(0)

5) L{f (n)(t)} = snf̄(s)− sn−1f(0)− · · · − f (n−1)(0)

6) L

{∫ t

0

f(u)du

}
=
f̄(s)

s

7) L{tf(t)} = −f̄ ′(s)

8) L{t2f(t)} = f̄ ′′(s)

9) L{t3f(t)} = −f̄ ′′′(s)

10) L{tnf(t)} = (−1)nf̄ (n)(s)

11) L{f(at)} = 1

a
f̄
( s
a

)
12) L{eatf(t)} = f̄(s− a)

13) L−1{e−asf̄(s)} = U(t− a)f(t− a)

14) L−1{f̄(s)ḡ(s)} = f(t) ∗ g(t)

15) L{f(t)} = 1

1− e−sT

∫ T

0

e−stf(t)dt para uma função f(t) de período T

16) L

{
f(t)

t

}
=

∫ ∞

s

f̄(σ)dσ
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4.16 Aplicações

4.16.1 Cálculo de Integrais Definidas
Eis alguns exemplos de como a transformada de Laplace auxilia no cálculo de integrais definidas:

i)
∫ ∞

0

t e−2t cos t dt =

∫ ∞

0

e−stt cos t dt

∣∣∣∣
s=2

= L{t cos t}
∣∣∣
s=2

=
s2 − 1

(s2 + 1)2

∣∣∣
s=2

=
3

25
,

onde usamos o resultado obtido no exemplo (iii) da seção 4.10.

ii)
∫ ∞

0

sent

t
dt =

∫ ∞

0

e−st
( sent

t

)
dt

∣∣∣∣
s→0+

=
π

2
− arctan s

∣∣∣∣
s→0+

=
π

2
,

onde usamos o resultado obtido no exemplo (v) da seção 4.10.

iii)
∫ ∞

0

e−t − e−3t

t
dt =

∫ ∞

0

e−st
(e−t − e−3t

t

)
dt

∣∣∣∣
s=0

= ln
s+ 3

s+ 1

∣∣∣∣
s=0

= ln 3 ,

onde usamos o resultado obtido no exemplo (vi) da seção 4.10.

A aplicação dessa técnica requer atenção com o valor de s a ser substituído, como mostra o cálculo
errôneo seguinte: ∫ ∞

0

e2tt9dt =

∫ ∞

0

e−stt9dt

∣∣∣∣
s=−2

= L{t9}
∣∣∣∣
s=−2

=
9!

s10

∣∣∣∣
s=−2

=
9!

210
.

Esse resultado não pode ser correto, pois a integral é claramente divergente: o integrando e2tt9 não
tende a zero quando t→∞, não satisfazendo uma condição necessária para a convergência da integral.
O erro está no uso da fórmula L{tn} = n!/sn+1 com s = −2, violando a restrição s > 0 (cf. seção 4.4,
item 2).

4.16.2 Resolução de Equações Com Derivada Ou Integral
Observe alguns exemplos de como a transformada de Laplace auxilia na resolução de equações di-

ferenciais ordinárias:

i) y′ − 3y = e2t ⇒ L{y′ − 3y} = L{e2t} ⇒ sȳ(s)− y(0)− 3ȳ(s) = 1/(s− 2)

⇒ ȳ(s) =
y(0)

s− 3
+

1

(s− 2)(s− 3)

frações
parciais
=

−1
s− 2

+
y(0) + 1

s− 3

L−1

⇒ y(t) = −e2t +
[
y(0) + 1︸ ︷︷ ︸

≡ c

]
e3t ,

que é a solução geral, haja vista a presença da constante arbitrária c ≡ y(0) + 1 [não há restrição no
valor de y(0)]. Note que, na solução geral obtida, se fizermos t = 0, obtemos a identidade y(0) = y(0).

ii) Resolução do problema de valor inicial y′′ − 6y′ + 9y = t2e3t , y(0) = 2 , y′(0) = 6 :

y′′ − 6y′ + 9y = t2e3t
L

⇒ s2ȳ(s)− s y(0)︸︷︷︸
2

− y′(0)︸ ︷︷ ︸
6

−6 [sȳ(s)− y(0)︸︷︷︸
2

] + 9ȳ(s) = 2/(s− 3)3

(s2 − 6s+ 9)︸ ︷︷ ︸
(s−3)2

ȳ(s) = 2(s− 3) +
2

(s− 3)3
⇒ ȳ(s) =

2

s− 3
+

2

(s− 3)5

y(t) = 2L−1

{
1

s− 3

}
+ 2e3t L−1

{
1

s5

}
︸ ︷︷ ︸

t4/4!

= 2e3t +
1

12
t4e3t
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iii) Resolução do problema de valor inicial y′ − 5y(t) = f(t) =

{
2 (0 ≤ t < 4)
−3 (t ≥ 4)

, y(0) = 0 :

y′ − 5y(t) = f(t) = 2− 5U(t− 4)

L
⇒ sȳ(s)− y(0)︸︷︷︸

0

−5ȳ(s) = 2

s
− 5

e−4s

s
⇒ ȳ(s) =

1

s(s− 5)︸ ︷︷ ︸
−1/5
s +

1/5
s−5

(
2− 5e−4s

)

⇒ ȳ(s) =
−2/5
s

+
2/5

s− 5
+
( 1

s
− 1

s− 5︸ ︷︷ ︸
↓L−1

1−e5t

)
e−4s ⇒ y(t) =

2

5
(e5t − 1) +

[
1− e5(t−4)

]
U(t− 4) .

Essa solução também pode ser escrita, sem uso da função degrau, na forma

y(t) =


2

5
(e5t − 1) (0 ≤ t ≤ 4)

2

5
(e5t − 1) + 1− e5(t−4) (t ≥ 4) .

Note que y(4−) = y(4+) = 2(e20 − 1)/5, ou seja, solução obtida é contínua em t = 4.

iv) Resolução da equação íntegro-diferencial

16y′ + 24y(t) + 9

∫ t

0

y(u)du = 1

sob a condição y(0) = 0. Tomando a transformada de Laplace de cada termo, obtemos

16
[
sȳ(s)− y(0)︸︷︷︸

0

]
+ 24ȳ(s) + 9

ȳ(s)

s
=

1

s
⇒ ( 16s2 + 24s+ 9︸ ︷︷ ︸

(4s+3)2

) ȳ(s) = 1

⇒ ȳ(s) =
1

(4s+ 3)2
=

1/16

(s+ 3/4)2
⇒ y(t) =

1

16
t e−3t/4 .

v) Resolução do problema de valor inicial y′′ + y = −δ(t− π) , y(0) = 0 , y′(0) = 1 :

y′′ + y = −δ(t− π)
L

⇒ s2ȳ(s)− s y(0)︸︷︷︸
0

− y′(0)︸ ︷︷ ︸
1

+ȳ(s) = −e−πs .

ȳ(s) =
1

s2 + 1
−
( 1

s2 + 1︸ ︷︷ ︸
↓L−1

sen t

)
e−πs ⇒ y(t) = sent− U(t− π) sen(t− π)︸ ︷︷ ︸

− sen t

.

y(t) = sent+ U(t− π) sent =

{
sent (t ≤ π)
2 sent (t ≥ π) .

vi) Resolução do problema de valor inicial y′ + y = 3δ(t) + 5U(t− 2) , y(0) = 1 :

Note o uso da equação (4.6).

y′ + y = 3δ(t) + 5U(t− 2)
L

⇒ sȳ(s)− y(0)︸︷︷︸
1

+ȳ(s) = 3 + 5
e−2s

s
.

ȳ(s) =
4

s+ 1
+ 5 e−2s 1

s(s+ 1)︸ ︷︷ ︸
1
s−

1
s+1

=
4

s+ 1
+ 5 e−2s

( 1

s
− 1

s+ 1︸ ︷︷ ︸
↓L−1

1−e−t

)
.

y(t) = 4 e−t + 5
[
1− e−(t−2)

]
U(t− 2) =

{
4 e−t (t ≤ 2)
4 e−t + 5− 5 e−(t−2) (t ≥ 2) .
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4.16.3 Resolução de Sistemas de EDOs

Exemplo 1:
{

2x′ + y′ − y(t) = t
x′ + y′ = t2

sob as condições x(0) = 1 e y(0) = 0 .

A transformada de Laplace dessas equações são
2
[
sx̄(s)− x(0)︸︷︷︸

1

]
+ sȳ(s)− y(0)︸︷︷︸

0

−ȳ(s) = 1/s2

sx̄(s)− x(0)︸︷︷︸
1

+sȳ(s)− y(0)︸︷︷︸
0

= 2/s3
⇒ (⋆)

{
2sx̄+ (s− 1)ȳ = 2 + 1/s2

sx̄(s) + sȳ = 1 + 2/s3

Eliminando x̄ no sistema (⋆), obtemos

−(s+ 1)ȳ =
1

s2
− 4

s3
⇒ ȳ =

4

s3(s+ 1)
− 1

s2(s+ 1)
=

4− s
s3(s+ 1)

.

Frações parciais:
4− s

s3(s+ 1)
=
A

s
+
B

s2
+
C

s3
+

D

s+ 1
⇒ A = −B = −D = 5 e C = 4 .

∴ y(t) = L−1

{
5

s
− 5

s2
+

4

s3
− 5

s+ 1

}
= 5− 5t+ 2t2 − 5e−t ■

Agora eliminamos ȳ no sistema (⋆), multiplicando a 1a
¯ equação por [s], a 2a

¯ por [−(s − 1)], e
somando:

[s(2s)− (s− 1)s] x̄ = s(2 + 1/s2)− (s− 1)(1 + 2/s3) ⇒ s(s+ 1)x̄ = s+ 1 +
1

s
− 2

s2
+

2

s3

⇒ x̄(s) =
s4 + s3 + s2 − 2s+ 2

s4(s+ 1)

frações
parciais
=

4

s
+

5

s2
− 4

s3
+

2

s4
+

5

s+ 1

⇒ x(t) = −4 + 5t− 2t2 +
t3

3
+ 5 e−t ■

Nota: Em vez desse procedimento de calcular x(t) a partir do x̄ oriundo do sistema (⋆), podemos
substituir o já calculado y(t) na segunda EDO do sistema de EDOs:

x′ = t2 − y′ = t2 − (−5 + 4t+ 5e−t) ⇒ x(t) =
t3

3
+ 5t− 2t2 + 5e−t + c1

x(0) = c1 + 5 = 1 ⇒ c1 = −4 ⇒ x(t) =
t3

3
+ 5t− 2t2 + 5e−t − 4 ■

Exemplo 2:
{
x′′ + 10x− 4y = 0
−4x+ y′′ + 4y = 0

sob as condições x(0) = y(0) = 0 e x′(0) = −y′(0) = 1 .


s2x̄− s x(0)︸︷︷︸

0

−x′(0)︸ ︷︷ ︸
1

+10x̄− 4ȳ = 0

−4x̄+ s2ȳ − s y(0)︸︷︷︸
0

− y′(0)︸ ︷︷ ︸
−1

+4ȳ = 0
⇒

{
(s2 + 10)x̄− 4ȳ = 1
−4x̄+ (s2 + 4)ȳ = −1

x̄(s) =
s2

(s2 + 2)(s2 + 12)
=
As+B

s2 + 2
+
Cs+D

s2 + 12
⇒ A = C = 0, B = −1/5, D = 6/5

x(t) = L−1

{
−1/5
s2 + 2

+
6/5

s2 + 12

}
= − 1

5
√
2
sent
√
2 +

6

5
√
12

sent
√
12 ■

y(t) = [x′′(t) + 10x(t)]/4 = · · · = − 2

5
√
2
sent
√
2− 3

5
√
12

sent
√
12 ■
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4.17 Exercícios

Calcule L{f(t)} ou L−1{f̄(s)} , pelo modo solicitado se algum for indicado:

1. f(t) = t2 sen3t

2. f(t) = cos 3t senh8t

3. f(t) = t et senh2t

4. f(t) = t e−3t cos 6t

5. f(t) = t5 cosh 3t

6. f(t) =
1− e−t

t

7. f(t) =
1− cos t

t

8. f(t) =
{
−1 (0 ≤ t < 1)
1 (t ≥ 1)

9. f(t) =


0 (0 ≤ t < 2)
5 (2 ≤ t < 4)
−3 (4 ≤ t < 6)
0 (t ≥ 6)

10. f̄(s) =
7s

4s2 − 24s+ 61

11. f̄(s) =
1

3s(2s− 5)

12. f̄(s) = ln
s− 3

s+ 1

13. f̄(s) =
π

2
− arctan

s

2

14. f̄(s) = ln
s2 + 1

s2 + 4

15. f̄(s) =
e−3s

s
+ arccot

4

s

16. f(t) =
{
t− 1 (0 ≤ t < 2)

0 (t ≥ 2)

17. f(t) =
{

t2 (0 ≤ t < 2)
−1 + t (t ≥ 2)

18. f(t) = U(t− a) sent

19. f̄(s) =
e−5s

s− 2

20. f̄(s) =
e−5s

(s− 2)4

21. f̄(s) =
s+ π

s2 + π2
e−s

22. f(t) = t3e2t U(t− 5)

23. f(t) =
∫ t

0

senu

u
du
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24. f(t) =
∫ t

0

eau − ebu

u
du

25. f(t) = f(t+ 2) ∀t > 0 e f(t) =

{
1 (0 ≤ t < 1)
−1 (1 ≤ t < 2)

26. f(t) = f(t+ 2) ∀t > 0 e f(t) = t (0 ≤ t < 2)

27. as funções periódicas f(t), g(t), h(t) e u(t) definidas pelos gráficos na figura abaixo.

28. a função f̄(s) do exemplo (vii) da seção 4.6, pelo teorema da convolução

29. f̄(s) =
1

(s2 + 1)2
, pelo teorema da convolução

30. f̄(s) =
1

(s2 + 4s+ 5)2
, pelo teorema da convolução

1 2 3 5 

1 

4 t 

 

1 2 3 5

1

4 t

onda triangular

  

1 

t 

    

onda senoidal retificada
1 

t

onda senoidal semirretificada

( )f t ( )g t

( )h t ( )u t

 

  

Exercícios sobre o uso da transformada de Laplace no cálculo de integrais:

31. Calcule
∫ ∞

0

e−t sent

t
dt .

32. Calcule
∫ ∞

0

e−2tt9dt .

Resolva por meio da transformada de Laplace:

33. y′′ + 2y′ + y = f(t) ≡


0 (0 ≤ t < 1)
1 (1 ≤ t < 2)
−1 (2 ≤ t < 3)
0 (t ≥ 3)

sob as condições y(0) = 0 e y′(0) = 0 .

34. y′′ + 3y′ − 4y(t) = 0 sob as condições:
a) y(0) = y′(0) = 1 b) y(0) = 1, y′(1) = −4e−4 c) y(1) = e+ e−4, y′(1) = e− 4e−4

35. y′(t) +
∫ t

0

y(u)du =

{
0 (0 ≤ t < 1)
1 (t ≥ 1)

sob a condição y(0) = 0 .

36. Resolva pelo método da transformada de Laplace:

(a)



2
dx

dt
+
dy

dt
− 2x = 1

dx

dt
+
dy

dt
− 3x− 3y = 2

x(0) = 0
y(0) = 0

(b)



dx

dt
− 4x+

d3y

dt3
= 6 sent

dx

dt
+ 2x− 2

d3y

dt3
= 0

x(0) = 0
y(0) = y′(0) = y′′(0) = 0

(c)



d2x

dt2
+
dx

dt
+
dy

dt
= 0

d2y

dt2
+
dy

dt
− 4

dx

dt
= 0

x(0) = x′(0) = 0
y(0) = −1, y′(0) = 5
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4.18 Soluções dos Exercícios
Prob. 1

f(t) = t2 sen3t ⇒ f̄(s) =
d2

ds2

(
3

s2 + 9

)
= · · ·

Prob. 2

f(t) = senh8t cos 3t =
e8t − e−8t

2
· cos 3t︸ ︷︷ ︸

↓L
s

s2+9

⇒ f̄(s) =
1

2

[
s− 8

(s− 8)2 + 9
− s+ 8

(s+ 8)2 + 9

]

Prob. 3

f(t) = tet senh2t︸ ︷︷ ︸
↓L
2

s2−4

⇒ f̄(s) = − d

ds

[
2

(s− 1)2 − 4

]
= · · ·

ou f(t) = tet
e2t − e−2t

2
=

1

2

(
e3t − e−t

)
t
↓L

1/s2

⇒ f̄(s) =
1

2

[
1

(s− 3)2
− 1

(s+ 1)2

]
Prob. 4

L{te−3t cos 6t︸ ︷︷ ︸
↓L
s

s2+36

} = − d

ds

[
s+ 3

(s+ 3)2 + 36

]
= · · ·

Prob. 5

L{t5 cosh 3t} = L

{
t5
(e3t + e−3t

2

)}
=

1

2
L
{
e3tt5

}
+

1

2
L
{
e−3tt5

}
=

5!

2(s− 3)6
+

5!

2(s+ 3)6

Prob. 6

L

{
1− e−t

t

}
=

∫ ∞

s

( 1

s′
− 1

s′ + 1

)
ds′ =

[
ln s′ − ln(s′ + 1)

]∞
s

= ln
s′

s′ + 1

∣∣∣∞
s

= ln

(
lim
s′→∞

s′

s′ + 1︸ ︷︷ ︸
= 1

)
− ln

s

s+ 1
= ln

s+ 1

s

Prob. 7

L

{
1− cos t

t

}
=

∫ ∞

s

( 1

s′
− s′

s′ + 1

)
ds′ =

[
ln s′ − 1

2
ln(s′2 + 1)

]∞
s

= ln
s′√
s′2 + 1

∣∣∣∞
s

= ln

(
lim
s′→∞

1√
1 + 1

s′2︸ ︷︷ ︸
= 1

)
− ln

s√
s2 + 1

= ln

√
s2 + 1

s

Prob. 8

f(t) =

{
−1 (0 ≤ t < 1)
1 (t ≥ 1)

= −1 + 2U(t− 1) ⇒ f̄(s) = −1

s
+ 2

e−s

s
,

ou, sem usar a função degrau,

f̄(s)=

∫ ∞

0

e−stf(t)dt =

∫ 1

0

e−st(−1)dt+
∫ ∞

1

e−st(1)dt =
e−st

s

∣∣∣∣1
0

− e−st

s

∣∣∣∣∞
1

=
e−s − 1

s
−

���: 0
e−s∞ − e−s

s
= −1

s
+ 2

e−s

s
.

Prob. 9

f(t) =


0 (0 ≤ t < 2)
5 (2 ≤ t < 4)
−3 (4 ≤ t < 6)
0 (t ≥ 6)

= 5U(t−2)−8U(t−4)+3U(t−6) ⇒ f̄(s) = 5
e−2s

s
−8

e−4s

s
+3

e−6s

s
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Prob. 10

f̄(s) =
7s

4s2 − 24s+ 61
=

7

4

[
s

(s− 3)2 + (5/2)2

]
=

7

4

[
s− 3

(s− 3)2 + (5/2)2
+

6

5
· 5/2

(s− 3)2 + (5/2)2

]
∴ f(t) =

7

4
e3t
[
cos

5t

2
+

6

5
sen

5t

2

]
Prob. 11

1o
¯ modo: L−1

{
1

3s(2s− 5)

}
=

1

6
L−1

{
1/ (s− 5/2)

s

}
=

1

6

∫ t

0

e5u/2 du =
1

15

(
e5t/2 − 1

)
2o
¯ modo: L−1

{
1

3s(2s− 5)

}
= L−1

{
−1/5
3s

+
2/15

2s− 5

}
= L−1

{
−1/15
s

+
1/15

s− 5/2

}
=
−1
15

+
1

15
e5t/2

3o
¯ modo: L−1

{
1

3s(2s− 5)

}
=

1

6
L−1

{
1

s
· 1

s− 5/2

}
=

1

6
L−1

{1
s

}
∗ L−1

{ 1

s− 5/2

}
=

1

6
· 1 ∗ e5t/2

=
1

6

∫ t

0

e5u/2 du =
1

15

(
e5t/2 − 1

)
Prob. 12

f̄(s) = ln
s− 3

s+ 1
= ln(s− 3)− ln(s+ 1) ⇒ f̄ ′(s) =

1

s− 3
− 1

s+ 1
L−1

−−−−→ −t f(t) = e3t − e−t ⇒ f(t) = −e
3t − e−t

t

Prob. 13

f̄(s) =
π

2
− arctan

s

2
⇒ f̄ ′(s) = − 1/2

1 + (s/2)2
= − 2

s2 + 4

L−1

−−−−→ −t f(t) = − sen2t ⇒ f(t) =
sen2t

t

Prob. 14

f̄(s) = ln
s2 + 1

s2 + 4
= ln(s2 + 1)− ln(s2 + 4) ⇒ f̄ ′(s) =

2s

s2 + 1
− 2s

s2 + 4
L−1

−−−−→ −t f(t) = 2 cos t− 2 cos 2t ⇒ f(t) =
2

t
(cos 2t− cos t)

Prob. 15

f(t) = L−1

{
e−3s

s

}
︸ ︷︷ ︸

U(t−3)

+ L−1

{ ḡ(s)︷ ︸︸ ︷
arccot

4

s

}
︸ ︷︷ ︸

g(t)

= U(t− 3)− sen4t

t
,

pois ḡ′(s) = − −4/s2

1 + (4/s)2
=

4

s2 + 16

L−1

−−−−→ −t g(t) = sen4t ⇒ g(t) = − sen4t

t
.

Prob. 16

f(t) =

{
t− 1 (0 ≤ t < 2)

0 (t ≥ 2)
= t− 1− (t− 1)︸ ︷︷ ︸

p (t−2)

U(t− 2) ⇒ f̄(s) = L{t− 1} − p̄(s) e−2s .

p (t− 2) = t− 1 ⇒ p(t) = t+ 2− 1 = t+ 1 ⇒ p̄(s) =
1

s2
+

1

s
.

∴ f̄(s) =
1

s2
− 1

s
−
(

1

s2
+

1

s

)
e−2s ■

Prob. 17

f(t) = t2 + (−1 + t− t2)︸ ︷︷ ︸
≡ p(t−2)

U(t− 2) = t2 + p(t− 2)U(t− 2) .

P (t− 2) = −1 + t− t2 ⇒ p(t) = −1 + (t+ 2)− (t+ 2)2 = −3− 3t− t2 .

L{f(t)} = L{t2}+ L{p(t−2)U(t−2)} = 2

s3
+ p̄(s) e−2s =

2

s3
+

(
−3

s
− 3

s2
− 2

s3

)
e−2s ■
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Prob. 18
f(t) = U(t− a) sent︸︷︷︸

q(t−a)

= U(t− a) q(t− a) ⇒ f̄(s) = e−asq̄(s) . (I)

q (t− a) = sent ⇒ q (t) = sen(t+ a) = sena cos t+ cos a sent .

q̄(s) = ( sena)
s

s2 + 1
+ (cos a)

1

s2 + 1
=
s sena+ cos a

s2 + 1
. (II)

Com (II) em (I), obtemos a resposta: f̄(s) =
e−as

s2 + 1
(s sena+ cos a)

Prob. 19

L−1{f̄(s)} = L−1

{
e−5s 1

s− 2︸ ︷︷ ︸
↓L−1

e2t

}
= U(t− 5) e2(t−5)

Prob. 20

L−1{f̄(s)} = L−1

{
e−5s 1

(s− 2)4︸ ︷︷ ︸
↓L−1

e2tt3/3!

}
= U(t− 5) e2(t−5) (t− 5)3

6

Prob. 21

L−1{f̄(s)} = L−1

{
e−s

s+ π

s2 + π2

}
= L−1

{
e−s
[

s

s2 + π2︸ ︷︷ ︸
↓L−1

cosπt

+
π

s2 + π2︸ ︷︷ ︸
↓L−1

senπt

]}

= U(t− 1)
[
cosπ(t− 1)︸ ︷︷ ︸

− cosπt

+ senπ(t− 1)︸ ︷︷ ︸
− senπt

]
= −(cosπt+ senπt)U(t− 1)

Prob. 22

L{f(t)} = L{ t3︸︷︷︸
p(t−5)

e2t U(t− 5)} = L{e2tp(t− 5)U(t− 5)} =
[
p̄(s′) e−5s′

]
s′=s−2

= p̄ (s− 2) e−5(s−2) .

Por outro lado, p(t) = (t+ 5)3 = t3 + 15t2 + 75t+ 125 ⇒ p̄(s) =
6

s4
+

30

s3
+

75

s2
+

125

s
.

Logo, L{f(t)} =
[ 6

(s− 2)4
+

30

(s− 2)3
+

75

(s− 2)2
+

125

s− 2

]
e−5(s−2) .

Prob. 23

L{f(t)} = L

{∫ t

0

senu

u
du

}
=

1

s
L

{
sent

t

}
=

1

s

∫ ∞

s

1

s′2 + 1
ds′ =

1

s
arctan s′

∣∣∣∞
s

=
1

s

(
π

2
− arctan s

)
Prob. 24

L{f(t)} = L

{∫ t

0

eau − ebu

u
du

}
=

1

s
L

{
eat − ebt

t

}
=

1

s

∫ ∞

s

( 1

s′ − a
− 1

s′ − b

)
ds′ =

1

s

[
ln
s′ − a
s′ − b

]∞
s

=
1

s

[
ln 1− ln

s− a
s− b

]
=

1

s
ln
s− b
s− a

Prob. 25

f̄(s) =
1

1− e−2s

∫ 2

0

e−stf(t) dt =

∫ 1

0

e−st(1) dt+

∫ 2

1

e−st(−1) dt

1− e−2s
=
−1

s
e−st

∣∣∣1
t=0

+
1

s
e−st

∣∣∣2
t=1

1− e−2s

=

(
− e−s + 1 + e−2s − e−s

)
s(1− e−2s)

=
1− 2e−s + e−2s

s(1− e−2s)
=

(1− e−s)2

s(1 + e−s)(1− e−s)
=

1− e−s

s(1 + e−s)
.

Prob. 26

f̄(s) =

∫ 2

0

e−stt dt

1− e−2s
=

− t
s
e−st

∣∣∣2
t=0

+
1

s

∫ 2

0

e−stdt

1− e−2s
=

−2
s
e−2s − 1

s2
e−st

∣∣∣2
t=0

1− e−2s
=

1− (1 + 2s)e−2s

1− e−2s
.
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Prob. 27

• f̄(s) =
1

1− e−2s

∫ 2

0

e−stf(t) dt =
1

1− e−2s

∫ 2

1

e−stdt =
1

1− e−2s

e−st

−s

∣∣∣2
t=1

= − e
−2s − e−s

s(1− e−2s)
=

e−s�����(1− e−s)
s(1 + e−s)�����(1− e−s)

=
e−s

s(1 + e−s)
.

• g(t) = g(t+ 2) e g(t) =

{
t (0 ≤ t < 1)

2− t (1 ≤ t < 2)
⇒ ḡ(s) =

1

1− e−2s

∫ 2

0

e−stg(t) dt

⇒ ḡ(s) =

∫ 1

0

e−stt dt+

∫ 2

1

e−st(2− t)dt

1− e−2s
= · · · = 1− 2e−s(1 + s)− e−2s

s2(1− e−2s)
.

• h̄(s) =
1

1− e−πs

∫ π

0

e−sth(t) dt =
1

1− e−πs

∫ π

0

e−st sent dt = · · · = 1

1− e−πs
· 1 + e−πs

s2 + 1
.

• ū(s) =
1

1− e−2πs

∫ 2π

0

e−stu(t) dt =
1

1− e−2πs

∫ π

0

e−st sent dt = · · · = 1

1− e−2πs
· 1 + e−πs

s2 + 1
.

Prob. 28

L−1
{ 1

(s− 2) (s− 5)

}
= L−1

{ 1

s− 2

}
∗ L−1

{ 1

s− 5

}
= e2t ∗ e5t =

∫ t

0

e2ue5(t−u)du = e5t
∫ t

0

e−3udu

= e5t
e−3t

−3

∣∣∣∣t
0

= e5t
e−3t − 1

−3
= −e

2t − e5t

3

Prob. 29

L−1
{ 1

(s2 + 1)2

}
= L−1

{ 1

s2 + 1

}
∗ L−1

{ 1

s2 + 1

}
= sent ∗ sent =

∫ t

0

sen(t− u) senu du

=

∫ t

0

[ sent cosu− senu cos t] senu du = ( sent)

∫ t

0

senu cosu du− (cos t)

∫ t

0

sen2u du

= ( sent)

[
sen2u

2

]t
0

− (cos t)

[
u

2
− sen2u

4

]t
0

=
1

2
sen3t−

(
t

2
− sen2t

4

)
cos t

Prob. 30

L−1
{ 1

(s2 + 4s+ 5)2

}
= L−1

{ 1

[(s+ 2)2 + 1]2

}
= L−1

{ 1

(s+ 2)2 + 1

}
∗ L−1

{ 1

(s+ 2)2 + 1

}
= (e−2t sent) ∗ (e−2t sent) =

∫ t

0

e−2u senu e−2(t−u) sen(t− u) du

= e−2t

∫ t

0

senu sen(t− u) du︸ ︷︷ ︸
já calculada no Prob. 29

= e−2t

[
1

2
sen3t−

(
t

2
− sen2t

4

)
cos t

]

Prob. 31∫ ∞

0

e−t sent

t
dt = L

{
sent

t

} ∣∣∣∣
s=1

=

∫ ∞

s

1

s′2 + 1
ds′
∣∣∣∣
s=1

= arctan s′
∣∣∣∞
1

=
π

2
− π

4
=
π

4

Prob. 32∫ ∞

0

e−2tt9dt =

∫ ∞

0

e−stt9dt

∣∣∣∣
s=2

= L{t9}
∣∣∣∣
s=2

=
9!

s10

∣∣∣∣
s=2

=
9!

210

Prob. 33

y′′ + 2y′ + y = f(t) ≡


0 (0 ≤ t < 1)
1 (1 ≤ t < 2)
−1 (2 ≤ t < 3)
0 (t ≥ 3)

sob as condições y(0) = 0 e y′(0) = 0 :
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L {y′′ + 2y′ + y} = L
{ f(t)︷ ︸︸ ︷
U(t− 1)− 2U(t− 2) + U(t− 3)

}
⇒ s2ȳ(s)− s y(0)︸︷︷︸

0

− y′(0)︸ ︷︷ ︸
0

+ 2 [sȳ(s)− y(0)︸︷︷︸
0

] + ȳ(s) = (s+ 1)2ȳ(s) =
e−s

s
− 2

e−2s

s
+
e−3s

s

⇒ y(t) = L−1

{
e−s

s(s+ 1)2
− 2

e−2s

s(s+ 1)2
+

e−3s

s(s+ 1)2

}
= L−1

{
e−sḡ(s)− 2e−2sḡ(s) + e−3sḡ(s)

}
,

onde

ḡ(s) ≡ 1

s(s+ 1)2

frações
parciais
=

1

s
− 1

s+ 1
− 1

(s+ 1)2
⇒ g(t) = 1− e−t − t e−t .

∴ y(t) = U(t− 1)g(t− 1)− 2U(t− 2)g(t− 2) + U(t− 3)g(t− 3) ,

ou y(t) = U(t− 1)
[
1− e−(t−1) − (t− 1) e−(t−1)

]
−2 U(t− 2)

[
1− e−(t−2) − (t− 2) e−(t−2)

]
+ U(t− 3)

[
1− e−(t−3) − (t− 3) e−(t−3)

]
.

Prob. 34

y′′ + 3y′ − 4y(t) = 0
L
⇒ s2ȳ(s)− sy(0)− y′(0) + 3 [sȳ(s)− y(0)]− 4ȳ(s) = 0

⇒ ( s2 + 3s− 4︸ ︷︷ ︸
(s−1)(s+4)

) ȳ(s) = y(0)s+ 3y(0) + y′(0) ⇒ ȳ(s) =
y(0)s+ 3y(0) + y′(0)

(s− 1)(s+ 4)
〈1〉

Item (a): Substituindo y(0) = y′(0) = 1 na equação 〈1〉, obtemos

y(s) =
s+ 4

(s− 1)(s+ 4)
=

1

s− 1

L−1

⇒ y(t) = et .

Item (b): y(0) = 1, y′(1) = −4e−4 . A equação 〈1〉 com y(0) = 1 fornece

y(s) =
s+ 3 + y′(0)

(s− 1)(s+ 4)
=

c1︷ ︸︸ ︷[
y′(0) + 4

5

]
s− 1

+

1−c1︷ ︸︸ ︷[
y′(0)− 1

−5

]
s+ 4

=
c1

s− 1
+
1− c1
s+ 4

⇒ y(t) = c1 e
t+(1−c1) e−4t .

Acima, mudamos da constante arbitrária y′(0) para a constante c1, também arbitrária, pois a
determinação de c1 envolve menos contas que a de y′(0). Agora usamos a outra condição, y′(1) =
−4e−4, para determinar c1:

y′(t) = c1 e
t − 4(1− c1) e−4t ⇒ y′(1) = c1 e− 4(1− c1) e−4 = −4e−4

⇒ c1(e+ 4 e−4) = 0 ⇒ c1 = 0 ⇒ y(t) = e−4t .

Item (c): y(1) = e+ e−4, y′(1) = e− 4e−4

y(s) =
y(0)s+ 3y(0) + y′(0)

(s− 1)(s+ 4)
=

c1︷ ︸︸ ︷[
4y(0) + y′(0)

5

]
s− 1

+

c2︷ ︸︸ ︷[
−y(0) + y′(0)

−5

]
s+ 4

⇒ y(t) = c1 e
t + c2 e

−4t .

Aqui também mudamos das constantes arbitrárias y(0) e y′(0) para as constante arbitrárias c1 e c2,
assim simplificando as contas. Usando as duas condições iniciais, obtemos um sistema algébrico com
as incógnitas c1 e c2; resolvendo-o, acabamos a resolução:{

y(1) = c1 e+ c2 e
−4 = e+ e−4

y′(1) = c1e− 4c2e
−4 = e− 4e−4 ⇒ c1 = c2 = 1 ⇒ y(t) = et + e−4t .
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Prob. 35

y′+

∫ t

0

y(u)du = U(t− 1)
L

=⇒ sȳ(s) +
ȳ(s)

s
=
e−s

s
⇒ ȳ(s) =

e−s

s2 + 1
⇒ y(t) = U(t− 1) sen(t− 1) .

Prob. 36

Respostas: (a)


x = −2e3t + 5

2
e2t − 1

2

y =
8

3
e3t − 5

2
e2t − 1

6

(b)


x = 8 +

2

3!
t3 +

t4

4!

y = − 2

3!
t3 +

t4

4!

84



Capítulo 5

Séries de Fourier
{
Ref. [14], seções 11.1 a 11.3

}
5.1 Construção da Série de Fourier

5.1.1 Série de Fourier de Função Periódica
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Na figura acima vemos alguns gráficos das funções trigonométricas sen(nπx/ℓ) [n = 1, 2, 3 · · · ]. Os
gráficos de cos(nπx/ℓ) são os de ( sennπx/ℓ) transladados de (2ℓ/n)/4 = ℓ/2n para a esquerda (de
modo que o ponto P de cada figura fique em x = 0), pois cosnπx/ℓ = sen[nπ(x + ℓ/2n)/ℓ ]. É fácil
mostrar que, para m e n inteiros, essas funções satisfazem as chamadas relações de ortonormalidade(∗):∫ 2ℓ

0

sen
mπx

ℓ
cos

nπx

ℓ
dx = 0 ; (5.1a)

∫ 2ℓ

0

sen
mπx

ℓ
sen

nπx

ℓ
dx︸ ︷︷ ︸

↓ se m= n ̸= 0∫ 2ℓ

0
sen2 nπx

ℓ dx = ℓ

=

∫ 2ℓ

0

cos
mπx

ℓ
cos

nπx

ℓ
dx︸ ︷︷ ︸

↓ se m= n∫ 2ℓ

0
cos2 nπxℓ dx =

{
ℓ se n ̸= 0

2ℓ se n= 0

=

{
0 se m 6= n
ℓ se m = n 6= 0 .

(5.1b)

Considere a série infinita

SF (x) ≡
a0
2

+

∞∑
n=1

an cos
nπx

ℓ
+ bn sen

nπx

ℓ
. (5.2)

Como ela é periódica, de período 2ℓ (ℓ é indeterminado por enquanto), isto é,

SF (x+ 2ℓ) =
a0
2

+

∞∑
n=1

an cos
nπ(x+ 2ℓ)

ℓ
+ bn sen

nπ(x+ 2ℓ)

ℓ
= SF (x) ,

é válida a tentativa de usá-la para aproximar uma função f(x) também periódica, de período p :

f(x) ∼ SF (x) =
a0
2

+

∞∑
m=1

am cos
mπx

ℓ
+ bm sen

mπx

ℓ
. (5.3)

O primeiro passo é igualar os períodos, 2ℓ = p, assim determinando ℓ = p/2. Não usaremos mais o
parâmetro p, pois o que passa a importar é que o parâmetro ℓ em (5.2) deve ser o semiperíodo da
função f(x) que se deseja aproximar por SF (x).

Para determinar os coeficientes an e bn, usamos (5.1a) e (5.1b). Calculemos bn (n = 1, 2 · · · )
multiplicando ambos os lados de (5.3) por sen(nπx/ℓ) e depois integrando no intervalo (−ℓ, ℓ) :∫ 2ℓ

0

f(x) sen
nπx

ℓ
=

a0
2

∫ 2ℓ

0

sen
nπx

ℓ
dx︸ ︷︷ ︸

0

+

∞∑
m=1

am

∫ 2ℓ

0

cos
mπx

ℓ
sen

nπx

ℓ
dx︸ ︷︷ ︸

0

+ bm

∫ 2ℓ

0

sen
mπx

ℓ
sen

nπx

ℓ
dx︸ ︷︷ ︸

=

{
0 se m ̸= n
ℓ se m = n

= bnℓ .

Multiplicando agora ambos os lados daquela equação por cos(nπx/ℓ) e integrando em (0, 2ℓ), ob-
temos an (n = 1, 2 · · · ) :∫ 2ℓ

0

f(x) cos
nπx

ℓ
=

a0
2

∫ 2ℓ

0

cos
nπx

ℓ
dx︸ ︷︷ ︸

=

{
0 se n ̸= 0
2ℓ se n = 0

+

∞∑
m=1

am

∫ 2ℓ

0

cos
mπx

ℓ
cos

nπx

ℓ
dx︸ ︷︷ ︸

=

{
0 se m ̸= n
ℓ se m = n

+ bm

∫ 2ℓ

0

sen
mπx

ℓ
cos

nπx

ℓ
dx︸ ︷︷ ︸

0

=

{
an ℓ se n 6= 0
a0 ℓ se n = 0 .

(∗) expressando tanto ortogonalidade quanto normalização
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Em resumo, se f(x) tem período 2ℓ, então, ∀x ∈ R, temos que

f(x) ∼ a0
2

+

∞∑
n=1

an cos
nπx

ℓ
+ bn sen

nπx

ℓ
= SF (x) , (5.4a)

onde

a0 =
1

ℓ

∫ 2ℓ

0

f(x) dx , an =

∫ 2ℓ

0

f(x) cos
nπx

ℓ
f(x) dx , bn =

∫ 2ℓ

0

f(x) sen
nπx

ℓ
f(x) dx .

(5.4b)

Nessas integrais, o intervalo de integração pode ser qualquer um de largura igual ao período 2ℓ —
isto é, podemos, acima, fazer a substituição

∫ 2ℓ

0
dx →

∫ c+2ℓ

c
dx (com qualquer c ∈ R) —, pois as

funções que figuram nos integrandos [f(x), cos(nπx)/ℓ e sen(nπx)/ℓ] têm período 2ℓ .

A expansão da função f(x) dada por (5.4a) e (5.4b) foi obtida formalmente, sem cogitar da validade
das operações realizadas na sua dedução(∗). Mais adiante enunciaremos um teorema estabelecendo sob
que condições uma função admite esse tipo de expansão. Neste caso, (5.4a) e (5.4b) constituem a
chamada série (desenvolvimento, ou expansão) de Fourier de f(x). O sinal "∼" indica que SF (x) é
uma aproximação de f(x); é substituído pelo sinal de igualdade no caso de a série SF (x) convergir
para f(x) em todo x. Observe que a fórmula de a0 é a de an

∣∣
n≥1

com n = 0, sendo esta unificação de
fórmulas o motivo de pôr a0/2 como o primeiro termo da série em (5.2).

Como exemplo de série de Fourier de função periódica, considere a função dada pelo gráfico
abaixo.

7x  

 
=

y  ! =

y  ! = "

8x  

 
= 9x  

 
=

x

( )y f x=

Ela é claramente periódica, de período 2π . Logo, de-
vemos fazer 2ℓ = 2π e, portanto, usar ℓ = π em (5.4a) e
(5.4b). Nas fórmulas dos coeficientes, podemos escolher
como intervalo de integração qualquer um de largura
igual ao período 2π; tomemos o intervalo [−π, π], onde
o gráfico de f(x) é aquele à esquerda, sendo essa função,
portanto, dada por

f(x) =

{
x se x ∈ [−π, 0)
π se x ∈ [0, π)

e f(x+2π) = f(x) . (5.5)

Logo,

a0 =
1

π

∫ π

−π
f(x)dx =

1

π

∫ 0

−π
x dx+

1

π

∫ π

0

π dx =
π

2
.

(∗)em particular, admitimos que, ao integrar a série, a integral da soma da infinidade de termos que a compõem é igual
à soma das integrais de cada termo
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an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ 0

−π
x cosnx dx+

1

π

∫ π

0

π cosnx dx︸ ︷︷ ︸
0

p.p.
=

1

π

[
x sennx

n

∣∣∣∣0
−π︸ ︷︷ ︸

0

−
∫ 0

−π

sennx

n
dx

]
=

cosnx

πn2

∣∣∣0
−π

=
1− cosnπ

πn2

=
1− (−1)n

πn2
=

{
2/(πn2) (n = 1, 3, 5 · · · )

0 (n = 2, 4, 6 · · · ) ,

bn =
1

π

∫ π

−π
f(x) sennx dx =

1

π

∫ 0

−π
x sennx dx+

1

π

∫ π

0

π sennx dx

p.p.
=

1

π

[
x(− cosnx)

n

∣∣∣∣0
−π
−
∫ 0

−π

− cosnx

n
dx︸ ︷︷ ︸

0

]
+
− cosnx

n

∣∣∣∣π
0

=
1

π

[
−π(−1)n

n

]
+
−(−1)n + 1

n
=

1− 2(−1)n

n
=

{
3/n (n = 1, 3, 5 · · · )
−1/n (n = 2, 4, 6 · · · ) ,

onde usamos a fórmula cos(±nπ) = (−1)n. A série de Fourier de f(x) é, portanto,

SF (x) =
π

4
+

∑
n=1,3,5···

2

πn2
cosnx+

∑
n=1,3,5···

3

n
sennx+

∑
n=2,4,6···

−1
n

sennx ■ (5.6)

5.1.2 Série de Fourier de Função Não Periódica
Mostraremos que uma função não periódica g(x) também pode ser desenvolvida na série SF (x)

(periódica) em (5.2), mas apenas num intervalo finito [a, b] do seu domínio, denominado intervalo de
expansão, contanto que 2ℓ = b − a e as integrais que fornecem os coeficientes sejam efetuadas no
intervalo [a, b] :

Série de Fourier de uma função não periódica g(x) num intervalo finito [a, b] do seu domínio:

g(x) ∼ SF (x) =
a0
2

+

∞∑
n=1

an cos
nπx

ℓ
+ bn sen

nπx

ℓ
para x ∈ [a, b] , com 2ℓ = b− a , (5.7a)

onde

a0 =
1

ℓ

∫ b

a

g(x)dx , an =
1

ℓ

∫ b

a

g(x) cos
nπx

ℓ
dx e bn =

1

ℓ

∫ b

a

g(x) sen
nπx

ℓ
dx . (5.7b)

Note que o primeiro termo dessa série, o termo constante a0/2 , é igual ao valor médio da função
no intervalo de expansão:

a0
2

=
1

b− a

∫ b

a

f(x)dx . (5.8)

Nota : Neste ponto da exposição cabe fazer a seguinte observação: Até o momento estamos
sempre nos referindo à expansão de Fourier de uma função num intervalo fechado [a, b], mas
depreende-se da formulação que a série de Fourier é a mesma para qualquer dos intervalos
[a, b], [a, b), (a, b] e (a, b) pelo simples fato de que cada coeficiente da série é resultado de
uma integral, e esse resultado não se altera quando a integral sofre alteração oriunda de
modificações num número finito de pontos do intervalo de integração. Isso se tornará mais
evidente quando estudarmos a convergência da série de Fourier.

Para mostrar a validade de (5.7), considere a função f(x) assim definida:{
f(x) = g(x) se x ∈ [a, b)

f(x+ 2ℓ) = f(x) ∀x ∈ R , onde 2ℓ = b− a .
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Vê-se que essa função f(x) é periódica, de período 2ℓ = b − a , e coincidente com g(x) no intervalo
[a, b); ela é a denominada extensão periódica de g(x) [ou, sem abreviar, a extensão periódica dos valores
de g(x) no intervalo [a, b) a todo o eixo real ]. A figura abaixo exemplifica gráficos de f(x) e g(x).

Uma vez que f(x) é periódica, ela admite a expansão dada por (5.4a) e (5.4b) com 2ℓ = (b− a), no
caso. Ora, tal série de Fourier de f(x), válida em todo eixo real, vale em particular no intervalo [a, b),
onde f(x) = g(x); isso justifica (5.7a). Por outro lado, como já dissemos, as integrações nas fórmulas
dos coeficientes da série de Fourier de f(x) podem ser efetuadas em qualquer intervalo de largura b−a.
Se, em particular, empregarmos o intervalo [a, b), onde f(x) = g(x), tais fórmulas tornam-se aquelas
em (5.7b).

Como exemplo de série de Fourier de função não periódica, desenvolvamos tal série para
a função g(x) = x2 no intervalo [−π, π]. Usando (5.7a) e (5.7b) com a = −π, b = π e, portanto,
2ℓ = (b− a) = 2π, temos que

a0 =
1

π

∫ π

−π
g(x)dx =

1

π

∫ π

−π
x2dx =

2π2

3
·

an =
1

π

∫ π

−π
x2 cosnx dx

(∗)
=

2

π

∫ π

0

x2 cosnx dx
(†)
=

2

π

{
x2 sennx

n

∣∣∣∣π
0︸ ︷︷ ︸

0

− 2

n

∫ π

0

x sennx dx

}

(†)
=
−4
nπ

{
−x cosnx

n

∣∣∣∣π
0

+
1

n

∫ π

0

cosnx dx

}
=
−4
πn2

{
− π cosnπ︸ ︷︷ ︸

(−1)n

+
sennx

n

∣∣∣∣π
0︸ ︷︷ ︸

0

}
=

4

n2
(−1)n .

bn =
1

π

∫ π

−π
x2 sennx dx

(#)
= 0 .

Explicações das passagens marcadas acima:
(∗) função par integrada num intervalo simétrico em relação à origem
(†) integração por partes
(#) função ímpar integrada num intervalo simétrico em relação à origem

Logo,

x2 ∼ π2

3
+

∞∑
n=1

(−1)2 4

n2
cosnx , x ∈ [−π, π] ■

xO 

y

( )FS x truncada 

( )f x

Se truncarmos a série de Fourier SF (x) de f(x), isto é, se a
calcularmos com um número finito de termos, o seu gráfico terá
um aspecto oscilatório em torno do gráfico de f(x), como ilus-
trado à direita. O aumento do número de termos causa oscilações
de menor amplitude na maior parte do intervalo de expansão. Já
quando o número de termos da série tende a infinito, ela pode con-
vergir, fornecendo o valor correto da função ou um valor incorreto,
ou divergir, dependendo da função. Mais adiante mencionaremos
condições que, se uma função satisfizer, garantem a convergência
pontual da sua série de Fourier.
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5.2 Convergência Pontual da Série de Fourier
Seja f(x) uma função contínua em todos os pontos de um intervalo limitado [a, b], exceto possivel-

mente nos pontos a, b e num número finito de pontos x1, x2, · · · , xn, com a < x1 < x2 < · · · < xn < b,
nos quais ela não é contínua nem necessariamente definida. Assim, ela é contínua em cada um dos
intervalos abertos (a, x1), (x1, x2), · · · , (xn, b). Se ela tiver limites laterais finitos em x1, · · · , xn, pela
direita de a e pela esquerda de b, então essa função é dita contínua por partes em [a, b].

À direita, na figura superior, a função f(x) é contínua por
partes, com todos tipos de anomalias possíveis (pontos de des-
continuidade e de indefinição).

Note que, por essa definição, uma função contínua em [a, b]
é necessariamente contínua por partes nesse intervalo. Mas, em
(a, b), uma função contínua não é necessariamente limitada e,
portanto, não é necessariamente contínua por partes; à direita,
a função g(x) na figura inferior ilustra isso.

Já num intervalo ilimitado I, uma função é dita contínua por
partes se ela o for em todo subintervalo de I.

Se uma função f e sua derivada f ′ são contínuas por partes
num intervalo, então f é dita suave por partes nesse intervalo.

No que segue é usada a seguinte notação de limites laterais:

lim
x→k+

f(x) = f(k+) e lim
x→k−

f(x) = f(k−) . (5.9)

Segue um teorema e um corolário desse teorema estabelecendo condições para a convergência da
série de Fourier (c.f. Ref.[3], seç.10.3 ; Ref.[5], seçs.12,13,15):

Teorema. Se uma função periódica f for suave por partes, então sua série de Fourier SF (x)
dada por (5.4) convergirá segundo a fórmula

SF (x) =
f(x+) + f(x−)

2
∀x ∈ R . (5.10)

Corolário. Se uma função não periódica g(x) for suave por partes num intervalo finito [a, b] do
seu domínio, então sua série de Fourier SF (x) desenvolvida nesse intervalo usando (5.7) convergirá
segundo (5.10) se x ∈ (a, b) e conforme a fórmula

SF (x) =
g(a+) + g(b−)

2
se x = a ou x = b . (5.11)

A equação (5.10) informa que SF (x) converge para o valor médio dos limites laterais de f à direita
e à esquerda de x ; em particular, converge para f(x) onde f é contínua, pois, neste caso, f(x+) =
f(x−) = f(x). Seguem algumas figuras que ilustram a convergência da série de Fourier.

Para a função f(x) = x2 desenvolvida em série de Fourier no intervalo I = [−π, π] no exemplo na
pág. 89, o gráfico da série de Fourier SF (x) obtida é como mostra a figura abaixo. Nota-se que SF (x)
converge para f(x) no intervalo de expansão I, pois essa função é contínua nesse intervalo, e, fora desse
intervalo, fornece a extensão periódica, de período igual à largura 2π de I, do valores de SF (x) = f(x)
para x ∈ I.
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x

0( )FS x

0( )f x+

0( )f x  

0( )f x

0x

y ( ) truncadaFy S x=

( )y f x=

ponto
médio

do salto

1x

Já a figura à direita mostra as ondulações do gráfico da
série de Fourier SF (x) truncada de uma função f(x) que apre-
senta um salto de descontinuidade no ponto x0 . Ela exibe
o que se expôs acima sobre a lei de convergência em (5.10):
que o gráfico de SF (x) passa pelo ponto médio do salto, o que
parece ser o mais lógico, e isso é demonstrado independen-
temente do número de termos da série truncada. Tal figura
também ilustra o seguinte: como a série de Fourier é comple-
tamente determinada por seus coeficientes an e bn, e como
esses coeficientes exibem a função f(x) em integrandos, esses
coeficientes não seriam sensíveis a uma mudança no valor de f(x) em abscissas isoladas, tais como x0
e x1 (v. a figura): nestes, o valor da função é irrelevante para a série de Fourier.

A convergência pontual da série de Fourier segundo (5.10) de uma função periódica (aquela do
exemplo na pág. 87) também é ilustrada na seguinte figura:

7x  

 
=

y  ! =

y  ! = "

8x  

 
= 9x  

 
=

x

( )
(truncada)

Fy S x=

( )y f x=

Por fim, abaixo apresentamos mais uma figura mostrando os gráficos de uma função f(x) e o de sua
série de Fourier SF (x) (truncada) desenvolvida num intervalo [a, b] . Como a largura do intervalo de
expansão determina o período da série de Fourier, o período de SF (x) é 2ℓ = a−b . A figura possibilita
entender que SF (x) – por replicar contiguamente a porção do seu gráfico em [a, b] a cada intervalo
de largura 2ℓ – só seria contínua nos extremos de [a, b] se f(a+) = f(b−) ; sendo diferentes esses
dois valores, há um salto de descontinuidade f(b−)− f(a+) nos extremos de cada intervalo replicado,
convergindo a série para o ponto médio de cada salto, de acordo com (5.11) (e a periodicidade da série
de Fourier).

Convém ressalvar que as condições para a validade das equações (5.10) e (5.11) são suficientes, mas
não são necessárias, pois existem funções que não as satisfazem e, no entanto, convergem segundo as
regras estabelecidas por essas equações. Ressalte-se também que tais condições podem ser substituídas
por outras que garantem essas mesmas regras de convergência, tais como as condições de Dirichlet.
Ainda não há um teorema de convergência pontual estabelecendo condições suficientes que também
sejam necessárias.
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5.3 Séries de Fourier em Senos e em Cossenos
Considere a expansão de uma função f(x) no intervalo [−ℓ, ℓ] , obtida usando (5.7):

f(x) ∼ SF (x) =
a0
2

+

∞∑
n=1

an cos
nπx

ℓ
+ bn sen

nπx

ℓ
, x ∈ [−ℓ, ℓ ] ,

onde

a0 =
1

ℓ

∫ ℓ

−ℓ
f(x)dx , an =

1

ℓ

∫ ℓ

−ℓ
f(x) cos

nπx

ℓ
dx , bn =

1

ℓ

∫ ℓ

−ℓ
f(x) cos

nπx

ℓ
dx .

Se f(x) for par, então

bn =
1

ℓ

∫ ℓ

−ℓ
f(x) sen

nπx

ℓ︸ ︷︷ ︸
ímpar

dx = 0 ,

isto é, todos os coeficientes bn de sen(nπx/ℓ) na série se anulam; além disso,

an =
1

ℓ

∫ ℓ

−ℓ
f(x) cos

nπx

ℓ︸ ︷︷ ︸
par

dx =
2

ℓ

∫ ℓ

0

f(x) cos
nπx

ℓ
dx .

Ou seja, a série é uma expansão em cossenos apenas, cujos coeficientes an são obtidos com a integração
efetuada somente de 0 a ℓ e multiplicando-se o resultado por dois.

Se f(x) for ímpar, então

an =
1

ℓ

∫ ℓ

−ℓ
f(x) cos

nπx

ℓ︸ ︷︷ ︸
ímpar

dx = 0 .

Agora são os coeficientes an de cos(nπx/ℓ) que se anulam, sendo a série uma expansão em senos apenas,
com seus coeficientes dados por

bn =
1

ℓ

∫ ℓ

−ℓ
f(x) sen

nπx

ℓ︸ ︷︷ ︸
par

dx =
2

ℓ

∫ ℓ

0

f(x) sen
nπx

ℓ
dx .

Essas expansões são séries de Fourier no intervalo [−ℓ, ℓ ] válidas para funções com paridade. Mas,
observe, as integrais que fornecem os coeficientes são efetuadas no intervalo [0, ℓ ], o que nos permite
desenvolver qualquer (∗) função somente em cossenos ou em senos no intervalo [0, ℓ ] . Essa proposição
é formulada abaixo e justificada logo depois.

Qualquer (∗) função f(x) pode ser expandida somente em cossenos ou somente em senos no
intervalo [0, ℓ ] :

f(x) ∼


ScF (x) =

a0
2

+

∞∑
n=1

an cos
nπx

ℓ
: série de Fourier de f(x) em cossenos

SsF (x) =

∞∑
n=1

bn sen
nπx

ℓ
: série de Fourier de f(x) em senos ,

(5.12a)

(5.12b)

onde x ∈ [0, ℓ ] e com os coeficientes dados por

a0 =
2

ℓ

∫ ℓ

0

f(x)dx , an =
2

ℓ

∫ ℓ

0

f(x) cos
nπx

ℓ
dx ; (5.13a)

bn =
2

ℓ

∫ ℓ

0

f(x) sen
nπx

ℓ
dx . (5.13b)

(∗)A palavra qualquer é usada no sentido de que a função pode ser qualquer uma para a qual a série obtida convirja;
para isso acontecer é suficiente que estejam satisfeitas as condições do teorema na seção 5.2.
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Essa formulação é justificada assim: Na série de Fourier em cossenos de f(x) tudo se passa como
se estivéssemos expandindo em série de Fourier no intervalo [−ℓ, ℓ] uma função par que coincide com
f(x) no intervalo [0, ℓ], e, analogamente, na série de Fourier em senos de f(x), como se expandíssemos
em série de Fourier no intervalo [−ℓ, ℓ] uma função ímpar que coincide com f(x) no intervalo (0, ℓ] .

Uma peculiaridade dessas séries: Elas têm período 2ℓ e são desenvolvimentos de funções no intervalo
[0, ℓ ], o que lhes justifica as denominações desenvolvimentos de Fourier de meio período ou semisséries
de Fourier. Mas, se na metade de cada período, isto é, de cada intervalo periódico (−nℓ, nℓ ] (n =
1, 2, 3 · · · ), há a função expandida, o que há na metade inferior desses períodos? Para responder,
vejamos os seus gráficos. Para desenhá-los, basta lembrar que essas séries são séries de Fourier de
funções pares ou ímpares em [−ℓ, ℓ ], de período 2ℓ . A figura abaixo mostra o gráfico de uma função
f(x) qualquer e suas séries de Fourier em cossenos e senos, ScF (x) e SsF (x), respectivamente. O primeiro
passo é considerar apenas a restrição de f ao intervalo [0, ℓ ]; em seguida, para obter ScF (x) , estendemos
ao intervalo [−ℓ, ℓ ] aquela restrição de modo que a extensão de f ao intervalo [−ℓ, ℓ ] seja par, e, para
obter SsF (x) , de modo que tal extensão seja ímpar; por fim, replicamos o gráfico dessa extensão
contiguamente em intervalos de largura 2ℓ, seguindo as regras de convergência pontual da série de
Fourier em (5.10) e (5.11). Na Figura, os gráficos de ScF (x) e SsF (x) assim obtidos são mostrados com
pequenos risco ao longo deles. Então temos a resposta: na outra metade do período de uma semissérie
de f há a extensão par ou ímpar de f .

5.4 Exercícios
1] Escreva a série de Fourier de uma função f(x) :

a) no intervalo [a, b]
b) no intervalo [0, b] em cossenos
c) no intervalo [0, b] em senos
d) no intervalo [0, b] em senos e cossenos (série completa)
e) no caso de f ter período p
f) no caso de f ser par e ter período p

2] Calcule SF (0) e SF (0, 5) , sendo SF (x) = a0/2 +
∑∞

1

[
an cos 2nπx+ bn sen2nπx

]
a série

de Fourier da função dada por f(x) = x2 + 1 se x ∈ [0, 1) e tal que f(x+ 1) = f(x) .

3] Expanda a função f(x) = x para x ∈ [0, 10] :
a) numa série de Fourier
b) numa série de Fourier em cossenos
c) numa série de Fourier em senos

4] Expanda em série de Fourier, para x ∈ [−π, π] , a função f(x) =
{
0 (x ≤ 0)
1 (x > 0) .

5] Usando a série de Fourier (5.6) da função em (5.5), mostre que σ ≡
∑

n=1,3,5···

1

n2
=
π2

8
·

6] Considere a seguinte função definida por uma série infinita: u(x, t) =
∑∞

1 βn sennx sennt , com

x ∈ (0, π). Sabendo que ela satisfaz a condição
∂u

∂t
(x, 0) = 1 , calcule u

(π
2
,
π

2

)
, usando o valor do

somatório σ deduzido no exercício anterior.
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5.5 Soluções dos Exercícios
[1]

a) SF (x) de f(x) em [a, b] :

SF (x) =
a0
2

+

∞∑
n=1

an cos
nπx

ℓ
+ bn sen

nπx

ℓ
, com 2ℓ = b− a ■

an =
1

ℓ

∫ b

a

f(x) cos
nπx

ℓ
dx , bn =

1

ℓ

∫ b

a

f(x) sen
nπx

ℓ
dx ■

b) ScF (x) de f(x) em [0, b] :

ScF (x) =
α0

2
+

∞∑
n=1

αn cos
nπx

b
, αn =

2

b

∫ b

0

f(x) cos
nπx

b
dx ■

Nota: Tal série coincide com a SF (x) em [−b, b] se f for par.

c) SsF (x) de f(x) em [0, b] :

SsF (x) =

∞∑
n=1

βn sen
nπx

b
, βn =

2

b

∫ b

0

f(x) sen
nπx

b
dx ■

Nota: Tal série coincide com a SF (x) em [−b, b] se f for ímpar.

d) SF (x) de f(x) em [0, b] :

SF (x) =
a0
2

+

∞∑
n=1

an cos
nπx

ℓ
+ bn sen

nπx

ℓ
, com 2ℓ = b ■

a0 =
1

ℓ

∫ b

0

f(x) dx , an =
1

ℓ

∫ b

0

f(x) cos
nπx

ℓ
dx , bn =

1

ℓ

∫ b

0

f(x) sen
nπx

ℓ
dx ■

e) SF (x) de f(x) com período p :

SF (x) =
a0
2

+

∞∑
n=1

an cos
nπx

ℓ
+ bn sen

nπx

ℓ
, com 2ℓ = p ■

an =
1

ℓ

∫ c+2ℓ

c

f(x) cos
nπx

ℓ
dx , bn =

1

L

∫ c+2ℓ

c

f(x) sen
nπx

ℓ
dx (c ∈ R) ■

f) SF (x) de f(x) par e com período p :

SF (x) =
a0
2

+

∞∑
n=1

an cos
nπx

ℓ
■

an =
1

ℓ

∫ c+2ℓ

c

f(x) cos
nπx

ℓ
dx (c ∈ R) , com 2ℓ = p ,

onde podemos fazer c = −ℓ, obtendo a seguinte fórmula para os coeficientes:

an =
1

ℓ

∫ −ℓ+2ℓ

−ℓ
f(x) cos

nπx

ℓ
dx =

1

ℓ

∫ ℓ

−ℓ
f(x) cos

nπx

ℓ
dx =

2

ℓ

∫ ℓ

0

f(x) cos
nπx

ℓ
dx ■ .

[2]

SF (0) =
f(0+) + f(0−)

2
=

1 + 2

3
= 3/2 ■

SF (0, 5) = f(0, 5) =
[
x2 + 1

]
x=0,5

= 1, 25 ■
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[3]

a) SF (x) de f(x) = x em [0, 10] :

SF (x) =
a0
2

+

∞∑
n=1

an cos
nπx

ℓ
+ bn sen

nπx

ℓ
, x ∈ (0, 10).

2ℓ = 10 ⇒ ℓ = 5.

a0 =
1

5

∫ 10

0

x dx = 10.

an =
1

5

∫ 10

0

x cos
nπx

5
dx =

1

5

{
5

nπ
x sen

nπx

5

∣∣∣∣ 10
0︸ ︷︷ ︸

0

− 5

nπ

∫ 10

0

sen
nπx

5
dx

}
=

5

n2π2
cos

nπx

5

∣∣∣ 10
0

= 0.

bn =
1

5

∫ 10

0

x sen
nπx

5
dx =

1

5

{
5

nπ
x cos

nπx

5

∣∣∣∣ 0
10

+
5

nπ

∫ 10

0

cos
nπx

5
dx︸ ︷︷ ︸

0

}
=
−10
nπ

.

SF (x) = 5− 10

π

∞∑
n=1

1

n
sen

nπx

5
■

b) ScF (x) de f(x) = x em [0, 10] :

ScF (x) =
a0
2

+
∞∑
n=1

an cos
nπx

ℓ
, x ∈ (0, ℓ) , com ℓ = 10 .

a0 =
2

ℓ

∫ ℓ

0

x dx =
2

10

∫ 10

0

x dx =
x2

10

∣∣∣10
0

=
100

10
= 10 .

an =
2

ℓ

∫ ℓ

0

x cos
nπx

ℓ
dx =

2

10

∫ 10

0

x cos
nπx

10
dx =

1

5

{
10

nπ
x sen

nπx

10

∣∣∣10
0︸ ︷︷ ︸

0

− 10

nπ

∫ 10

0

sen
nπx

10

}

=
1

5

{( 10
nπ

)2
cos

nπx

10

∣∣∣10
0

}
=

20

π2n2
[
(−1)n − 1

]
=

{
−40/(π2n2) (n = 1, 3, 5 · · · )

0 (n = 2, 4, 6 · · · ) .

ScF (x) = 10− 40

π2

∑
n=1,3,5···

1

n2
cos

nπx

10
■

c) SsF (x) de f(x) = x em [0, 10] :

SsF (x) =

∞∑
n=1

bn sen
nπx

ℓ
, x ∈ (0, ℓ) , com ℓ = 10 .

bn =
2

ℓ

∫ ℓ

0

x sen
nπx

ℓ
dx =

2

10

∫ 10

0

x sen
nπx

10
dx =

1

5

{
− 10

nπ
x cos

nπx

10

∣∣∣10
0

+
10

nπ

∫ 10

0

cos
nπx

10
dx︸ ︷︷ ︸

0

}

= − 2

nπ

[
10 cosnπ

]
= − 20

nπ
(−1)n .

SsF (x) = −
20

π

∑
n=1,3,5···

(−1)n

n
sen

nπx

10
■

[4]

SF (x) =
a0
2

+

∞∑
n=1

an cosnx+ bn sennx , x ∈ [−π, π] .

a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

0

dx = 1 .

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

0

cosnx dx = 0 (n 6= 0) .
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bn =
1

π

∫ π

−π
f(x) sennx dx =

1

π

∫ π

0

sennx dx = − cosnx

nπ

∣∣∣π
0
= −cosnπ − 1

nπ
= − (−1)n − 1

nπ

=

{
2/nπ (n = 1, 3, 5 · · · )
0 (n = 2, 4, 6 · · · ) .

SF (x) =
1

2
+

2

π

∞∑
n=1,3,5···

sennx

n
■

[5]
Fazendo x = 0 em (5.6), obtemos

SF (0) =
π

4
+

2

π

( ∞∑
n=1,3,5···

1

n2︸ ︷︷ ︸
σ

)
⇒ σ =

π

2

[
SF (0)−

π

4

]
.

Por outro lado, podemos calcular SF (0) usando (5.10) tomando f(x) como sendo a função em (5.5):

SF (0) =
f(0+) + f(0−)

2
=
π + 0

2
=
π

2
.

Finalmente, substituindo este resultado na equação anterior, terminamos a demonstração:

σ =
π

2

[ π
2
− π

4︸ ︷︷ ︸
π/4

]
=
π2

8
■

[6]

∂u

∂t
(x, t) =

∑∞
1 nβn sennx cosnt ⇒ ∂u

∂t
(x, 0) =

∑∞
1 nβn sennx = 1 , com x ∈ (0, π) .

Os coeficientes nβn dessa série de Fourier em senos da função constante igual a 1 são

nβn =
2

π

∫ π

0

1 · sennx dx = − 2

π

cosnx

n

∣∣∣∣π
0

= − 2

π

cosnπ − 1

n

= − 2

π

(−1)n − 1

n
=

{
4/(πn) (n = 1, 3, 5 · · · )

0 (n = 2, 4, 6 · · · )

⇒ βn =

{
4/(πn2) (n = 1, 3, 5 · · · )

0 (n = 2, 4, 6 · · · ) .

Portanto,

u(x, t) =
∑∞

1 βn sennx sennt =

∞∑
n=1,3,5···

4

πn2
sennx sennt =

4

π

∞∑
n=1,3,5···

1

n2
sennx sennt ,

donde,

u
(π
2
,
π

2

)
=

4

π

∞∑
n=1,3,5···

1

n2
sen

nπ

2
sen

nπ

2
=

4

π

∞∑
n=1,3,5···

1

n2

[
sen

nπ

2︸ ︷︷ ︸
±1

]2

=
4

π

∞∑
n=1,3,5···

1

n2︸ ︷︷ ︸
σ = π2/8

=
4

π

π2

8
=

π

2
■
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Capítulo 6

Resolução de Equações Diferenciais
Parciais Clássicas por Separação de
Variáveis {

Ref. [14], seções 12.1, 12.3 a 12.5, e 13.1
}

6.1 Autofunções
Se, em (3.2), V é o espaço vetorial das funções reais de uma variável real, isto é, o vetor v é uma

função ψ(x) genérica definida num intervalo qualquer I ⊂ R , e L é um operador diferencial linear,
então, conforme delineado no texto quadriculado ao final da subseção 3.1.2, o problema de autovalor
em (3.3) consiste em resolver a equação diferencial Lψ(x) = λψ(x), com x ∈ I, para determinar
os autovalores λn (n ∈ N) e as respectivas autofunções ψnj(x) (j = 1, gn). Quando um problema
como esse surge nas aplicações, em sua formulação, além da condição de ψ(x) diferir da solução trivial
ψ(x) = 0 em I, também se encontra a condição de ψ ser finita em I, e geralmente ainda existem
condições que ψ(x) deve satisfazer nos extremos (na fronteira) do intervalo I, denominadas condições
de fronteira(†). Problemas de autovalor sob condições como essas e baseados numa EDO de forma
padronizada (porém de ampla aplicação) formam a classe dos denominados Problemas de Sturm-
Liouville, algo muito maior do que podemos considerar nesta disciplina. Portanto, restringimos aqui
o desenvolvimento desse assunto apenas resolvendo, no espaço das funções, os problemas de autovalor
que encontrarão aplicação nos problemas físicos discutidos mais adiante.

Assim, uma vez que nas aplicações físicas abordadas só emergirão problemas de autovalor baseados
na EDO ψ′′(x)+λψ(x) = 0, em que L = −d2/dx2, apenas este operador será considerado (os problemas
de autovalor a serem resolvidos diferirão nas condições de fronteiras a serem impostas). Além disso,
nessas aplicações físicas, não haverá necessidade de considerar um intervalo I diferente de (0, ℓ), com
exceção de I = (−∞,∞). Por último, neste estudo introdutório, consideramos que a condição de
fronteira em cada extremo (x = 0 ou ℓ) de I = (0, ℓ) seja apenas de um dos dois tipos: a condição
de Dirichlet ψ = 0 ou a condição de Neumann ψ′ = 0, e, quando I não possuir extremos, isto é,
I = (−∞,∞), consideramos que ψ(x) tenha o período 2ℓ (definido pelas condições reais do problema
físico): ψ(x) = ψ(x+ 2ℓ) ∀x ∈ R, que é a chamada condição periódica.

Listamos abaixo, antes de resolvê-los, os problemas de autovalores de interesse – os que são baseados
na EDO ψ′′(x) + λψ(x) = 0 sob as condições mencionadas acima – juntamente com suas soluções,
compostas pelos autovalores e respectivas autofunções:

i) ψ′′ + λψ(x) = 0 , x ∈ (0, ℓ) , ψ(0) = ψ(ℓ) = 0

(condições de Dirichlet)
⇒
λn = (nπ/ℓ)2 (n = 1, 2, 3 · · · )

ψn(x) = sen
nπx

ℓ

(6.1)

ii) ψ′′ + λψ(x) = 0 , x ∈ (0, ℓ) , ψ′(0) = ψ′(ℓ) = 0

(condições de Neumann)
⇒
λn = (nπ/ℓ)2 (n = 0, 1, 2 · · · )

ψn(x)
∣∣
n≥1

= cos
nπx

ℓ
, ψ0(x) = 1

(6.2)

(†)A EDO juntamente com condições desse tipo formam o que se diz ser um Problema de Valor de Fronteira; recorde-se
que há também o conhecido Problema de Valor Inicial
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iii)
ψ′′ + λψ(x) = 0 , x ∈ R ,
ψ(x) = ψ(x+2ℓ)

(condição periódica: período 2ℓ)

⇒



λn = (nπ/ℓ)2 (n = 0, 1, 2 · · · )

ψn1(x)
∣∣
n≥1

= cos
nπx

ℓ
, ψ01(x) = 1

ψn2(x)
∣∣
n≥1

= sen
nπx

ℓ

↓ ψn(x) genérico do autoespaço Sλn de λn

ψn(x)
∣∣
n≥1

= an cos
nπx

ℓ
+ bn sen

nπx

ℓ
, ψ0(x) = 1

(6.3)

Passemos agora ao cálculo dos autovalores e respectivas autofunções desses três(‡) problemas de
autovalor. Nesse cálculo é usada a seguinte expressão da solução geral da EDO ψ′′(x) + λψ(x) = 0 :

ψ′′ + λψ(x) = 0 ⇒ ψ(x) =


c1 + c2x se λ = 0

c1 cosh kx+ c2 senhkx (ou c1e
kx + c2e

−kx) se λ = −k2 (k > 0)

c1 cos kx+ c2 senkx se λ = k2 (k > 0) ,

onde expressamos λ = k2 ou λ = −k2 (com k > 0) para respectivamente atribuir a λ qualquer valor
real positivo ou negativo (consideramos k > 0 para que a relação entre λ e k seja biunívoca: a cada
valor de λ corresponde um único valor de k, e a cada um de k, um único de λ). Essa solução geral é
deduzida na seção 6.7.2.

• Resolução do Prob. (i):

Para λ = 0:

ψ(x) = c1 + c2x
ψ(0) = c1 = 0
ψ(ℓ) = c2ℓ = 0 ⇒ c2 = 0

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
logo, zero não é autovalor.

Para λ < 0 : λ ≡ −k2 (k > 0):

ψ(x) = c1 cosh kx+ c2 senhkx
ψ(0) = c1 = 0
ψ(ℓ) = c2 senhkℓ︸ ︷︷ ︸

̸=0

= 0 ⇒ c2 = 0

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
não há autovalores negativos.

Para λ > 0 : λ ≡ k2 (k > 0):

ψ(x) = c1 cos kx+ c2 senkx .

ψ(0) = c1 = 0 ⇒ ψ(x) = c2 senkx .

ψ(ℓ) = c2 senkℓ = 0
(∗)
⇒ senkℓ = 0 ⇒ kℓ = nπ ⇒ k = kn = nπ/ℓ (n

(†)
= 1, 2, 3 · · · ) .

(∗) admitimos c2 ̸= 0 para viabilizar solução ψ(x) não nula
(†) excluímos n = ···−2,−1 e 0 , pois k> 0

Portanto, λ = λn = k2n = (nπ/ℓ)2 (n = 1, 2, 3 · · · ) são os autovalores, e ψn(x) = c2n sen(nπx/ℓ) são
as autofunções correspondentes, nas quais as constantes c2n podem ser ignoradas, pois basta tomar
uma única autofunção do autoespaço de λn. Estão assim justificados os resultados em (6.1).

Note que obtemos uma infinidade de autovalores λn (n = 1, 2, 3 · · · ), todos de multiplicidade
geométrica igual a 1, pois a cada um desses autovalores só corresponde uma autofunção ψn(x) =
sen(nπx/ℓ) (cada autoespaço Sλn é de dimensão unitária). A infinidade de autovalores neste
problema é uma ocorrência característica de operadores em espaços vetoriais de dimensão infinita,
tal qual o espaço das funções.

(‡)Outros dois poderiam ser considerados sem muita dificuldade: um com as condições de fronteira ψ(0) = ψ′(ℓ) = 0
e o outro com ψ′(0) = ψ(ℓ) = 0, mas estes casos são mais bem abordados quando se estudam as séries de Fourier
generalizadas, que está fora dos objetivos desta disciplina.
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• Resolução do Prob. (ii):

Para λ = 0:

ψ(x) = c1 + c2x ⇒ ψ′(x) = c2
ψ′(0) = c2 = 0
ψ′(ℓ) = c2 = 0

〉
⇒

ψ(x) = c1 é solução não nula,
pois c1 permanece arbitrário;
logo, zero é autovalor.

Para λ < 0 : λ ≡ −k2 (k > 0):

ψ(x) = c1 cosh kx+ c2 senhkx
ψ′(x) = c1k senhkx+ c2k cosh kx
ψ′(0) = c2k = 0 ⇒ c2 = 0 (pois k 6= 0)
ψ′(ℓ) = c1 k senhkℓ︸ ︷︷ ︸

̸=0

= 0 ⇒ c1 = 0

〉
⇒

{
ψ(x) = 0 (∀x) é a única solução;
não há autovalores negativos.

Para λ > 0 : λ ≡ k2 (k > 0):

ψ(x) = c1 cos kx+ c2 senkx .

ψ′(x) = −c1k senkx+ c2k cos kx .

ψ′(0) = c2k = 0
k ̸=0−−−−−→ c2 = 0 ⇒ ψ(x) = c1 cos kx .

ψ′(ℓ) = −c1k senkℓ = 0
(∗)
⇒ senkℓ = 0 ⇒ kℓ = nπ ⇒ k = kn = nπ/ℓ (n

(†)
= 1, 2, 3 · · · ) .

(∗) admitimos c1 ̸= 0 para viabilizar solução ψ(x) não nula
(†) excluímos n = ···−2,−1 e 0 , pois k> 0

Portanto, λ = λn = k2n = (nπ/ℓ)2 (n = 0, 1, 2 · · · ) são os autovalores, e ψn(x) = cos(nπx/ℓ)
(ignorando-se quaisquer constantes multiplicativas) são as autofunções correspondentes. Note que
nessa resposta está incluído o autovalor nulo λ0 = 0 e a autofunção correspondente ψ0(x) = 1 (c1 foi
ignorado), associados a n = 0. Estão assim justificados os resultados em (6.2).

• Resolução do Prob. (iii):

Para λ = 0 :

ψ(x) = c1 + c2x .

ψ(x+ 2ℓ) = ψ(x) ⇒ c1 + c2(x+ 2ℓ) = c1 + c2x ⇒ c22ℓ = 0 ⇒ c2 = 0 .

ψ(x) = c1 é solução não nula, pois c1 permanece arbitrário, existindo, portanto, o autovalor zero.

Para λ < 0 : λ ≡ −k2 (k > 0) :

ψ(x) = c1 cosh kx+ c2 senhkx .

ψ(x+ 2ℓ) = ψ(x) ⇒ c1 cosh
[
k (x+ 2ℓ)

]
+ c2 senh

[
k (x+ 2ℓ)

]
= c1 cosh(k x) + c2 senh(k x) .

c1 cosh(k x) cosh(k 2ℓ) + c1 senh(k x) senh(k 2ℓ) + c2 senh(k x) cosh(k 2ℓ)

+ c2 senh(k 2ℓ) cosh(k x) = c1 cosh(k x) + c2 senh(k x) .

[

deve anular-se︷ ︸︸ ︷
c1 cosh(k 2ℓ) + c2 senh(k 2ℓ)− c1 ] cosh(k x)+

[ c1 senh(k 2ℓ) + c2 cosh(k 2ℓ)− c2︸ ︷︷ ︸
deve anular-se

] senh(k x) = 0 ∀x .

{
[cosh(k 2ℓ)− 1] c1 + [ senh(k 2ℓ)] c2 = 0

[ senh(k 2ℓ)] c1 + [ cosh(k 2ℓ)− 1] c2 = 0 .
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Esse é um sistema algébrico homogêneo de incógnitas c1 e c2, cujo determinante deve anular-se
para existirem soluções distintas da solução trivial c1 = c2 = 0(∗). Então obtemos∣∣∣∣ cosh(k 2ℓ)− 1 senh(k 2ℓ)

senh(k 2ℓ) cosh(k 2ℓ)− 1

∣∣∣∣ = [cosh(k 2ℓ)− 1]2 − senh2(k 2ℓ) = 0

⇒ cosh2(k 2ℓ)− 2 cosh(k 2ℓ) + 1− senh2(k 2ℓ) = cosh2(k 2ℓ)− senh2(k 2ℓ)︸ ︷︷ ︸
1

+1− 2 cosh(k 2ℓ) = 0

⇒ 2− 2 cosh(k 2ℓ) = 0 ⇒ cosh(k 2ℓ) = 1 ⇒ k 2ℓ = 0 ⇒ k = 0 : contra nossa hipótese

⇒ não há autovalores negativos .

Para λ > 0 : λ ≡ k2 (k > 0) :

(⋆) ψ(x) = c1 cos kx+ c2 senkx .

ψ(x+ 2ℓ) = ψ(x) ⇒ c1 cos
[
k (x+ 2ℓ)

]
+ c2 sen

[
k (x+ 2ℓ)

]
= c1 cos(k x) + c2 sen(k x) .

c1 cos(k x) cos(k 2ℓ)− c1 sen(k x) sen(k 2ℓ) + c2 sen(k x) cos(k 2ℓ)

+ c2 sen(k 2ℓ) cos(k x) = c1 cos(k x) + c2 sen(k x) .

[

deve anular-se︷ ︸︸ ︷
c1 cos(k 2ℓ) + c2 sen(k 2ℓ)− c1 ] cos(k x)+

[−c1 sen(k 2ℓ) + c2 cos(k 2ℓ)− c2︸ ︷︷ ︸
deve anular-se

] sen(k x) = 0 ∀x .

(⋆⋆)

{
[cos(k 2ℓ)− 1] c1 + [ sen(k 2ℓ)] c2 = 0

−[ sen(k 2ℓ)] c1 + [ cos(k 2ℓ)− 1] c2 = 0 .

Novamente igualamos a zero o determinante desse sistema, obtendo

[cos(k 2ℓ)− 1]2 + sen2(k 2ℓ) = 0 ⇒ cos2(k 2ℓ)− 2 cos(k 2ℓ) + 1 + sen2(k 2ℓ) = 0

⇒ cos(k 2ℓ) = 1 ⇒ k 2ℓ = 2nπ ⇒ k = kn = nπ/ℓ (n = 1, 2, 3 · · · ) .

Observe que, com k = kn, as equações do sistema (⋆⋆) tornam-se a identidade 0 = 0, significando
que permanecem arbitrárias as constantes c1 e c2 em (⋆) . Logo, ψn(x) = c1n cos knx + c2n senknx
(v. Observação [#] abaixo) expressa uma autofunção genérica correspondente ao autovalor λn = k2n =
(nπ/ℓ)2 (n = 1, 2, 3 · · · ).

A cada autovalor λn = k2n = (nπ/ℓ)2 (n = 1, 2, 3 · · · ) corresponde o autoespaço Sλn
formado

pelas autofunções ψn(x) = c1n cos knx + c2n senknx, de dimensão 2, no qual podemos escolher
ψn1(x) = cos knx e ψn2(x) = senknx como "as duas" autofunções associadas a λn.

Já ao autovalor λ0 = 0 corresponde o autoespaço Sλ0
formado pelas autofunções ψ0(x) = c10,

de dimensão 1, no qual escolhemos ψ0(x) = 1 como a autofunção associada.

Os resultados em (6.3) estão comprovados.

Observação [#] : Para cada autoespaço Sλn ser gerado por todas as combinações lineares do par
de autofunções ψn1(x) e ψn1(x), devemos empregar, em cada autoespaço, duas constantes realmente
arbitrárias, o que não aconteceria se escrevêssemos que uma autofunção qualquer de Sλn

fosse dada
pela combinação linear ψn(x) = c1 cos knx+ c1 senknx, usando as mesmas constantes c1 e c2 (em vez
de c1n c2n) em todos autoespaços.

(∗) Um sistema homogêneo de n equações lineares em n incógnitas A x = 0 [onde A é a matriz quadrada dos coeficientes,

x é a matriz coluna das incógnitas, e 0 é a matriz coluna nula] admite solução não nula se e somente se detA = 0. (Se

detA ̸= 0 , só há a solução nula x = 0 .)
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6.2 Equação do Calor Unidimensional
A equação do calor é

∇2T (r⃗, t) =
1

α

∂T

∂t
. (6.4)

A grandeza relevante a se calcular é a temperatura T (r⃗, t), no instante t, no ponto r⃗ de um objeto cons-
tituído de um material de difusividade térmica α constante. Nessa equação, ∇2T denota o laplaciano
de T [v. subseção 6.7.1].

Nosso objetivo aqui é calcular a temperatura T (x, t) numa barra sem fontes ou sorvedouros de calor
em seu interior, paralela ao eixo x(∗), entre as abscissas x = 0 e x = ℓ, sendo conhecida a temperatura
inicial T0(x, 0), que não se anula identicamente(†), o que é formulado como segue:

∂2T

∂x2
(x, t) =

1

α

∂T

∂t
, x ∈ (0, ℓ) , t ∈ (0,∞)

T (x, 0) = T0(x) , x ∈ (0, ℓ) ,

(6.5)

onde escrevemos ∇2T = d2T/dx2, porque T só varia ao longo do eixo x. Essa formulação deve
ser complementada pelas condições de fronteira, sendo essas que distinguirão os problemas que são
resolvidos nos exemplos a seguir.

Exemplo 6.1. Extremos da barra mantidos em 0◦.

0x = x =  x

0° 0° 
Nesse caso, as condições de fronteira são dadas por

T (0, t) = T (ℓ, t) = 0 , t ∈ (0,∞) . (6.6)

Sob essas condições (homogêneas), a equação do calor em
(6.5) admite a solução trivial T (x, t) ≡ 0 (identicamente nula), mas é fisicamente óbvio que esta não
pode ser a solução do problema em questão, pois a temperatura na barra é, inicialmente, dada pela
função não nula T0(x). O que se espera é que a temperatura tenda a zero assintoticamente no tempo
(t→∞) à medida que a barra entre em equilíbrio térmico com os reservatório térmicos a 0° em contato
com seus extremos. Alude-se várias vezes abaixo ao fato de que só se aceita solução T (x, t) 6= 0 .

a) Separação de variáveis:

Admitamos que a solução possa ser assim expressa:

T (x, t) = ψ(x)τ(t) , (6.7)

isto é, pelo produto de uma função só de x por outra função só de t (a parte espacial e a parte temporal
da solução, respectivamente). Substituindo (6.7) em (6.5), obtemos

∂2

∂x2
[
ψ(x)τ(t)

]
=

1

α

∂

∂t

[
ψ(x)τ(t)

]
⇒ ψ ′′τ =

1

α
ψτ ′

⇒ ψ ′′

ψ
=

τ ′

ατ
= −λ (constante) , (6.8)

onde ψ ′′ = d2ψ/dx2 e τ ′ = dτ/dt. A conclusão de que ambos os membros da equação acima é constante
segue desse raciocínio: Tal equação apresenta a peculiaridade de que o primeiro membro só depende
de x e o segundo, só de t. Logo, se t for mantido fixo, o segundo membro mantém-se constante e,
por causa da igualdade dos membros, também o primeiro permanece constante, mesmo que x varie,
significando que o primeiro membro não depende de x. Similarmente, fixando x, mantemos constantes
ambos os membros, ainda que t varie no segundo membro, que não deve depender de t, portanto.

Chamamos λ de constante de separação [que, na equação acima, encontra-se precedida de um sinal
negativo, sem qualquer perda de generalidade, por mera questão de conveniência notacional: v. a Nota

(∗)Admite-se que a temperatura na barra só varie longitudinalmente, isto é, com a abscissa, o que é razoável se a
superfície lateral da barra estiver isolada termicamente e um equilíbrio térmico já tiver se estabelecido transversalmente.

(†)Dizemos que uma função f(x) se anula identicamente se ela for nula em todo seu domínio. Usamos as notações
f(x) ≡ 0 e f(x) ̸≡ 0 para denotar que f(x) se anula identicamente e que f(x) não se anula identicamente, respectivamente.
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na pág. 107]. De (6.8) resultam duas EDOs, uma, para a parte espacial da solução, e a outra, para a
parte temporal: {

ψ ′′ + λψ(x) = 0 .................... EDO espacial

τ ′ + λατ(t) = 0 .............................. EDO temporal .
(6.9)

b) Problema de autovalor para a parte espacial:

Substituindo (6.7) nas condições de fronteira dadas por (6.6), obtemos

T (0, t) = ψ(0) τ(t)︸︷︷︸
̸≡0

= 0 e T (0, t) = ψ(ℓ) τ(t)︸︷︷︸
̸≡0

= 0 .

Como essas equações devem valer para t > 0, e, conforme indicado acima, a parte temporal não
pode anular-se identicamente [pois, caso contrário, obteríamos T (x, t) = ψ(x)τ(t) ≡ 0, a indesejada
solução trivial], constatamos que ψ(x) deve satisfazer as condições de fronteira ψ(0) = 0 e ψ(ℓ) = 0
(as mesmas impostas à temperatura T ). A parte espacial da solução deve, portanto, ser solução do
seguinte problema de valor de fronteira [v. o rodapé (†) na pág. 97] :

ψ ′′ + λψ(x) = 0 , x ∈ (0, ℓ) , ψ(0) = ψ(ℓ) = 0 . (6.10)

Este problema, por ser homogêneo, admite a solução trivial ψ(x) ≡ 0. Mas ela deve ser rejeitada,
pois, novamente, se ψ(x) ≡ 0 então T (x, t) = ψ(x)τ(t) ≡ 0. Para determinar uma solução de (6.10)
distinta da trivial, dispomos da constante de separação, introduzida sem qualquer restrição. A ela
podemos, portanto, impor condições que nos interessem; no caso, exigimos que λ apresente apenas os
valores (os ditos autovalores) que acarretem soluções do problema em (6.10) distintas da trivial (as
autofunções). Temos assim caracterizado um problema de autovalor; (6.10) é exatamente um dos que
já resolvemos: v. (6.1). Portanto, os autovalores e autofunções são

λ = λn =
(nπ
ℓ

)2
←→ ψn(x) = sen

nπx

ℓ
(n = 1, 2, 3 · · · ) .

c) A parte temporal correspondente ao autovalor λ = λn :

Resolvendo a EDO temporal em (6.9) com λ = λn = (nπ/ℓ)2, obtemos

τ ′
n + λnατn(t) = 0 ⇒ τn(t) = cn e

−λnαt , ou τn(t) = e−(
nπ
ℓ )

2
αt ,

onde ignoramos a constante de integração cn, porque, mais adiante, ela se apresentaria multiplicada
desnecessariamente por outra constante arbitrária, Bn, na formação da solução mais geral (v. item (e)
abaixo).

d) A solução Tn(x, t) correspondente ao autovalor λ = λn :

Tn(x, t) = ψn(x)τn(t) = sen
nπx

ℓ
e−(

nπ
ℓ )

2
αt .

e) A solução mais geral:

Ao admitirmos uma solução na forma de (6.7), obtivemos uma infinidade delas,
{
Tn(x, t)

}∞
n=1

,
linearmente independentes. Logo, pelo princípio da superposição, uma combinação linear delas é
também solução; na verdade, trata-se da solução mais geral do problema sem levar em conta a condição
inicial:

T (x, t) =

∞∑
n=1

Bn sen
nπx

ℓ
e−(

nπ
ℓ )

2
αt ■ (6.11)

Nota: Acima, chamamos de "solução mais geral" a solução que se obtém na forma de uma
série infinita pelo método de separação de variáveis e que satisfaz todas as condições de
fronteira homogêneas. Por simplicidade, daqui por diante, passaremos a designá-la pela
terminologia mais simples e mais usada solução geral, com a ressalva de que não se provou
que a solução obtida pelo procedimento apresentado é realmente a solução geral. Tal
solução se torna a solução específica do problema físico quando os coeficientes da série são
determinados a partir das condições não homogêneas, tais como, por exemplo, as condições
iniciais, que é o próximo passo dessa resolução.
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f) Cálculo dos coeficientes na solução geral em (6.11):

Usando a condição inicial, determinamos Bn :

T (x, 0) =

∞∑
n=1

Bn sen
nπx

ℓ
= T0(x) , com x ∈ (0, ℓ) ,

onde vemos que Bn são os coeficientes da já estudada série de Fourier de T0(x) em senos. Portanto,
de acordo com (5.13b), temos que:

Bn =
2

ℓ

∫ ℓ

0

T0(x) sen
nπx

ℓ
dx ■ (6.12)

g) Observações:

i) A solução do problema de temperatura que acabamos de resolver consiste na série em (6.11) com
os coeficientes dados por (6.12) (são as equações finalizadas por quadrículas pretas, que serão usadas
também nos problemas seguintes com essa intenção).

ii) Note que lim
t→∞

T (x, t) = 0, como há de ser, pois a barra inteira tende a ficar em equilíbrio térmico
com os seus extremos mantidos em 0◦.

Exemplo 6.2. Extremos da barra isolados termicamente.

0x = x =  x 

isolados termicamente 

Nesse caso, as condições de fronteira são dadas por(∗)

∂T

∂x
(0+, t) =

∂T

∂x
(ℓ−, t) = 0 , t ∈ (0,∞) . (6.13)

Com a separação de variáveis T (x, t) = ψ(x)τ(t), obte-
mos novamente a equação (6.8) e as mesmas EDOs em (6.9).

Nada impede que a EDO temporal seja a primeira a ser resolvida, obtendo-se

τλ(t) = Aλ e
−λαt em particular−−−−−−−−−−→

se λ = 0
τ0(t) = A0 , (6.14)

apesar de λ ainda se encontrar indeterminado. Os valores dessa constante tornam-se definidos
resolvendo-se o problema de autovalor

ψ ′′ + λψ(x) = 0 , x ∈ (0, ℓ) , ψ ′(0+) = ψ ′(ℓ−) = 0 , (6.15)

formado pela EDO espacial e por condições de fronteira semelhantes às impostas a T (a exigência de
que a derivada em relação a x se anule nos extremos), que são deduzidas de modo análogo àquele no
item (b) do Exemplo 6.1:

∂T

∂x
(x, t) = ψ ′(x) τ(t)︸︷︷︸

̸≡0

= 0 ⇒ ψ ′(x) = 0 se x = 0 ou x = ℓ .

O problema de autovalor em (6.15) é um dos que já resolvemos: v. (6.2). Portanto,

λ = λn =
(nπ
ℓ

)2
←→ ψn(x) = cos

nπx

ℓ
(n = 1, 2, 3 · · · ) e λ0 = 0 ←→ ψ0(x) = 1 . (6.16)

O problema de calor em questão, sem considerar a condição inicial, apresenta então a infinidade
de soluções,

Tn(x, t) = ψn(x)τn(t) = cos
nπx

ℓ
e−(

nπ
ℓ )

2
αt (n = 1, 2 · · · ) e T0(x, t) = ψ0(x)τ0(t) = 1 ,

sendo a solução geral a combinação linear delas:

T (x, t) = A0 T0(x, t) +

∞∑
n=1

An Tn(x, t) = A0 +

∞∑
n=1

An cos
nπx

ℓ
e−(

nπ
ℓ )

2
αt ■ (6.17)

(∗) Essa condição de fronteira, brevemente explicada, é consequência da lei de Fourier, pela qual, num ponto do sistema,
o fluxo de calor é proporcional ao gradiente de temperatura, igual a ∇T = i⃗ ∂T/∂x nesse nosso problema unidimensional.
Assim, se a fronteira é isolada termicamente, então não há fluxo de calor através dela e, portanto, ∂T/∂x = 0 nela.
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Pela imposição da condição inicial, determinamos as constantes An:

T (x, 0) =
2A0

2
+

∞∑
n=1

An cos
nπx

ℓ
= T0(x) , com x ∈ (0, ℓ) ,

onde vemos que 2A0, A1 · · · são os coeficientes da já estudada série de Fourier de T0(x) em cossenos;
usando (5.13a), obtemos

2A0 =
2

ℓ

∫ ℓ

0

T0(x)dx e An =
2

ℓ

∫ ℓ

0

T0(x) cos
nπx

ℓ
dx ■ (6.18)

A solução do problema é dada por (6.17) e (6.18).
Observe que

lim
t→∞

T (x, t) =
A0

2
=

1

ℓ

∫ ℓ

0

T0(x)dx ,

que é a média da temperatura inicial na barra, como deve ser, pois a barra, sendo isolada termicamente,
retém todo o calor, e este tende a nela se distribuir uniformemente com o passar do tempo.

6.3 Equação da Onda Unidimensional
Nesta seção resolvemos problemas de corda vibrante, nos quais o

objetivo principal é o cálculo da forma da corda num instante arbitrá-
rio. A corda geralmente encontra-se vibrando, permitindo-se na for-
mulação, porém, o caso excepcional de apresentar-se estática, quando
então ela se encontra estirada ao longo do eixo horizontal x entre as
abscissas x = 0 e x = ℓ. Sua forma pode ser descrita por uma função
y(x, t) (v. figura à direita), que fornece, no instante t e na abscissa x,
a deflexão y da corda em relação ao eixo x. Admitimos que a corda encontra-se livre de qualquer força
externa sobre ela, sendo conhecida a sua forma inicial y0(x) e a sua distribuição inicial de velocidades
verticais(∗) v0(x), funções que, por hipótese, não se anulam identicamente ao mesmo tempo. Note que
tanto y(x, t) quanto v(x, t) = ∂y/∂t podem ter valores positivos, nulo ou negativos, pois, em relação
ao eixo x, ela pode se encontrar acima (y > 0) ou abaixo (y < 0), e um ponto seu qualquer pode subir
(v > 0) ou descer (v < 0).

Esse problema é formulado como segue:
∂2y

∂x2
(x, t) =

1

c2
∂2y

∂t2
, x ∈ (0, ℓ) , t ∈ (0,∞) , c > 0

y(x, 0) = y0(x) e
∂y

∂t
(x, 0) = v0(x) para x ∈ (0, ℓ) .

(6.19)

Essa formulação deve ser complementada pelas condições de fronteira, sendo essas que distinguirão os
problemas que são resolvidos nos exemplos.

Exemplo 6.3. Extremos da corda presos à mesma altura y = 0.

x

y 

 0
0( )y x

0( )v x

(instante 0t = )
Nesse caso, as condições de fronteira são dadas por

y(0, t) = y(ℓ, t) = 0 , t ∈ (0,∞) . (6.20)

Com a separação de variáveis y(x, t) = ψ(x)τ(t), a equação
da onda acima toma a forma

∂2

∂x2
[
ψ(x)τ(t)

]
=

1

c2
∂2

∂t2
[
ψ(x)τ(t)

]
⇒ ψ ′′τ =

1

c2
ψτ ′′

⇒ ψ ′′

ψ
=

τ ′′

c2τ
= −λ (constante) ⇒

{
ψ ′′ + λψ(x) = 0
τ ′′ + λc2τ(t) = 0 ,

(6.21)

pois, pelo modo já explicado nos exemplos anteriores, substituindo y(x, t) = ψ(x)τ(t) em (6.20),
deduzimos as condições de fronteira para ψ(x) : ψ(0) = ψ(ℓ) = 0. Estas, juntamente com a EDO

(∗)Considera-se apenas corda com ondulações sem movimentação horizontal.
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espacial separada acima, formam o mesmo problema de autovalor do Exemplo 6.1, formulado em (6.10),
cujas soluções são os autovalores λn = (nπ/ℓ)2 e as respectivas autofunções ψn(x) = sen(nπx/ℓ), com
n = 1, 2, 3 · · · .

A EDO temporal acima com λ = λn = (nπ/ℓ)2, isto é,

τ ′′n +
(nπc

ℓ

)2
τn(t) = 0 , (6.22)

tem a seguinte solução, bem conhecida pelos que já aprenderam a resolver EDOs lineares de coeficientes
constantes:

τn(t) = An cos
nπct

ℓ
+Bn sen

nπct

ℓ
. (6.23)

A solução geral é então

y(x, t) =

∞∑
n=1

(
An cos

nπct

ℓ
+Bn sen

nπct

ℓ

)
sen

nπx

ℓ
■ (6.24)

Necessitamos da distribuição de velocidades na corda, que é a derivada desse resultado em relação a t :

v(x, t) =
∂y

∂t
(x, t) =

∞∑
n=1

(
−An

nπc

ℓ
sen

nπct

ℓ
+Bn

nπct

ℓ
cos

nπct

ℓ

)
sen

nπx

ℓ
.

Determinamos An e Bn usando as condições iniciais, a partir das quais obtemos as equações

y(x, 0) =

∞∑
n=1

An sen
nπx

ℓ
= y0(x)

e

∂y

∂t
(x, 0) =

∞∑
n=1

nπc

ℓ
Bn sen

nπx

ℓ
= v0(x) .

Vemos que An e (nπc/ℓ)Bn são respectivamente os coeficientes da série de Fourier em senos de y0(x)
e v0(x), com x em (0, ℓ); logo,

An =
2

ℓ

∫ ℓ

0

y0(x) sen
nπx

ℓ
dx e

nπc

ℓ
Bn =

2

ℓ

∫ ℓ

0

v0(x) sen
nπx

ℓ
dx ■ (6.25)

Essas equações determinam as expressões que An e Bn devem ter para que (6.24) forneça a solução do
problema de onda dado por (6.19).

Exemplo 6.4. Os extremos da corda têm anéis que podem deslizar sem atrito em hastes
verticais em x = 0 e x = ℓ.

y 

inclinação 
nula 

( , )y x t

0x = x =  

Nesse caso, as condições de fronteira são(∗)

∂y

∂x
(0, t) =

∂y

∂x
(ℓ, t) = 0 , t ∈ (0,∞) . (6.26)

As EDOs espacial e temporal continuam aque-
las em (6.21), mas as condições de fronteira para
ψ(x), agora deduzidas de (6.26), passam a ser
ψ ′(0) = ψ ′(ℓ) = 0. Vemos, assim, que o problema
de autovalor que fornece ψ(x) é aquele em (6.15),

cuja solução, já vimos, consiste nos autovalores e autofunções em (6.16).
A parte temporal correspondente ao autovalor λn = (nπ/ℓ)2 também continua sendo dada por

(6.23), exceto se n = 0; neste caso, a solução da EDO temporal com λ = λ0 = 0, isto é, da equação
τ0

′′ = 0, é dada por
τ0(t) = A0 +B0 t . (6.27)

(∗)Não fornecemos os detalhes de como deduzir essas condições de fronteira, mas elas seguem intuitivamente do fato de
que cada arruela, não podendo ser freada pela haste, não tem como ficar abaixo ou acima da porção da corda vizinha a
ela, ou seja, essa porção mantém-se na horizontal (v. a figura): inclinação nula significa derivada em relação a x nula.
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A solução geral é então

y(x, t) = τ0(t)ψ0(x) +

∞∑
n=1

τn(t)ψn(x) ,

ou seja,

y(x, t) = A0 +B0 t+

∞∑
n=1

(
An cos

nπct

ℓ
+Bn sen

nπct

ℓ

)
cos

nπx

ℓ
■ (6.28)

Usando as condições iniciais, obtemos as seguintes séries de Fourier em cossenos em (0, ℓ):

y(x, 0) =
2A0

2
+

∞∑
n=1

An cos
nπx

ℓ
= y0(x)

e

∂y

∂t
(x, 0) =

2B0

2
+

∞∑
n=1

nπc

ℓ
Bn cos

nπx

ℓ
= v0(x) .

Logo,

2A0 =
2

ℓ

∫ ℓ

0

y0(x)dx e An =
2

ℓ

∫ ℓ

0

y0(x) cos
nπx

ℓ
dx , (6.29)

bem como,

2B0 =
2

ℓ

∫ ℓ

0

v0(x)dx e
nπc

ℓ
Bn =

2

ℓ

∫ ℓ

0

v0(x) cos
nπx

ℓ
dx ■ (6.30)

6.4 Equação de Laplace
A equação de Laplace tem a seguinte forma:

∇2u(r⃗ ) = 0 , r⃗ ∈ D ; (6.31)

em palavras: o laplaciano da função u [v. subseção 6.7.1] deve se anular em
todo ponto r⃗ do domínio D do problema. Neste texto consideramos apenas
problemas em que D é uma parte do plano xy (problemas bidimensionais).
Quanto às coordenadas a se empregar na representação de r⃗, as indicadas
para os problemas considerados são as cartesianas x e y ou as polares r e θ
(v. figura à direita), conforme a geometria do problema.

Nos problemas que seguem resolvidos não há menção a qualquer aplicação física. Mas a função
u(r⃗ ) poderia ser a temperatura a se calcular numa placa ocupando a região D do plano xy e cujas
bordas se encontram submetidas a temperaturas conhecidas. Tal problema é bidimensional, porque se
admite um equilíbrio térmico transversal (ao longo do eixo z), e estacionário (sem variação temporal).
Para entender por que (6.31) modela a temperatura estacionária T (r⃗ ) numa placa, basta igualar a
derivada temporal ∂T/∂t a zero na equação do calor em (6.4), uma vez que a temperatura não varia
com o tempo.

6.4.1 Equação de Laplace em Domínios Retangulares
Nesta subseção resolvemos a equação de Laplace em duas coordenadas cartesianas,

∇2(x, y) =
∂2u

∂x2
+
∂2u

∂y2
= 0 , x ∈ (0, ℓ) , y ∈ (0, h) , (6.32)

sob diversas condições de fronteira, que são fornecidas em cada exemplo que segue.
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Exemplo 6.5. u(0, y) = u(ℓ, y) = u(x, 0) = 0 , u(x, h) = f(x) .

Substituindo a forma separada que se admite para a solução,

u(x, y) = X(x)Y (y) ,

nas condições de fronteira homogêneas, e lembrando que X(x) 6≡ 0
e Y (y) 6≡ 0, obtemos as condições de fronteira para X(x) e Y (y):

u(0, y) = X(0)Y (y) = 0
u(ℓ, y) = X(ℓ)Y (y) = 0

〉
⇒ X(0) = X(ℓ) = 0 ; (6.33)

u(x, 0) = X(x)Y (0) = 0 ⇒ Y (0) = 0 . (6.34)

Substituindo agora aquela forma separada na equação de Laplace, em (6.32), obtemos( ∂2
∂x2

+
∂2

∂y2

)
(XY ) = X ′′Y +XY ′′ = 0

÷XY
=⇒ X ′′

X︸︷︷︸
≡ −λ

+
Y ′′

Y︸︷︷︸
=λ

= 0 ,

onde, na última equação, podemos concluir que ambos os termos aditivos são constantes, iguais em
módulo e simétricas; digamos ±λ.

Nota (padronização da equação diferencial de um problema de autovalor): Há uma razão
para igualar o primeiro termo acima à constante −λ (o que leva o segundo termo a ser igual
a λ): Sempre escreveremos a equação diferencial de um problema de autovalor na forma
usada no Problema de Sturm-Liouville (citado no primeiro parágrafo da seção 6.1), em que
o parâmetro λ é precedido pelo sinal "+". No caso do presente problema, sabemos que
X(x), e não Y (y), provém de um problema de autovalor, porque, de acordo com (6.33), as
condições que X(x) deve satisfazer em ambos extremos do intervalo (0, ℓ) são homogêneas,
o que torna homogêneo [v. a Nota na pág. 43] o problema a se resolver para determinar
X(x).

O problema de autovalor que se obtém para X(x) é o já resolvido em (6.1), o que nos permite
escrever {

X ′′ + λX(x) = 0 , x ∈ (0, ℓ)
X(0) = X(ℓ) = 0

⇒
{
λn = (nπ/ℓ)2 (n = 1, 2, · · · )
Xn(x) = sen(nπx/ℓ) .

(6.35)

Já para determinar Y (y), temos que resolver o problema formado pela EDO Y ′′ − λY (y) = 0 com
λ igual aos autovalores λn em (6.35) e pela condição de fronteira em (6.34), isto é, o problema

Y ′′
n − (nπ/ℓ)2Yn(y) = 0 , y ∈ (0, h) , Yn(0) = 0 , (6.36)

uma tarefa simples:

Yn(y) = An cosh(nπy/ℓ) +Bn senh(nπy/ℓ) ;

Yn(0) = An = 0 ;

Yn(y) = Bn senh(nπy/ℓ) .

Determinadas as expressões de Xn(x) e Yn(x), podemos formar a solução geral, dada pela combi-
nação linear das soluções un(x, y) = Xn(x)Yn(x) (n = 1, 2, 3 · · · ):

u(x, y) =

∞∑
n=1

Bn senh
nπy

ℓ
sen

nπx

ℓ
■ (6.37)

Para obter a solução específica do problema, devemos calcular as constantes Bn, o que é feito
impondo a condição de fronteira não homogênea (ainda não usada):

u(x, h) =

∞∑
n=1

[
Bn senh

nπh

ℓ

]
sen

nπx

ℓ
= f(x) .
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Esta equação mostra que o termo entre colchetes é o n-ésimo coeficiente da série de Fourier em senos
de f(x); usando (5.13b) para calculá-los, determinamos as constantes Bn, finalizando a resolução do
problema:

Bn senh
nπh

ℓ
=

2

ℓ

∫ ℓ

0

f(x) sen
nπx

ℓ
dx ⇒ Bn =

2

ℓ senh
nπh

ℓ

∫ ℓ

0

f(x) sen
nπx

ℓ
dx ■ (6.38)

Exemplo 6.6. Com h→∞ , u(0, y) = u(ℓ, y) = 0 , u(x, 0) = f(x) .

As condições de fronteiras homogêneas nas bordas verticais são
as mesmas do exemplo anterior, ocorrendo, portanto, o mesmo pro-
blema de autovalor para X(x), e valendo os resultados em (6.35):
λn = (nπ/ℓ)2 (n = 1, 2, · · · ) e Xn(x) = sen(nπx/ℓ) . Mas o problema
para Y (y), em vez daquele em (6.36), é agora o seguinte:

Y ′′
n − (nπ/ℓ)2Yn(y) = 0 , y ∈ (0,∞) .

Nesse caso, y é ilimitado, sendo conveniente expressar a solução geral
dessa EDO em termos das funções exponenciais, ao invés das hiperbóli-
cas [v. subseção 6.7.2], isto é,

Yn(y) = An e
nπy/ℓ +Bn e

−nπy/ℓ ,

porque torna-se mais simples evitar soluções infinitas, bastando, para que lim
y→∞

Y(y) seja finito, fazer

An = 0, obtendo-se Yn(y) = Bn e
−nπy/ℓ.

Assim, a solução geral da equação de Laplace satisfazendo as condições de fronteira homogêneas e
de finitude é

u(x, y) =

∞∑
n=1

Xn(x)Yn(y) =

∞∑
n=1

Bn e
−nπy/ℓ sen

nπx

ℓ
■ (6.39)

Finalmente, impondo a condição de fronteira não homogênea,

u(x, 0) =

∞∑
n=1

Bn sen
nπx

ℓ
= f(x) ,

determinamos as constantes Bn como sendo os coeficientes da série de Fourier em senos de f(x) :

Bn =
2

ℓ

∫ ℓ

0

f(x) sen
nπx

ℓ
dx ■

Exemplo 6.7.
∂u

∂y
(x, 0) =

∂u

∂y
(x, h) = u(ℓ, y) = 0 , u(0, y) = f(y) .

Neste exemplo, são as bordas horizontais que estão submeti-
das a condições de fronteira homogêneas. Isso indica a ocorrência
de um problema de autovalor para Y (y), e não em X(x), como
nos dois exemplos anteriores.

Substituindo u(x, y) = X(x)Y (y) primeiramente nas con-
dições de fronteira homogêneas e lembrando que X(x) 6≡ 0 e
Y (y) 6≡ 0, obtemos:

∂u

∂y
(x, 0) = X(x)Y ′(y) = 0

∂u

∂y
(x, h) = X(x)Y ′(h) = 0

〉
⇒ Y ′(0) = Y ′(h) = 0 ;

u(ℓ, y) = X(ℓ)Y (y) = 0 ⇒ X(ℓ) = 0 .

Separemos agora as variáveis na equação de Laplace:( ∂2
∂x2

+
∂2

∂y2

)
(XY ) = X ′′Y +XY ′′ = 0

÷XY
=⇒ X ′′

X︸︷︷︸
λ

+
Y ′′

Y︸︷︷︸
≡ −λ

= 0 .
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onde, dessa vez, é a EDO para Y (y) que é separada com −λ em conformidade com a Nota no Exemplo
6.5. Temos então o problema de autovalor

Y ′′ + λY (y) = 0 , y ∈ (0, h) , Y ′(0) = Y ′(h) = 0 ,

que é aquele em (6.2); logo, os autovalores e autovetores são

λ0 = 0 ↔ Y0(y) = 1 , λn = (nπ/h)2 ↔ Yn(y) = cos(nπy/h) (n = 1, 2, 3 · · · ) .

É a vez de resolver a EDO para X(x) com λ = λn (n ≥ 0), ou melhor, para Xn(x), sob a condição
de fronteira deduzida acima:

X ′′
n − (nπ/h)2Xn(x) = 0 , x ∈ (0, ℓ) , Xn(ℓ) = 0 .

Para λ = λ0 = 0:

X ′′
0 (x) = 0 ⇒ X0(x) = A0 +B0x .

X0(ℓ) = A0 +B0ℓ = 0 ⇒ A0 = −B0ℓ

〉
⇒ X0(x) = B0(x− ℓ) .

Para λ = λn = (nπ/h)2 :

X ′′
n −

(nπ
h

)2
Xn(x) = 0 ⇒ Xn(x) = An cosh

nπx

h
+Bn senh

nπx

h
. (i)

Xn(ℓ) = An cosh
nπℓ

h
+Bn senh

nπℓ

h
= 0 ⇒ An = −Bn senh(nπℓ/h)

cosh(nπℓ/h)
. (ii)

Subst. (ii) em (i) :

Xn(x) =

[
− Bn senh(nπℓ/h)

cosh(nπℓ/h)

]
cosh

nπx

h
+Bn senh

nπx

h

=

[
− Bn

cosh(nπℓ/h)

]
︸ ︷︷ ︸

≡ Cn

[
senh

nπℓ

h
cosh

nπx

h
− senh

nπx

h
cosh

nπℓ

h

]
︸ ︷︷ ︸

= senh
[
nπℓ
h

−nπx
h

]
.

= Cn senh
[nπ
h

(ℓ− x)
]
.

Logo, a solução geral é

u(x, y) = X0(x)Y0(y) +

∞∑
n=1

Xn(x)Yn(y)

= B0(x− ℓ) +
∞∑
n=1

Cn senh
[nπ
h

(ℓ− x)
]
cos

nπy

h
■ (6.40)

Para obter a solução específica do problema, impomos a condição de fronteira não homogênea (ainda
não usada):

u(0, y) = −B0ℓ︸ ︷︷ ︸
≡ [−2B0ℓ]

2

+

∞∑
n=1

[
Cn senh

nπℓ

h

]
cos

nπy

h
= f(y) ,

e assim concluímos que os termos entre colchetes são os coeficientes da série de Fourier em cossenos de
f(y) . Finalmente, usando (5.13a), determinamos as constantes em (6.40):

− 2B0ℓ =
2

h

∫ h

0

f(y)dy ⇒ B0 =
−1
ℓh

∫ h

0

f(y)dy ■ (6.41a)

Cn senh
nπℓ

h
=

2

h

∫ h

0

f(y) cos
nπy

h
dy ⇒ Cn =

2

h senh
nπℓ

h

∫ h

0

f(y) cos
nπy

h
dy ■ (6.41b)
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6.4.2 Equação de Laplace em Domínios com Bordas Circulares
Nesta subseção resolvemos a equação de Laplace em coordenadas polares (o laplaciano nessas

coordenadas é deduzido na subseção 6.7.3):

∇2u(r, θ) =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0 . (6.42)

Dividimos aqui em dois tipos os problemas de cálculo da solução u(r, θ): um em que o problema de
autovalor se dá na variável angular, θ, e o outro, na variável radial, r. Nos problemas aqui considerados,
veremos que o primeiro tipo ocorre quando a condição de fronteira não homogênea é especificada numa
borda circular, e o segundo tipo, numa borda retilínea. A caracterização desses dos dois tipos de
problemas prende-se ao fato de que, num setor circular, há dois tipos de borda: retilínea e circular.

6.4.2.1 Equação de Laplace com Condição de Fronteira Não Homogênea em Borda Cir-
cular

Exemplo 6.8. ∇2u(r, θ) = 0 no disco de raio b centrado na origem sob a condição de fronteira
u(b, θ) = f(θ) .

Substituindo na equação de Laplace a forma separada u(r, θ) = R(r)Θ(θ) que se admite para a
solução, obtemos

∇2u(r, θ) =
( ∂2
∂r2

+
1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
(RΘ)

= R′′Θ +
1

r
R′Θ +

1

r2
RΘ ′′ = 0

×r2/(RΘ)
=⇒ r2R′′ + rR′

R︸ ︷︷ ︸
λ

+
Θ ′′

Θ︸︷︷︸
−λ

= 0

⇒
{
Θ ′′ + λΘ(θ) = 0 . . . . . . .. . . . . . .EDO angular
r2R′′ + rR′ − λR(r) = 0 . . . . . .EDO radial , (6.43)

onde, conforme a nota na pág. 107, usamos a constante −λ para separar o termo dependente de θ
porque é nesta variável que se estabelecerá um problema de autovalor [um problema de autovalor não
pode acontecer na variável r por causa da condição de fronteira não homogênea u = f(θ) em r = b
(na borda do disco) ]. De fato, no presente problema, podemos considerar que a variável angular tome
qualquer valor real (θ ∈ R), mas exigindo que a solução u(r, θ) tenha período 2π, isto é, que satisfaça
a condição periódica u(r, θ) = u(r, θ + 2π). Note que essa condição se transfere para Θ(θ):

u(r, θ) = u(r, θ + 2π) ⇒ ���R(r)︸ ︷︷ ︸
̸≡ 0

Θ(θ) = ���R(r)Θ(θ + 2π) ⇒ Θ(θ) = Θ(θ + 2π) .

A EDO angular em (6.43) sujeita a essa condição periódica forma um problema de autovalor já
resolvido, aquele na equação (6.3) com o período 2ℓ = 2π (⇒ ℓ = π) . Assim, temos{

Θ ′′ + λΘ(θ) = 0 , θ ∈ R
Θ(θ) = Θ(θ + 2π)

⇒
{
λn = n2 (n = 0, 1, 2 · · · )
Θ0(θ) = 1 , Θn(θ)

∣∣
n≥ 1

= cn cosnθ + dn sennθ .

Agora resolvemos a EDO radial em (6.43) com λ igual aos autovalores λn = n2 oriundos do problema
de autovalor acima, que é uma equação de Euler-Cauchy (v. subseção 6.7.4); portanto,

r2R′′
n + rR′

n − n2Rn(r) = 0 ⇒ Rn(r) =

{
C0 +D0 ln r (n = 0)
Cnr

n +Dn/r
n (n = 1, 2 · · · ) .

Devemos eliminar os segundos termos dessas soluções radiais fazendo Dn = 0 (n = 0, 1, 2 · · · ) para
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evitar infinitude na origem(∗). Portanto, a solução geral é dada por

u(r, θ) = R0(r)Θ0(θ) +

∞∑
n=1

Rn(r)Θn(θ) = C0 · 1 +
∞∑
n=1

Cnr
n(cn cosnθ + dn sennθ)

= C0 +

∞∑
n=1

Cncnr
n cosnθ + Cndnr

n sennθ .

Note que Cncn e Cndn são constantes arbitrárias, para as quais convém uma notação própria; digamos
Cncn ≡ An e Cndn ≡ Bn . Assim o resultado acima toma a forma

u(r, θ) = C0 +

∞∑
n=1

Anr
n cosnθ +Bnr

n sennθ ■ (6.44)

Essa é a expressão da solução do problema, só faltando determinar as constantes C0, An e Bn, o
que é realizado com a imposição da (única) condição de fronteira:

u(b, θ) =
[2C0]

2
+

∞∑
n=1

[bnAn] cosnθ + [bnBn] sennθ = f(θ) .

Essa equação mostra que os termos entre colchetes são os coeficientes da série de Fourier de f(θ), uma
função de período 2π; logo, usando (5.4) com 2ℓ = 2π, isto é, ℓ = π, obtemos

2C0 =
1

π

∫ 2π

0

f(θ)dθ ⇒ C0 =
1

2π

∫ 2π

0

f(θ)dθ ■ (6.45a)

bnAn =
1

π

∫ 2π

0

f(θ) cosnθ dθ ⇒ An =
1

πbn

∫ 2π

0

f(θ) cosnθ dθ ■ (6.45b)

bnBn =
1

π

∫ 2π

0

f(θ) sennθ dθ ⇒ Bn =
1

πbn

∫ 2π

0

f(θ) sennθ dθ ■ (6.45c)

Se u(b, θ) = f(θ) = 10+ 5 cos θ− 8 sen2θ, em vez de calcular os coeficientes usando as equações em
(6.45), obtemo-los por comparação direta:

u(b, θ) = C0 +

∞∑
n=1

Anb
n cosnθ +Bnb

n sennθ = 10 + 5 cos θ − 8 sen2θ ⇒

 C0 = 10
bA1 = 5
b2B2 = −8 .

∴ u(r, θ) = C0 +A1r cos θ +B2 sen2θ = 10 +
5

b
r cos θ − 8

b2
sen2θ ■

Exemplo 6.9. ∇2u(r, θ) = 0 , com r ∈ (0, b) e θ ∈ (0, γ), sob as condições de fronteira
u(r, 0) = 0 , u(r, γ) = 0 e u(b, θ) = f(θ) .

Trata-se do setor circular mostrado na figura à direita, cujas bordas
retilíneas em θ = 0 e θ = γ estão submetidas a condições de fronteira
homogêneas, indicando que o problema de autovalor se estabelecerá na
variável θ após a separação de variáveis por meio da expressão u(r, θ) =
R(r)Θ(θ). No caso, surge o problema de autovalor em (6.1) com ℓ = γ :

{
Θ ′′ + λΘ(θ) = 0 , θ ∈ (0, γ)
Θ(0) = Θ(γ) = 0

⇒


λn =

(nπ
γ

)2
(n = 0, 1, 2 · · · )

Θn(θ) = sen
nπθ

γ
·

Calculemos Rn(r) resolvendo a EDO radial em (6.43) com λ = λn = (nπ/γ)2:

r2R′′
n + rR′

n −
(nπ
γ

)2
R(r) = 0 ⇒ Rn(r) = Cn r

nπ
γ +Dn/ r

nπ
γ .

(∗) o que, numa notação corriqueira, pode ser assim expresso: |Rn(0)| <∞
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Para evitar infinitude em r = 0, devemos fazer Dn = 0. Assim, a solução geral é

u(r, θ) =
∑

n=1,2,3···
Rn(r)Θn(θ) =

∑
n=1,2,3···

Cn r
nπ
γ sen

nπθ

γ
■ (6.46)

Determinamos as constantes Cn impondo a condição de fronteira não homogênea, obtendo

u(b, θ) =
∑

n=1,2,3···

[
Cn b

nπ
γ
]
sen

nπθ

γ
= f(θ) , θ ∈ (0, γ) ,

onde vemos que os termos entre colchetes são os coeficientes da série de Fourier de f(θ) em senos no
intervalo (0, γ). Logo, usando (5.13b), obtemos

Cnb
nπ
γ =

2

γ

∫ γ

0

f(θ) sen
nπθ

γ
dθ ⇒ Cn =

2

γb
nπ
γ

∫ γ

0

f(θ) sen
nπθ

γ
dθ ■ (6.47)

Exemplo 6.10. O seguinte problema:

{
∇2u(r, θ) = 0 , com r ∈ (a, b) e θ ∈ R

u(a, θ) = 0 e u(b, θ) = f(θ) .

Este problema difere daquele no Exemplo 6.8 por ser o
domínio da EDP uma arruela (em vez de um disco), o que
acarreta uma condição de fronteira a mais: aquela na borda
interna da arruela, que, no caso, é dada por u(a, θ) = 0. Por-
tanto, separando as variáveis, obtemos, na variável θ, o mesmo
problema de autovalor em (6.3), de condição periódica:{
Θ ′′+λΘ(θ)=0, θ∈R
Θ(θ) = Θ(θ + 2π)

⇒
{
λn = n2 (n = 0, 1, 2 · · · )
Θ0(θ) = 1, Θn(θ) = cn cosnθ+dn sennθ ;

Também obtemos a mesma EDO radial com a mesma solução geral:

r2R′′
n + rR′

n − n2Rn(r) = 0 ⇒ Rn(r) =

{
C0 +D0 ln r (n = 0)
Cnr

n +Dn/r
n (n = 1, 2 · · · ) .

Antes da condição de fronteira não homogênea (na borda circular em r = b) ser levada em conta,
convém impor todas as que são homogêneas. Tomando então a condição homogênea na borda circular
em r = a, obtemos

u(a, θ) = R(a)Θ(θ)︸ ︷︷ ︸
̸≡ 0

= 0 ⇒ R(a) = 0 ,

uma condição de fronteira que a parte radial R(r) deve satisfazer. Impondo-a, obtemos

Rn(a) =

{
C0 +D0 ln a = 0 ⇒ C0 = −D0 ln a (n = 0)
Cna

n +Dn/a
n = 0 ⇒ Dn = −a2nCn (n = 1, 2 · · · ) .

Com esse resultado, Rn(r) toma a forma

Rn(a) =

{
D0 ln(r/a) (n = 0)
Cn(r

n − a2n/rn) (n = 1, 2 · · · ) .

Neste momento formamos a solução u(r, θ) geral (a que satisfaz as condições homogêneas):

u(r, θ) = R0(r)Θ0(θ) +

∞∑
n=1

Rn(r)Θn(θ)

= D0 ln
r

a
+

∞∑
n=1

Cn

(
rn − a2n

rn

)
(cn cosnθ + dn sennθ)

= D0 ln
r

a
+

n∑
n=1

Cncn︸ ︷︷ ︸
An

(
rn − a2n

rn

)
cosnθ + Cndn︸ ︷︷ ︸

Bn

(
rn − a2n

rn

)
sennθ

= D0 ln
r

a
+

∞∑
n=1

An

(
rn − a2n

rn

)
cosnθ +Bn

(
rn − a2n

rn

)
sennθ ■ (6.48)
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onde definimos as constantes arbitrárias An e Bn conforme indicadas. Para determinar essas constantes
e finalizar o problema, impomos a condição de fronteira não homogênea:

u(b, θ) =
[2D0 ln(b/a)]

2
+

∞∑
n=1

[
An

(
bn − a2n

bn

)]
cosnθ +

[
Bn

(
bn − a2n

bn

)]
sennθ = f(θ) ,

equação que mostra serem os termos entre colchetes os coeficientes da série de Fourier da f(θ), uma
função de período 2π; logo, usando (5.13a), obtemos

2D0 ln(b/a) =
1

π

∫ 2π

0

f(θ)dθ ⇒ D0 =
1

2π ln(b/a)

∫ 2π

0

f(θ)dθ ■ (6.49a)

An(b
n − a2n/bn) = 1

π

∫ 2π

0

f(θ) cosnθ dθ ⇒ An =
1

π(bn − a2n/bn)

∫ 2π

0

f(θ) cosnθ dθ ■ (6.49b)

Bn(b
n + a2n/bn) =

1

π

∫ 2π

0

f(θ) sennθ dθ ⇒ Bn =
1

π(bn − a2n/bn)

∫ 2π

0

f(θ) sennθ dθ ■ (6.49c)

Exercício: Prove que a solução deste problema no limite de quando a tende a zero é a solução do
problema no Exemplo 6.8.

6.4.2.2 Equação de Laplace com Condição de Fronteira Não Homogênea em Borda Re-
tilínea

Exemplo 6.11. Resolução da equação de Laplace no setor de arruela mostrado na figura
abaixo, sob as condições de fronteira indicadas.

A substituição de u(r, θ) = R(r)Θ(θ) na equação de Laplace fornece

r2R′′ + rR′

R︸ ︷︷ ︸
−λ

+
Θ ′′

Θ︸︷︷︸
λ

= 0 ⇒
{
r2R′′ + rR′ + λR(r) = 0
Θ ′′ − λΘ(θ) = 0 ,

(6.50)

onde usamos a constante −λ (de acordo com a Nota na pág. 107) para
separar o termo dependente de r por ser nesta variável que se estabelecerá
um problema de autovalor, haja vista a homogeneidade das condições de

fronteira nas bordas circulares (onde r se mantém constante). De fato, impondo as condições nessas
fronteiras circulares, obtemos{

u(a, θ) = R(a)Θ(θ) = 0
u(b, θ) = R(b)Θ(θ) = 0

〉
⇒ R(a) = R(b) = 0 ,

as quais, juntamente com a EDO radial separada acima, formam o seguinte problema de valor de
fronteira na variável radial:

r2R′′ + rR′ + λR(r) = 0 , r ∈ (a, b) , R(a) = R(b) = 0 , (6.51)

o qual admite a solução trivial R(r) ≡ 0, mas que também pode admitir soluções não triviais corres-
pondentes a certos valores de λ; ou seja, trata-se de um problema de autovalor, que pode ser escrito na
forma LR(r) = λR(r), com L = −r2d2/dr2 − r d/dr. Ainda não consideramos nenhum problema de
autovalor com esse operador. Passamos então aos cálculos dos autovalores e autofunções do problema
em (6.51). Empregamos abaixo a solução geral da EDO em (6.51) obtida na subseção 6.7.4.

Para λ = 0 : R(r) = c1 + c2 ln r .

R(a) = c1 + c2 ln a = 0
R(b) = c1 + c2 ln b = 0

〉
⇒ c1 = c2 = 0 ⇒

{
R(r) = 0 (∀x) é a única solução;
logo, zero não é autovalor.

Para λ ≡ −k2 (k > 0) : R(r) = c1r
k + c2/r

k .

R(a) = c1a
k + c2/a

k = 0
R(b) = c1b

k + c2/b
k = 0

〉
⇒ c1 = c2 = 0 ⇒

{
R(r) = 0 (∀x) é a única solução;
logo, não há autovalores negativos.
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Para λ ≡ k2 (k > 0) : R(r) = c1 cos(k ln r) + c2 sen(k ln r) . (6.52)

No que segue, formamos o sistema linear homogêneo com as duas incógnitas c1 e c2 (marcado com
o símbolo ⋆) usando as duas condições de fronteira em r = a e r = b , e exigimos que seu determinante
principal se anule, assim possibilitando a existência de solução distinta da solução trivial c1 = c2 = 0
e, por conseguinte, de autofunção [solução R(r) 6≡ 0 da EDO radial]:

⋆
{
R(a) = c1 cos(k ln a) + c2 sen(k ln a) = 0
R(a) = c1 cos(k ln b) + c2 sen(k ln b) = 0

⇒
∣∣∣∣ cos(k ln a) sen(k ln a)
cos(k ln b) sen(k ln b)

∣∣∣∣ = 0

⇒ sen(k ln b) cos(k ln a)− sen(k ln a) cos(k ln b) = sen[ k ln b− k ln b ] = sen[ k ln(b/a) ] = 0

⇒ k ln(b/a) = nπ ⇒ k = kn =
nπ

ln(b/a)
⇒ autovalores λn = k2n =

( nπ

ln(b/a)

)2
.

Com k = kn, as soluções do sistema linear⋆ correspondentes não são constantes c1n e c2n inde-
pendentes; de fato, podemos relacioná-las usando a primeira equação daquele sistema (poderia ser a
segunda, pois as duas são equivalentes):

c1n cos(kn ln a) + c2n sen(kn ln a) = 0 ⇒ c1n = −c2n
sen(kn ln a)

cos(kn ln a)
·

Substituindo k = kn na expressão da solução radial em (6.52), e eliminando c1n usando o resultado
acima, obtemos as autofunções:

Rn(r) = c1n cos(kn ln r) + c2n sen(kn ln r) = −c2n
sen(kn ln a)

cos(kn ln a)
cos(kn ln r) + c2n sen(kn ln r)

=
c2n

cos(k ln a)︸ ︷︷ ︸
constante
irrelevante

[
sen(kn ln r) cos(kn ln a)− sen(kn ln a) cos(kn ln r)︸ ︷︷ ︸

sen(kn ln r−kn ln a)

]

⇒ Rn(r) = sen
(
kn ln

r

a

)
⇒ Rn(r) = sen

nπ ln(r/a)

ln(b/a)
.

Note que Rn(a) = Rn(b) = 0.
Está assim calculada a parte radial de u(r, θ). Passemos ao cálculo da parte angular, resolvendo

a EDO angular em (6.50) com λ = λn = k2n sob a condição Θn(0) = 0 que se deduz da condição de
fronteira homogênea u = 0 na borda retilínea em θ = 0. Ou seja, resolvamos o problema

Θ ′′
n − k2nΘn(θ) = 0 , θ ∈ (0, γ) , Θn(0) = 0 .

Temos que

Θn(θ) = An cosh knθ +Bn senhknθ ;

Θn(0) = An = 0 ;

Θn(θ) = Bn senhknθ = Bn senh
nπθ

ln(b/a)
.

A solução geral é, portanto,

u(r, θ) =

∞∑
n=1

Θn(θ)Rn(θ) =

∞∑
n=1

Bn senh
nπθ

ln(b/a)
sen

nπ ln(r/a)

ln(b/a)
■ (6.53)

Agora determinamos as constantes Bn nessa solução geral impondo a condição não homogênea na
borda retilínea em θ = γ:

u(r, γ) =

∞∑
n=1

Bn senh
nπγ

ln(b/a)
sen

nπ ln(r/a)

ln(b/a)
= f(r) .

Esta é uma série de Fourier em senos de f(r), o que fica evidente mudando a notação:

ρ ≡ ln(r/a) ∈ [0, ℓ] {onde ℓ ≡ ln(b/a) } ⇐⇒ r = a eρ ∈ [a, b] ; f(r) = f(a eρ) ≡ F (ρ) . (6.54)
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De fato, a série acima agora pode ser escrita na forma

∞∑
n=1

[
Bn senh

nπγ

ℓ

]
sen

nπρ

ℓ
= F (ρ) , ρ ∈ (0, ℓ) ,

onde o termo entre colchetes pode ser calculado usando (5.13b), assim finalizando o presente problema:

Bn senh
nπγ

ℓ
=

2

γ

∫ ℓ

0

F (ρ) sen
nπρ

ℓ
dρ ⇒ Bn =

2

γ senh
nπγ

ℓ

∫ ℓ

0

F (ρ) sen
nπρ

ℓ
dρ ,

ou, na notação original, tendo em conta que dρ = (dρ/dr) dr = (1/r) dr :

Bn =
2

γ senh
nπγ

ln(b/a)

∫ ln(b/a)

0

f(r) sen
nπ ln(r/a)

ln(r/b)

dr

r
■ (6.55)

Nota: Resolvemos detalhadamente o problema de autovalor em (6.51), mas sem necessidade, uma
vez que ele se transforma naquele em (6.1) mediante a mudança de variável em (6.54), isto é, ele
se converte no seguinte problema:

R′′ + λR(ρ) = 0 , ρ ∈ (0, ℓ) , R(ρ) = 0 se ρ = 0 ou ℓ .

Essa nova forma da EDO é obtida rapidamente usando os resultados da seção (6.7.4):

R(r) = R(a eρ) ≡ R(ρ)
rR′(r) = R′(ρ)
r2R′′(r) = R′′(ρ)

〉
⇒ r2R′′(r) + rR′(r) + λR(r) = R′′(ρ) + λR(ρ) .

Os cálculos por esse modo seriam mais rápidos.

Continua verdadeira, portanto, a afirmação no início do segundo parágrafo da seção 6.1, a de que,
nas aplicações físicas que seriam abordadas, não seria necessário considerar problemas de autovalor
formados com operadores diferenciais distintos de L = −d2/dx2, em que pese o problema em (6.51),
formado com L = −r2d2/dr2 − r d/dr .

6.5 Exercícios

6.5.1 Enunciados
1] Resolva a equação unidimensional do calor

∂2T

∂x2
=

1

α

∂T

∂t
(x, t) , x ∈ (0, ℓ) , t > 0 ,

sob as seguintes condições:

a) ℓ = α = 1 , T (0, t) = T (1, t) = 0 , T (x, 0) = 3 .

b)
∂T

∂x
(0, t) =

∂T

∂x
(1, t) = 0 , T (x, 0) = 6 + 10 cos

4πx

ℓ
.

2] Resolva a equação unidimensional da onda

∂2y

∂x2
=

1

c2
∂2y

∂t2
(x, t) , x ∈ (0, ℓ) , t > 0 ,

sob as seguintes condições:

a) ℓ=c=1 ,
∂y

∂x
(0, t) =

∂y

∂x
(1, t) = 0 , y(x, 0) = 0 e

∂y

∂t
(x, 0) = x− 1

2
.

b) ℓ=c=1 , y(0, t) = y(1, t) = 0 , y(x, 0) = 6 sen2πx e
∂y

∂t
(x, 0) = 0 .

c) ℓ=c=2 ,
∂y

∂x
(0, t)=

∂y

∂x
(2, t)=0 , y(x, 0)=−2+5 cos 3πx e

∂y

∂t
(x, 0)=4−7 cosπx .
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3] Resolva a equação de Laplace nas coordenadas cartesianas

∂2u

∂x2
(x, y) +

∂2u

∂y2
= 0 :

a)

{
com x ∈ (−∞, 0) , y ∈ (0, 2) , e sob as condições:

u(x, 0) = u(x, 2) = 0 ,
∂u

∂x
(0, y) = 5 senπy − 3 sen2πy .

b)
{

com x ∈ (0, 1) , y ∈ (0, 1) , e sob as condições:
u(0, y) = u(1, y) = 0 , u(x, 0) = 8 sen2πx , u(x, 1) = 6 senπx+ 5 sen2πx− 9 sen4πx .

4] Resolva a equação de Laplace nas coordenadas polares

∂2u

∂r2
(r, θ) +

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0 , r ∈ (a, b) , θ ∈ I ,

sob as seguintes condições:

a) b→∞ e I = R , u(a, θ) = −3 + 2 cos θ − 4 sen2θ .

b) a = 0 e b = 3 , I = (0, π/6) , u(r, 0) = (r, π/6) = 0 , u(3, θ) = 10 .

6.5.2 Soluções
1(a)

∂2T

∂x2
=

1

α

∂T

∂t
(x, t)

T (x,t)≡ ψ(x)τ(t)−−−−−−−−−−−−−→ ψ′′

ψ
=

1

α

τ ′

τ
= −λ .

ψ′′ + λψ(x) = 0 , x ∈ (0, ℓ) , ψ(0) = ψ(ℓ) = 0 .

λn = (nπ/ℓ)2 ↔ ψn(x) = sen(nπx/ℓ) (n = 1, 2, 3 · · · ) .
τ ′n + λnατn(t) = 0 ⇒ τn(t) = e−λnα t .

T (x, t) =

∞∑
n=1

Bn sen
nπx

ℓ
e−λnα t .

T (x, 0) =

∞∑
n=1

Bn sen
nπx

ℓ
= 3 .

Bn =
2

ℓ

∫ ℓ

0

3 sen
nπx

ℓ
dx

ℓ= 1
=
c= 1

2

1

∫ 1

0

3 sen(nπx)dx = 6

[
− cos(nπx)

nπ

]1
0

= − 6

nπ

[
cos(nπ)− 1

]
= − 6

nπ

[
(−1)n − 1

]
=

{
12/(nπ) se n = 1, 3, 5 · · ·

0 se n = 2, 4, 6 · · · .

T (x, t)
ℓ= 1
=
c= 1

=

∞∑
n=1

Bn sen(nπx) e
−(nπ)2t =

∑
n=1,3,5···

12

nπ
sen(nπx) e−(nπ)2t ■

1(b)

∂2T

∂x2
=

1

α

∂T

∂t
(x, t)

T (x,t)≡ ψ(x)τ(t)−−−−−−−−−−−−−→ ψ′′

ψ
=

1

α

τ ′

τ
= −λ .

ψ′′ + λψ(x) = 0 , x ∈ (0, ℓ) , ψ′(0) = ψ′(ℓ) = 0 .

λ0 = 0 ↔ ψ0(x) = 1 , λn = (nπ/ℓ)2 ↔ ψn(x) = cos(nπx/ℓ) (n = 1, 2, 3 · · · ) .
τ ′n + λnατn(t) = 0 ⇒ τ0(t) = 1 e τn(t)

∣∣
n≥1

= e−λnα t .

T (x, t) = A0 +

∞∑
n=1

An cos
nπx

ℓ
e−λnα t .

T (x, 0) = A0 +

∞∑
n=1

An cos
nπx

ℓ
= 6 + 10 cos

4πx

ℓ
. (⋆)
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A0 = 6 , A4 = 10 , An
∣∣
n ̸=0
n ̸=4

= 0 .

T (x, t) = 6 + 10 cos
4πx

ℓ
e−(4π/ℓ)2α t ■

Nota : Alerta-se que é mais trabalhoso calcular os coeficientes da série de Fourier de T (x, 0) em
cossenos na equação (⋆) usando (5.13a) do que obtê-los por comparação como fizemos acima; de
fato, observe:

A0 =
2

ℓ

∫ ℓ

0

T (x, 0)dx =
2

ℓ

∫ ℓ

0

(
6+10 cos

4πx

ℓ

)
dx =

2

ℓ
6

∫ ℓ

0

dx︸ ︷︷ ︸
ℓ

+
2

ℓ
10

∫ ℓ

0

cos
4πx

ℓ
dx︸ ︷︷ ︸

0

=
2

ℓ
6 ℓ = 12

e

An

∣∣
n≥1

=
2

ℓ

∫ ℓ

0

T (x, 0) cos
nπx

ℓ
dx =

2

ℓ

∫ ℓ

0

(
6 + 10 cos

4πx

ℓ

)
cos

nπx

ℓ
dx

=
2

ℓ
6

∫ ℓ

0

cos
nπx

ℓ
dx︸ ︷︷ ︸

0

+
2

ℓ
10

∫ ℓ

0

cos
4πx

ℓ
cos

nπx

ℓ
dx︸ ︷︷ ︸{

ℓ/2 se n=4

0 se n ̸=4

=


2

ℓ
10

ℓ

2
= 10 se n = 4

0 se n ̸= 4 ,

onde, para obter os resultados das integrais, usamos as relações de ortonormalidade em (5.1b).

2(a)

∂2y

∂x2
=

1

c2
∂2y

∂t2
(x, t)

y(x,t)≡ ψ(x)τ(t)−−−−−−−−−−−−→ ψ′′

ψ
=

1

c2
τ ′′

τ
= −λ .

ψ′′ + λψ(x) = 0 , x ∈ (0, ℓ) , ψ′(0) = ψ′(ℓ) = 0 .

λ0 = 0 ↔ ψ0(x) = 1 , λn = (nπ/ℓ)2 ↔ ψn(x) = cos(nπx/ℓ) (n = 1, 2, 3 · · · ) .

τ ′n + λnc
2

(nπc/ℓ)2

τn(t) = 0 ⇒ τ0(t) = A0 +B0t e τn(t) = An cos
nπct

ℓ
+Bn sen

nπct

ℓ
.

y(x, t) = A0 +B0t+

∞∑
n=1

(
An cos

nπct

ℓ
+Bn sen

nπct

ℓ

)
cos

nπx

ℓ
.

y(x, 0) = A0 +

∞∑
n=1

An cos
nπx

ℓ
= 0 ⇒ A0 = 0 e An

∣∣
n≥1

= 0 .

∂y

∂t
(x, t) = B0 +

∞∑
n=1

nπc

ℓ
Bn cos

nπct

ℓ
cos

nπx

ℓ
.

∂y

∂t
(x, 0) =

[2B0]

2
+

∞∑
n=1

[nπc
ℓ
Bn

]
cos

nπx

ℓ
= x− 1

2
·

2B0 =
2

ℓ

∫ ℓ

0

(
x− 1

2

)
dx

ℓ= 1
=

2

1

∫ 1

0

(
x− 1

2

)
dx = 2

[x2
2
− x

2

]1
0
= 0 .

nπc

ℓ
Bn =

2

ℓ

∫ ℓ

0

(
x− 1

2

)
cos

nπx

ℓ
dx

ℓ= 1−−−−−→
c= 1

nπBn =
2

1

∫ 1

0

(
x− 1

2

)
cos(nπx)dx

= 2

[
sennπx

n2π2
− x cosnπx

nπ
+

cosnπx

2nπ

]1
0

= 2
− cosnπ − 1

2nπ
= − (−1)n + 1

nπ
.

Bn =

{
0 se n = 1, 3, 5 · · ·

−2/(nπ)2 se n = 2, 4, 6 · · · .

y(x, t) =
∑

n= 2,4,6···
Bn sen(nπt) cos(nπx) =

∑
n= 2,4,6···

−2
(nπ)2

sen(nπt) cos(nπx) ■
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2(b)

∂2y

∂x2
=

1

c2
∂2y

∂t2
(x, t)

y(x,t)≡ ψ(x)τ(t)−−−−−−−−−−−−→ ψ′′

ψ
=

1

c2
τ ′′

τ
= −λ .

ψ′′ + λψ(x) = 0 , x ∈ (0, ℓ) , ψ(0) = ψ(ℓ) = 0 .

λn = (nπ/ℓ)2 ↔ ψn(x) = sen(nπx/ℓ) (n = 1, 2, 3 · · · ) .

τ ′n + λnc
2

(nπc/ℓ)2

τn(t) = 0 ⇒ τn(t) = An cos
nπct

ℓ
+Bn sen

nπct

ℓ
.

y(x, t) =

∞∑
n=1

(
An cos

nπct

ℓ
+Bn sen

nπct

ℓ

)
sen

nπx

ℓ
.

ℓ= 1
=
c= 1

∞∑
n=1

(An cosnπt+Bn sennπt) sennπx .

∂y

∂t
(x, 0) =

∞∑
n=1

nπBn sennπx = 0 ⇒ Bn = 0 (n = 1, 2, 3 · · · ) .

y(x, 0) =

∞∑
n=1

An sennπx = 6 sen2πx ⇒ A2 = 6 e An
∣∣
n ̸=2

= 0 .

y(x, t) = A2 cos 2πt sen2πx = 6 cos 2πt sen2πx ■

2(c)

∂2y

∂x2
=

1

c2
∂2y

∂t2
(x, t)

y(x,t)≡ ψ(x)τ(t)−−−−−−−−−−−−→ ψ′′

ψ
=

1

c2
τ ′′

τ
= −λ .

ψ′′ + λψ(x) = 0 , x ∈ (0, ℓ) , ψ′(0) = ψ′(ℓ) = 0 .

λ0 = 0 ↔ ψ0(x) = 1 , λn = (nπ/ℓ)2 ↔ ψn(x) = cos(nπx/ℓ) (n = 1, 2, 3 · · · ) .

τ ′n + λnc
2

(nπc/ℓ)2

τn(t) = 0 ⇒ τ0(t) = A0 +B0 t e τn(t) = An cos
nπct

ℓ
+Bn sen

nπct

ℓ
.

y(x, t) = A0 +B0 t+

∞∑
n=1

(
An cos

nπct

ℓ
+Bn sen

nπct

ℓ

)
cos

nπx

ℓ
.

ℓ= 2
=
c= 2

A0 +B0 t+

∞∑
n=1

(An cosnπt+Bn sennπt) cos
nπx

2
.

y(x, 0) = A0 +

∞∑
n=1

An cos
nπx

2
= −2 + 5 cos 3πx︸ ︷︷ ︸

5 cos 6πx
2

⇒ A0 = −2 , A6 = 5 , An
∣∣
n ̸=0
n ̸=6

= 0 .

∂y

∂t
(x, 0) = B0 +

∞∑
n=1

nπBn cos
nπx

ℓ
= 4− 7 cosπx︸ ︷︷ ︸

7 cos 2πx
2

⇒


B0/2 = 4

2πB2 = −7 ⇒ B2 = −7/(2π)
Bn
∣∣
n ̸=0
n ̸=2

= 0 .

y(x, t) = A0 +B0 t+A6 cos 6πt cos
6πx

2
+B2 sen2πt cos

2πx

2

= −2 + 4t+ 5 cos 6πt cos 3πx− 7

2π
sen2πt cosπx ■

118



3(a)

∂2u

∂x2
+
∂2u

∂y2
= 0

u(x,y)≡X(x)Y (y)−−−−−−−−−−−−−→ X ′′

X︸︷︷︸
λ

+
Y ′′

Y︸︷︷︸
−λ

= 0 .

Y ′′ + λY (y) = 0 , y ∈ (0, h) , Y (0) = Y (h) = 0 .

λn = (nπ/h)2 ↔ Yn(y) = sen(nπy/h) (n = 1, 2, 3 · · · ) .

X ′′
n − (nπ/h)2Xn(x) = 0 , x ∈ (−∞, 0) ⇒ Xn(x) = An

= 0⋆

e−nπx/h +Bne
nπx/h .

⋆Xn(−∞) <∞ ⇒ An = 0 .

u(x, y) =

∞∑
n=1

Bn e
nπx/h sen(nπy/h)

h = 2
=

∞∑
n=1

Bn e
nπx/2 sen(nπy/2) .

∂u

∂x
(0, y) =

∞∑
n=1

(−nπBn/2) sen(nπy/2) = 5 sen(πy)︸ ︷︷ ︸
sen(2πy/2)

− 3 sen(2πy)︸ ︷︷ ︸
sen(4πy/2)

.

− nπBn/2 =


−2πB2/2 = 5 se n = 2 ⇒ B2 = −5/π
−4πB4/2 = −3 se n = 4 ⇒ B4 = 3/(2π)

0 se n 6= 2 ou n 6= 4 ⇒ Bn
∣∣
n ̸=2
n ̸=4

= 0 .

u(x, y) = B2 e
2πx/2 sen(2πy/2) +B4 e

4πx/2 sen(4πy/2)

= − 5

π
eπx sen(πy) +

3

2π
e2πx sen(2πy) ■
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3(b)

∂2u

∂x2
+
∂2u

∂y2
= 0

u(x,y)≡X(x)Y (y)−−−−−−−−−−−−−→ X ′′

X︸︷︷︸
λ

+
Y ′′

Y︸︷︷︸
−λ

= 0 .

X ′′ + λX(x) = 0 , x ∈ (0, ℓ) , X(0) = X(ℓ) = 0 .

λn = (nπ/ℓ)2 ↔ Xn(x) = sen(nπx/ℓ) (n = 1, 2, 3 · · · ) .

Y ′′
n − (nπ/ℓ)2Yn(y) = 0 ⇒ Yn(x) = An cosh(nπy/ℓ) +Bn senh(nπy/ℓ) .

u(x, y) =

∞∑
n=1

[
An cosh(nπy/ℓ) +Bn senh(nπy/ℓ)

]
sen(nπx/ℓ)

ℓ = 1
=

∞∑
n=1

(An coshnπy +Bn senhnπy) sennπx .

u(x, 0) =

∞∑
n=1

An sennπx = 8 sen2πx ⇒ A2 = 8 e An
∣∣
n ̸=2

= 0 .

u(x, h) = u(x, 1) =

∞∑
n=1

[An coshnπ +Bn senhnπ] sennπx = 6 senπx+ 5 sen2πx− 9 sen4πx .



A1︸︷︷︸
0

coshπ +B1 senhπ = 6 ⇒ B1 = 6/ senhπ

A2︸︷︷︸
8

cosh 2π +B2 senhnπ = 5 ⇒ B2 = (5− 8 cosh 2π)/ senh2π

A4︸︷︷︸
0

cosh 4π +B4 senh4π = −9 ⇒ B4 = −9/ senh4π

Se n 6= 1 , 2 ou 4 ⇒ Bn = 0 .

u(x, y) = (A1 coshπy +B1 senhπy) senπx

+ (A2 cosh 2πy +B2 senh2πy) sen2πx

+ (A4 cosh 4πy +B4 senh4πy) sen4πx

=
6

senhπ
senhπy senπx

+
(
8 cosh 2πy +

5− 8 cosh 2π

senh2π
senh2πy

)
sen2πx

− 9

senh4π
senh4πy sen4πx ■
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4(a)

∂2u

∂r2
(r, θ) +

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0

u(r,θ)≡ R(r)Θ(θ)−−−−−−−−−−−−−→ r2R′′ + rR′

R︸ ︷︷ ︸
λ

+
Θ ′′

Θ︸︷︷︸
−λ

= 0 .

Θ ′′ + λΘ(θ) = 0 , Θ(θ + 2π) = Θ(θ) , θ ∈ R .

λ0 = 0 ↔ Θ0(x) = 1 , λn = n2 ↔ Θn(θ) = Cn cosnθ +Dn sennθ (n = 1, 2, 3 · · · ) .

r2R′′
n + rR′

n − n2Rn(r) = 0 ⇒ Rn(r) =

{
c0 + d0 ln r (n = 0)
dnr

n + dn/r
n (n ≥ 1) .

|Rn(r →∞)| <∞ ⇒ d0 = cn
∣∣
n≥1

= 0 ⇒ Rn(r) =

{
c0 (n = 0)
dn/r

n (n ≥ 1) .

u(r, θ) = R0(r)Θ0(θ) +

∞∑
n=1

Rn(r)Θn(θ) = c0 +

∞∑
n=1

dn
rn

(Cn cosnθ +Dn sennθ)

= A0 +

∞∑
n=1

An
rn

cosnθ +
Bn
rn

sennθ
[
A0 ≡ c0 , An ≡ dnCn , Bn ≡ dnDn

]
.

u(a, θ) = A0 +

∞∑
n=1

An
an

cosnθ +
Bn
an

sennθ = −3 + 2 cos θ − 4 sen2θ .
A0 = −3
A1/a = 2 ⇒ A1 = 2a

B2/a
2 = −4 ⇒ B2 = −4a2

An
∣∣
n ̸=0
n ̸=1

= Bn
∣∣
n ̸=2

= 0 .

u(r, θ) = A0 +
1

r
A1 cos θ +

1

r2
B2 sen2θ = −3 + 2a cos θ

r
− 4a2 sen2θ

r2
■
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4(b)

∂2u

∂r2
(r, θ) +

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0

u(r,θ)≡ R(r)Θ(θ)−−−−−−−−−−−−−→ r2R′′ + rR′

R︸ ︷︷ ︸
λ

+
Θ ′′

Θ︸︷︷︸
−λ

= 0 .

Θ ′′ + λΘ(θ) = 0 , θ ∈ (0, γ) , Θ(r, 0) = Θ(r, γ) = 0 [onde γ = π/6] .

λn = (nπ/γ)2 ↔ Θn(θ) = sen(nπθ/γ) (n = 1, 2, 3 · · · ) .

r2R′′
n + rR′

n − (nπ/γ)2Rn(r) = 0 ⇒ Rn(r) = Cnr
nπ/γ +Dn/r

nπ/γ .

|Rn(0)| <∞ ⇒ Bn = 0 .

u(r, θ) =

∞∑
n=1

Cn r
nπ/γ sen

nπθ

γ
.

u(b, θ) =

∞∑
n=1

Cn b
nπ/γ sen

nπθ

γ
= 10 .

Cn b
nπ/γ =

2

γ

∫ γ

0

10 sen
nπθ

γ
dθ =

20

γ

[
− cos(nπθ/γ)

nπ/γ

]γ
0

=
20

nπ
[− cos(nπ) + 1] .

=

{
40/(nπ) se (n = 1, 3, 5 · · · )

0 se (n = 2, 4, 6 · · · ) ⇒ Cn =


40

πnbnπ/γ
se (n = 1, 3, 5 · · · )

0 se (n = 2, 4, 6 · · · ) .

u(r, θ) =
∑

n=1,3,5···

40

πnbnπ/γ
rnπ/γ sen

nπθ

γ

b= 3
=

γ = π
6

40

π

∑
n=1,3,5···

1

n

(r
3

)6n
sen(6nθ) ■
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6.6 Problemas Propostos
Resolva os seguintes problemas:

1] a)



∂2T

∂x2
=

1

α

∂T

∂t
(x, t) ,

com x ∈ (0, ℓ) e t > 0 .

T (0, t) = T (ℓ, t) = 0 .

T (x, 0) = 5 sen
2πx

ℓ
.

b)



∂2T

∂x2
=

1

4

∂T

∂t
(x, t) ,

com x ∈ (0, 2) e t > 0 .

∂T

∂x
(0, t) =

∂T

∂x
T (2, t) = 0 .

T (x, 0) = 10− 5 cos 3πx .

2] a)



∂2y

∂x2
=

1

c2
∂2y

∂t2
(x, t) ,

com x ∈ (0, ℓ) e t > 0 .

y(0, t) = y(ℓ, t) = 0 .

y(x, 0) = 0 ,
∂y

∂t
(x, 0) = 5 sen

2πx

ℓ
.

b)



∂2y

∂x2
=

1

9

∂2y

∂t2
(x, t) ,

com x ∈ (0, 2) e t > 0 .

y(0, t) = y(2, t) = 0 .

y(x, 0) = 5 sen3πx ,
∂y

∂t
(x, 0) = −6 senπx .

3] a)



∂2u

∂x2
+
∂2u

∂y2
(x, y) = 0 ,

com x ∈ (0, ℓ) e y ∈ (0, h) .

u(x, 0) = u(x, h) = 0 .

u(0, y) = 0 , u(ℓ, y) = 5 sen
2πy

h
.

b)



∂2u

∂x2
+
∂2u

∂y2
(x, t) = 0 ,

com x ∈ (0, 2) e y ∈ (0,∞) .

u(0, y) = u(2, y) = 0 .

u(x, 0) = 5 sen3πx .

4] a)



∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
(r, θ) = 0 ,

com r ∈ (0, b) e θ ∈ (0, π/2) .

u(r, 0) = u(r, π/2) = 0 .

u(b, θ) = 5 sen4θ .

b)



∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
(r, θ) = 0 ,

com r ∈ (a,∞) e θ ∈ (0, π) .

u(r, 0) = u(r, π) = 0 .

u(a, θ) = 5 sen4θ .

Eis as respostas:

1] a) T (x, t) = 5 e(2π/ℓ)
2αt sen

2πx

ℓ
b) T (x, t) = 10− 5 e−36π2t cos 3πx

2] a) y(x, t) =
5ℓ

2πc
sen

2πct

ℓ
sen

2πc

ℓ
b) y(x, t) = − 2

π
sen3πt senπx+ 5 cos 9πt sen3πx

3] a) u(x, t) = 5 csch
2πℓ

ℓ
senh

2πx

h
sen

2πy

h
b) u(x, t) = 5 e−3πy sen3πx

4] a) u(r, θ) =
5

b4
r4 sen4θ b) u(r, θ) =

5

r4
a4 sen4θ
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6.7 Apêndice

6.7.1 Gradiente, Divergência, Laplaciano

Nas coordenadas cartesianas, para um campo escalar u(x, y, z) ou um campo vetorial V⃗ (x, y, z) =(
Vx(x, y, z), Vy(x, y, z), Vz(x, y, z)

)
, são definidas as seguintes grandezas:

• gradiente de u ≡
( ∂u
∂x

,
∂u

∂y
,
∂u

∂z

)
• divergência de V⃗ ≡ ∂Vx

∂x
+
∂Vy
∂y

+
∂Vz
∂z

• laplaciano de u ≡ divergência do gradiente de u

= divergência de
( ∂u
∂x

,
∂u

∂y
,
∂u

∂z

)
=

∂

∂x

(∂u
∂x

)
+

∂

∂y

(∂u
∂y

)
+

∂

∂z

(∂u
∂z

)
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

A notação dessas grandezas por meio do chamado operador nabla,

∇ ≡
( ∂

∂x
,
∂

∂y
,
∂

∂z

)
,

é obtida como segue:

gradiente de u =
( ∂

∂x
,
∂

∂y
,
∂

∂z

)
︸ ︷︷ ︸

∇

u = ∇u .

divergência de V⃗ =
∂

∂x
Vx +

∂

∂y
Vy +

∂

∂z
Vz =

( ∂
∂x

+
∂

∂y
+

∂

∂z

)
︸ ︷︷ ︸

∇

· (Vx, Vy, Vz)︸ ︷︷ ︸
V⃗

= ∇ · V⃗ .

laplaciano de u = ∇ · ∇u = ∇2u .

Nesta última equação, empregamos a notação v⃗ 2 ≡ v⃗ · v⃗ para denotar o chamado quadrado escalar
do vetor v⃗.

Em resumo:

gradiente de u(x, y, z) : ∇u =
( ∂u
∂x

,
∂u

∂y
,
∂u

∂z

)

divergência de V⃗ (x, y, z) : ∇ · V⃗ =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

laplaciano de u(x, y, z) : ∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

Essas expressões são válidas apenas se (x, y, z) forem as coordenadas cartesianas. Em outros siste-
mas de coordenadas, tais como o das coordenadas polares, cilíndricas e esféricas, as expressões corretas
devem ser deduzidas. Naturalmente, para usar as expressões acima em problemas bidimensionais cujo
domínio esteja contido no plano xy, basta desprezar as derivadas parciais em relação a z.

6.7.2 Solução Geral da EDO ψ′′ + λψ(x) = 0

A forma da solução geral da EDO ψ′′+λψ(x) = 0 varia conforme λ seja nulo, negativo ou positivo.
Vejamos.

• Para λ = 0 :
Nesse caso a EDO tem a forma ψ′′(x) = 0, sendo sua solução geral obtida rapidamente por duas

integrações consecutivas, obtendo-se
ψ(x) = c1 + c2x ■
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• Para λ < 0 : λ = −k2 (k > 0) :
Nesse caso a EDO tem a forma ψ′′ − k2ψ(x) = 0. Calculemos as raízes da equação característica:

r2 − k2 = 0 ⇒ r = ±
√
k2 = ±k .

Logo, a solução geral é
ψ(x) = c1 e

kx + c2 e
−kx ■

Convém também expressar essa solução em termos das funções hiperbólicas [v. Ref. [11], seção 3.11]
como segue:

ψ(x) = c1 e
kx + c2 e

−kx = c1 (cosh kx+ senhkx) + c2 (cosh kx− senhkx)

= (c1 + c2︸ ︷︷ ︸
c̄1

) cosh kx+ (c1 − c2︸ ︷︷ ︸
c̄2

) senhkx = c̄1 cosh kx+ c̄2 senhkx ■

• Para λ > 0 : λ = k2 (k > 0) :
Nesse caso a EDO tem a forma ψ′′ + k2ψ(x) = 0. Calculemos as raízes da equação característica:

r2 + k2 = 0 ⇒ r = ±
√
−k2 = ±ik .

Logo, a solução geral é
ψ(x) = c1 cos kx+ c2 senkx ■

Em resumos, temos

ψ′′ + λψ(x) = 0 ⇒ ψ(x) =


c1 + c2x se λ = 0

c1 cosh kx+ c2 senhkx (ou c1e
kx + c2e

−kx) se λ = −k2 (k > 0)

c1 cos kx+ c2 senkx se λ = k2 (k > 0) ,

onde expressamos λ = k2 ou λ = −k2, com k > 0, para atribuir a λ qualquer valor real positivo ou
negativo, respectivamente, admitindo k > 0 para que a relação entre λ e k seja biunívoca, isto é, que
a cada valor de λ corresponda um único valor de k, e a cada um de k, um único de λ).

6.7.3 O Laplaciano em Coordenadas Polares
Para mostrar que

∇2(r, θ) =
∂u2

∂r2
+

1

r

∂

∂r
+

1

r2
∂u2

∂θ2
, (I)

tomamos a fórmula do laplaciano em coordenadas cartesianas,

∇2(x, y) =
∂u2

∂x2
+
∂u2

∂y2
,

e realizamos nela a mudança para as coordenadas polares, definidas por x = r cos θ e y = r senθ. Pela
regra da cadeia, podemos escrever o que segue:

ux = urrx + uθθx

uxx = (urrrx + urθθx)rx + urrxx + (uθrrx + uθθθx)rx + uθθxx

= r2xurr + θ2xuθθ + 2rxθxurθ + rxxur + θxxuθ .

Neste último resultado, trocando x por y, obtemos

uyy = r2yurr + θ2yuθθ + 2ryθyurθ + ryyur + θyyuθ .

Logo,

uxx + uyy = (r2x + r2y)urr + (θ2x + θ2y)uθθ + 2(rx + ry)θxurθ + (rxx + ryy)ur + (θxx + θyy)uθ . (II)

Para calcular rx, θx, etc, usamos a lei de transformação inversa:
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r =
√
x2 + y2 e θ = arctan(y/x) + δ (∗) .

Logo,

rx = ∂
(√

x2 + y2
)
= (2x)/

(
2
√
x2 + y2

)
= x/r .

rxx = ∂(xr−1)/∂x = r−1 − xr−2rx = (r2 − x2)/r3 = y2/r3 .

θx =
∂

∂x
[arctan(y/x) + δ] =

−y/x2

1 + (y/x)2
=

−y
x2 + y2

=
−y
r2

,

θxx =
∂

∂x
(−yr−2) = 2yr−3rx =

2y

r2
x

r
=

2xy

r4
.

Nas duas primeiras expressões acima, podemos simplesmente substituir x e y um pelo outro, já que
a expressão de r é simétrica com respeito a essa troca, para obter

ry = y/r e ryy = x2/r3 .

Já θ não exibe tal simetria; suas derivadas em relação a y devem ser calculadas normalmente:

θy =
∂

∂y
[arctan(y/x) + δ ] =

1/x

1 + (y/x)2
=

x

x2 + y2
=

x

r2
,

θyy =
∂

∂y
(xr−2) = −2xr−3ry =

−2x
r3

y

r
=
−2xy
r4

.

Assim,

r2x + r2y = x2/r2 + y2/r2 = (x2 + y2)/r2 = r2/r2 = 1 ,

θ2x + θ2y = y2/r4 + x2/r4 = r2/r4 = 1/r2 ,

rxθx + ryθy = −xy/r3 + xy/r3 = 0 ,

rxx + ryy = y2/r3 + x2/r3 = r2/r3 = 1/r ,

rxx + ryy = 0 .

A substituição desses resultados na equação (II) fornece a equação (I) desejada.

6.7.4 Solução Geral da EDO r2R′′ + rR′ + λR(r) = 0

Essa é a EDO de Euler-Cauchy. Vamos resolvê-la para o caso em que r é a coordenada polar radial,
a qual, por hipótese, não toma valores negativos. Assim, vamos resolvê-la para r > 0 :

ρ = ln r ⇒ r = eρ e
dρ

dr
=

1

r
= e−ρ .

R(r) = R(eρ) ≡ R(ρ) .

R′(r) =
dR

dr
=
dR

dρ

dρ

dr
= R′(r)

1

r
⇒ rR′(r) = R′(ρ) .

R′′(r) =
d

dr

(dR
dr

)
=

d

dr

(dR
dρ

dρ

dr

)
=

d

dr

(
R′(ρ)e−ρ

)
=
[
R′′(ρ)e−ρ −R′(ρ)e−ρ

]
e−ρ

=
[
R′′(ρ)−R′(ρ)

]
(e−ρ)2︸ ︷︷ ︸
1/r2

⇒ r2R′′(r) = R′′(ρ)−R′(ρ) .

[
r2R′′]+ [rR′]+ λR(r) = 0⇒

[
R′′(ρ)−���R′(ρ) ] +

[
���R′(ρ)] + λR(ρ) = 0

⇒ R′′(ρ) + λR(ρ) = 0⇒ R(ρ) =

c1 + c2ρ se λ = 0
c1 e

kρ + c2 e
−kρ se λ = −k2 (k > 0)

c1 cos kρ+ c2 senkρ se λ = k2 (k > 0)

(∗) Uma vez que θ ∈ [0, 2π), é necessário definir a constante aditiva δ como sendo igual a 0, π, π ou 2π conforme θ seja
do 1o¯, 2o¯, 3o¯ ou 4o¯ quadrante, respectivamente, uma vez que os valores principais da função arctan estão no intervalo
(−π/2, π/2). Se bem que esse cuidado é irrelevante na presente dedução, pois δ desaparecerá com as diferenciações.
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Voltando às funções em função de r, obtemos finalmente

r2R′′ + rR′ + λR(r) = 0 ⇒ R(r) =


c1 + c2 ln r se λ = 0

c1r
k + c2/r

k se λ = −k2 (k > 0)

c1 cos(k ln r) + c2 sen(k ln r) se λ = k2 (k > 0)
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